

An accelerometer for spaceborne application with interferometric readout: LIG layout, the optoelectronic board and the phasemeter

Marco Pisani and Massimo Zucco, INRIM, Torino, Italy Anna Nobili, University of Pisa

SETUP of LIG

Laser characterization

The frequency noise of the laser $S_V(f)$ couples to the interferometer noise $S_L(f)$ through the equation proportional to the interferometer unbalance L_o : $S_L(f) = S_V(f) \frac{L_o}{V_o}$

 λ = 1064 nm in coincidence of Nd:YAG laser P = 10 mW Linewidth = 10 kHz Possibility to tune the frequency PM fiber Low phase noise free running

Laser characterization

The frequency noise of the laser $S_{\mathcal{V}}(f)$ couples to the interferometer noise $S_L(f)$ through the equation proportional to the interferometer unbalance L_o : $S_L(f) = S_{\mathcal{V}}(f) \frac{L_o}{\mathcal{V}_o}$

INRIM Nd:YAG locked to iodine transitions at 532 nm has a relative stability of about 10⁻¹³ at 1 second and $S_V(f) < 10^3 \text{ Hz}/\text{Mz}$

INRIM optical comb has a stability of $3 \cdot 10^{-13}$ at 1 s and accuracy 10^{-13}

Laser characterization

Power Spectral Density (simulated) $S_L(f)$

UNIVERSITÀ DI PIS

Opto-electronic board

Opto-electronic board

Opto-electronic board

3D view of the Opto-electronic board

39 cm x 32 cm board. The total mass about 2.35 kg. Pmax = 40W (using standard components not optimized for space).

Opto-electronic devices

Digital Phase meter

ADC obtained with Analog to Digital Converter ADC (NI9223) with sampling rate up to 1 Msample/s with 16 bits of vertical resolution. IQ demodulation implemented in a Labview program

Signals at the heterodyne frequency 5 kHz < $f_{\rm het}$ < 100 kHz

UNIVERSITÀ DI PISA

Digital Phase meter

Comparison of different digital phase meters

REFERENCE OSCILLATOR

PRO

Higher heterodyne frequency, up to some GHz

Higher bandwidth

Phase directly in voltage, it could be used as error signal to close a loop

CONS

The amplitude noise is measured as phase noise

The transfer function depends on the signals ampltude and must be measured

