SIM Metrology

Michael Shao, JPL Feb 2010

Laser Metrology in SIM

- Interferometry vs analog displacement sensors
- Basic heterodyne interferometer concept
- Laser source
- Laser gauge
- Phase meter (electronics)

Laser Interferometry and Analog Displacement Sensors

Analog Sensor (cap sensor, Strain gauge Diff transformer Etc.)

0-1cm motion 0-1V output

10⁻¹⁰ cm precision implies 100pv noise 10¹⁰ SNR

- Laser interferometer is a part analog, part digital sensor.
- For motions > λ, it counts fringes, a digital sensor
- For motions < λ it's an analog sensor.
- If the "standoff" distance is 10mm the needed analog SNR for a laser is 10,000 times lower if λ=1um.
- For SIM precision = accuracy
- 1m motion measured to 10⁻¹²

Advantages of Heterodyne Interferometry

- Signal is AC, mostly immune to dc room light, 60hz flicker etc.
 - Relaxed calibration of DC levels and gain of detector/amp
- Turns length measurement into a time measurement

Time delay measured with high speed clock. 10Khz het-freq, & 500Mhz high speed clock means the signal is digitized to $\lambda/50,000$

Systematic Errors

• The polarization based heterodyne interferometer was commercially introduced by Hewlett Packard (now Agilent Corp) in the 1980's? It is widely used in the semi-conductor fab industry. However it has relatively large systematic (cyclic) errors (~ $\lambda/200$) that arise because of imperfect polarization components (or improperly aligned components)

- On SIM we've adopted the spatially separated beam launcher laser gauge. This gauge comes in a variety of configurations.
 - Gauge measures difference in OPD between 2 arms of a stellar interferometer,
 - Gauge measures the distance between two optical fiducials, with the gauge between the two fiducials.
 - Gauge measures the distance between two optical fiducials, with the gauge outside the two fiducials.

Spatially Separated Heterodyne Gauge

SIM Laser Gauge Noise

Random Noise Sources (SIM Internal Gauge)

Detector noise	$\varepsilon = \lambda \cdot NEP \cdot \frac{\sqrt{B}}{4 \pi \eta P}$
Photon noise	$\varepsilon = \frac{1}{4\pi} \sqrt{\frac{2hc\lambda B}{\eta P}}$
Amplifier noise	$\varepsilon = \frac{\lambda}{2\pi} \frac{\sqrt{4 kTRB}}{\eta PR}$
Phase meter quantization noise	$\varepsilon = \frac{\lambda}{\sqrt{12}} \frac{f_{het}}{f_{clock}}$

- P=200nW
- NEP=5x10⁻¹⁵ W/sqrt(Hz),
- R=100kΩ,
- heterodyne f_{het} =300kHz,
- $\operatorname{clock} f_{\operatorname{clock}} = 128 \mathrm{MHz},$
- bandwidth B=540kHz,

- Use higher laser power
- Use lower heterodyne frequency
- Use longer integration time (averaging)

$$\langle \delta x \rangle = \frac{\varepsilon}{\sqrt{N}} = \frac{\varepsilon}{\sqrt{f_h \tau}}$$

Optimizing Laser Met for a Diff App

- Phase meter quantization noise (equiv A/D converter noise)
 - $\lambda/sqrt(12) * (f_het/f_clock)/sqrt(f_het) \sim 0.6 \text{ pm/sqrt(hz)}$
 - 1.06um, f_het=300Khz,f_c=256Mhz.
 - Change f_het = 10Khz noise $\sim 0.12 \text{ pm/sqrt(hz)}$
 - Change f_clock to 512Mhz 0.06 pm/sqrt(hz)
- Laser power
 - Higher laser power reduces detector noise, amp noise, phot noise
 - SIM is amp noise limited. @ 300Khz, $R_f \sim 1e5$ ohms and an FET opamp with 10nv/rthz noise is equiv to a detector with 1e-13 W/rthz. DC Laser power of 3e-7 W would produce an AC signal equiv to 1e-7W, with a SNR=1e6 in 1 sec. ~0.2 pm/sqrt(hz)
 - Photon noise from a 0.1uW signal is ~0.1 pm/sqrt(hz)
 - Photon noise dominates when laser power exceeds ~ 1 uW.
- Current phase meter is equiv to a 1 Bit A/D running at f_clock. Higher performance will need a high speed multibit A/D converter sampling the sine wave

Other Types of Beam Launchers

- The prior laser gauge was configured to measure the distance between two CC's by inserting optics in between the two CC's.
- An alternate configuration is one where the gauges is external to the two optical fiducials (most useful for GG)

What Does A Laser Measure?

- A laser beam bounces off the reflecting surface of a mirror.
 - Metal ~50nm penetration
 - Dielectric a few microns
- What is the thermal noise is the position of the coating? Brownian motion of the atoms in the reflecting layer. (does the material have to be cooled?)
- At 1 picometer/sqrt(hz) this is not an issue for SIM metrology. But it is a limiting factor for projects like LIGO, or ultra stable lasers that use FP-cavities as short term freq references
- Short answer brownian motion of the coating produces $< 10^{-16}$ m/sqrt(hz) of noise @300K.

PHYSICAL REVIEW A 77, 053809 (2008)

Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Pérot cavities

J. Alnis,^{1,*} A. Matveev,^{1,2} N. Kolachevsky,^{1,2} Th. Udem,¹ and T. W. Hänsch¹ ¹Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Strasse 1, 85748 Garching, Germany ²P.N. Lebedev Physics Institute, Leninsky pr. 53, 119991 Moscow, Russia (Received 29 January 2008; published 12 May 2008)

backup

AO Freq Shifters (how they work)

PZT transducer, 40Mhz

40Mhz sound wave in glass periodic density, index of refraction. (moving at speed of sound)

- A laser beam entering a region with a periodic variation in will undergo bragg diffraction.
 - diff angle $\sim RF$ freq
 - Freq shift = RF freq.
- Freq shift occurs because the bragg grating is moving (at the speed of sound in glass)
- If the RF signal consists of 2 tones 40, and 41Mhz the diffraction pattern at the output will be 2 beams.
- AOM's are also used as spectrum analyzers. Takes an instantenous fourier transform of the input RF signal.

Possible Configuration for GG

- 1st thoughts, maybe revised (at 100% level) after discussion in Pisa.
- Measure all 6 DOF of the inner cylinder wrt the outer cylinder.
- Using the "external launcher" configuration
 - Outer cylinder has a hole that lets the laser through to the inner cylinder.
 - Both cylinders have special areas that reflect the beam back to the gauge.
 - Several possibilities
 - Most exotic are holographic gratings that can be applied on an arbitrary shaped surface to reflect the laser light 180deg.

Example of What's Done During Engineering Risk Reduction

- Lifetime testing. Class A/B missions have a requirement that mechanisms have a 99.7% probability of working throughout the mission (5yrs) AND there is a backup.
 - Eg a PZT actuator will be designed with 2PZTs
 - Laser lifetime.
- The laser used for metrology on SIM is a diode pumped YAG laser (NPRO geometry). Producing ~250mw of 1.319um output. The lifetime limiting component are the pump laser diodes. It is not possible to achieve 99.7% prob that a single pump diode would last 5.5yrs. Several schemes using multiple pump diodes were investigated.
- Most of the other engineering tasks had to do with building the components to survive launch and work in space.

