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A FAST ROTATING DIFFERENTIAL ACCELEROMETER FOR TESTING 

THE EQUIVALENCE PRINCIPLE: PRELIMINARY  RESULTS 

 

by 

Gian Luca Comandi 

University of Pisa, Italy 

 

 

INTRODUCTION 
 

General Relativity is based on the “hypothesis of complete physical equivalence” between a 
gravitational field and an accelerated frame formulated by Einstein in 1907. This hypothesis is 
usually referred to as the Weak Equivalence “Principle” and its experimental consequence is 
the Universality of Free Fall, namely the fact that in a gravitational field all bodies fall with 
the same acceleration regardless of their mass and composition. So far the best experimental 
proof of the equivalence principle have been obtained by the “Eöt-Wash” group at the 
University of Washington with test masses suspended on a slowly rotating torsion balance, 
reaching a sensitivity of  1 part in 1012 in their relative fractional acceleration. An experiment 
in space, with the test masses orbiting the Earth at low altitude, would take advantage of the 
much stronger signal (by about 3 orders of magnitude), the absence of weight and the long 
experiment duration, and can therefore potentially provide a much more accurate test. 
However, a torsion balance is not appropriate for space because it is based on the existence of 
a preferential direction provided on the surface of the Earth by the local gravitational 
acceleration. An experiment named “Galileo Galilei”- GG has been designed for testing the 
equivalence principle in space with concentric co-axial hollow test cylinders weakly coupled 
to form a differential accelerometer and fast rotating around their symmetry axis for high 
frequency modulation of the expected signal. GGG (“GG on the Ground”) is a differential 
accelerometer based on the same concepts as the one proposed for space, but modified to 
work in the laboratory at 1-g. To this end the spin/symmetry axis is used to suspend the test 
cylinders against local gravity and the test cylinders are weakly coupled in the horizontal 
plane in order to be sensitive to differential forces acting in this plane, hence also to the 
horizontal component of a possible violation of equivalence. Like in the space experiment, the 
read out consists of two capacitance bridges (spinning with the system) whose plates are 
located half way in between the test cylinders to measure the relative displacements of the test 
cylinders along the orthogonal directions of the plane perpendicular to the spin axis. 
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This thesis reports the results of my work on the GGG experiment since the year 2000. My 
previous work on GGG has been reported in my “laurea” degree thesis under the title: 
“Verifica del Principio di Equivalenza a terra e nello spazio con masse di prova in rotazione 
veloce”, where I developed a physical model of the gyroscopic effects on the test masses of 
the GGG rotating accelerometer showing that these effects cannot be distinguished from the 
signal of an equivalence principle violation in the field of the Earth, whereby coming to the 
conclusion that a variant of the GG accelerometer modified to work on the Earth can be used 
only for equivalence principle tests in the field of the Sun.  The theoretical predictions of the 
model were compared with extensive experimental measurements of the gyroscopic effects at 
various spin frequencies showing the validity of the physical model. 
 
This thesis is based on the work I have carried out on the GGG experiment after that. The first 
aim was to be able to rotate the system at high frequency with the test cylinders undergoing 
very small displacements relative to one other, in spite of their weak coupling and large mass. 
The theory of supercritical rotors underlying such a dynamical system is well known. 
However, the number of bodies involved, the differential character of the apparatus and the 
high sensitivity required make GGG a very new and peculiar instrument for which no past 
experience is available. The goal of having good measurement runs was therefore a primary 
goal.  At the same time, I have developed a full scale multi-body mathematical model of the 
rotating GGG accelerometer allowing us to perform realistic numerical simulation of the 
dynamical behaviour of the actual system. The model provides quantitative predictions for the 
actual system, and also guidelines on how to improve the apparatus design for better 
performances. The natural frequencies of the system as predicted in dependence of the spin 
frequency are all confirmed by the experimental measurements. In addition, the model allows 
us to quantify two crucial properties of the accelerometer, namely its common mode rejection 
factor (i.e. how good it is as a differential accelerometer) and self-centring of  the test  
cylinders on the spin axis (the theoretical property of weakly suspended rotors which makes 
fast rotation rates and small relative displacements of the spinning cylinders possible at all). 
  
A physical quantity of the outmost importance in any small force experiment is the quality 
factor Q of the system, which must be measured for the full apparatus and at the frequency 
which is relevant for the experiment. For a sufficiently low pressure of the residual air inside 
the vacuum chamber we have measured the Q of the mechanical suspensions at all natural 
frequencies of the GGG system, fully assembled and not rotating. The best Q value of 95000 
was obtained at the highest natural frequency of the system, of about 1.4 Hz. A well 
established theory of damping and rotordynamics for fast spinning weakly suspended rotors 
predicts, in the presence of non zero dissipation in the reference frame of the rotor (namely, of 
dissipation in the rotating parts of the system, primarily in the mechanical suspensions), the 
onset of the so called whirl motions at frequencies very close to the natural frequencies of the 
system. The same theory predicts that the higher is the Q of the system at the spin frequency, 
the slower is the growth rate of the whirl instabilities. A mathematical model of the whirl 
motions in GGG was used to fit the whirl motions as measured by the capacitance bridges of 
the read out, so as to derive the Q of the rotating system which turned out to be affected by 
losses in non rigid parts of the apparatus besides the suspensions, which all need to be 
identified so as to apply appropriate changes to the system. Since the frequencies of whirl are 
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well identified and fitted, much smaller relative displacements of the test cylinders at low 
frequency can be detected. The smaller is the amplitude of the whirl, the more sensitive is the 
accelerometer to low frequency differential forces such as a 24-hr violation of the equivalence 
principle in the field of the Sun. This requires that whirl is not allowed to grow and in point of 
fact that it is stabilized to remain as small as possible. It is well known that whirl motion can 
be stabilized by introducing in the system a sufficient amount of non-rotating damping. This 
can be done passively, which is what we do during the initial acceleration phase from zero 
spin to the nominal spin frequency above the natural ones. When the spin rate equals each 
natural frequency the system passes through the corresponding resonance, and in absence of 
an adequate passive damper the resulting disturbances could be too unacceptable. The passive 
damper has been designed in such a way not to leave any moving or dissipating part on the 
rotor after all resonances have been crossed. During rotation above the natural frequencies a 
finer whirl damping can be achieved actively using specific capacitance sensors and actuators. 
It was part of my thesis work to theoretically design the control laws for the active 
stabilization of whirl motion in GGG and to implement the full control system which so far 
has provided a reduction of the amplitude of the whirl at the natural differential frequency to a 
few tenths of µm.  
 
The GGG experiment is affected by the local terrain tilts, because by tilting the 
spin/symmetry axis of the accelerometer they produce spurious relative displacements of the 
test cylinders. The largest and most dangerous ones while aiming at testing the equivalence 
principle in the field of the Sun are the disturbances caused by temperature and pressure 
variations during the day. Terrain tilts and horizontal seismic accelerations are 
indistinguishable from each other because of the equivalence principle. Horizontal 
accelerations change the direction of the local vertical; however,  in GGG these absolute 
changes are not relevant because the signal is a relative displacement of the test cylinders 
around the local vertical at the time, and for this reason it is possible to achieve a good 
reduction of both disturbances together. From 2 to 3 orders of magnitude of low frequency 
seismic noise attenuation can be achieved actively, using as sensor a small tiltmeter and 
piezoceramics as fine actuators. I have designed the control laws for this system and realized 
the electronic circuit needed for this purpose.  A further noise reduction is planned for the 
future using a cardanic suspension of the whole system; it turns out that by exploiting the 
lever effect the stiffness required to obtain 4 orders of magnitude reduction is similar to that 
one of the suspensions currently in use.  
 
As mentioned at the beginning, the GGG experiment has started as a ground variant of the 
GG space experiment, in particular because of the novelties involved in the GG concept and 
the need for them to be tested. Both experiments need to be investigated if aiming to a very 
high accuracy test of the equivalence principle, though GG only theoretically and with 
numerical simulations at this phase. As far as GG is concerned, I have contributed to 
redesigning the experiment for a high inclination sun-synchronous orbit (for which more and 
cheaper launch opportunities are available). In particular, I have worked on the stabilization of 
whirl motions for a GG-like system of bodies in a spinning spacecraft and in realistic errors. 
Related to that is the issue of tidal effects due to the presence of whirl motion, which I have 
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investigated in detail showing how they can be distinguished from an equivalence principle 
violation signal.  
 

This thesis is organized as follows: 
 

• Chapter 1 gives the required basic concepts of rotordynamics, introducing concepts 
such as “whirl motion”, “self centring” and “critical speed.  

• Chapter 2 contains a qualitative description of the GGG experiment (mechanical 
design, how it works, read-out, adjustments and settings…). 

• The dynamical model of the GGG system of rotors is developed in Chapters 3 and 4 
(normal modes, common mode rejection factor, self centring and comparison between 
predictions and measurements).   

• Whirl motions and Q of the system are the subject of Chapter 5: theory, experiments 
and analysis of measurement data. 

• Chapter 6 is concerned with the active linear control of whirl motion while Chapter 7 
deals with the active control of terrain tilts and seismic horizontal accelerations. In 
both Chapters the theoretical predictions of the control scheme are compared to the 
experimental results. 

• Chapter 8 concludes on the state and perspectives of the GGG experiment. 
• Chapter 9 is devoted to the GG space experiment. It contains a brief description of the 

experiment and reports my specific contribution on whirl control and tidal effects. 
 

Various Chapters have Appendices where specific issues are discussed whose results are 
important but can be looked at separately. Appendix 9 deals with the PGB (Pico Gravity Box) 
noise attenuator. In its passive version it is simply an intermediate stage used in the GG 
experiment. However, I have chosen to report also the results on a passive/active PGB noise 
attenuator to be used on the space station, a project of the Italian Space Agency later cancelled 
after the Columbia disaster. My expertise on actively controlled systems for space was 
initially developed  for this project and this Appendix may in fact be helpful for interested 
readers. 
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Symbols 
 
 
Latin Letters 
 
A  state matrix 
B  input matrix 
C  output matrix 
C0 initial value of the capacitance 
Ci value of the i-th capacitance changed due to the displacement 
ccr critical value of the coefficient c 
ceq equivalent viscous damping coefficient 
CMR         common mode rejection 
cNR coefficient of non rotating damping 
cR coefficient of rotating damping  
D  coupling input � output matrix 
E  energy 
Ew energy of whirl motion 
EP  equivalence principle 
ESS  sun elevation sensors 
F
!

 force 
Fcom force acting in a common manner on the two test bodies 
Fdif force acting in a differential manner on the two test bodies 
FFT  fast Fourier transform 

gF
!

 vector of the generalized forces 

iF   generalized force 
fit_WF(t) theoretical function used to fit the forward whirl 

NR
xyF
!

 force due to non-rotating damping in the non-rotating frame S 
NR
ξ ηF
!

 force due to non-rotating damping in the rotating frame SR 

R
xyF
!

 force due to rotating damping in the non-rotating frame S 
R
ξ ηF
!

 force due to rotating damping in the rotating frame SR 

( )Z kℑ  discrete Fourier transform of the discrete time signal Z(k) 

Z( )ℑ ω   Fourier transform of the continuous time signal Z(t) 
g!  local gravity 
GG   �Galileo Galilei� space experiment 
GGG  �Galileo Galilei on the ground� experiment 
HNR(s) transfer functions matrix  in the non-rotating reference frame S 

NR
comH (s)  transfer functions matrix  in the non-rotating reference frame S in presence of a  

 common input force 
NR
difH (s)  transfer functions matrix  in the non-rotating reference frame S in presence of a  

 differential input force 
Hn(s) transfer function from ϑn and the output ϑ 



 

 vi

HVn(s) transfer function from the electrical noise Vnoise_tilt and the output ϑ 
NR

,H (s)α β   α,β component of the transfer functions matrix  HNR(s) in the non-rotating  
 reference frame S 
HRot(s) transfer functions matrix  in the rotating reference frame SR 

Rot
,H (s)α β   α,β component of the transfer functions matrix  HRot(s) in the rotating  

 reference frame SR 
Hϑ(s) transfer function from the input disturbance ϑd and the output signal ϑ 
I  moment of inertia 
ℑ m imaginary part of a complex quantity 
I(s) transfer function of the integrator unit 
ISS  international space station 
j imaginary unit 
k elastic constant 
kd deviatoric stiffness 
kdin dynamic stiffness of the system with structural damping 
km mean stiffness 
KPZT DC gain of the PZT converting the input voltage into an angle 
Kref scale factor introduced to convert the reference angle ϑ ref into a voltage 
Ktilt DC scale factor of the tiltmeter converting angles into voltage signals 
kx elastic constant along the x direction in the non rotating frame 
ky elastic constant along the y direction in the non rotating frame 
kξ elastic constant along the ξ direction in the non rotating frame 
kη elastic constant along the η direction in the non rotating frame 
"  length of the flexible part of the laminar suspension 
L distance from the central suspension and one end of the balancing arm 
L
!

  angular momentum 
L   Lagrange function 
L′ effective length of the rotor 
L1 distance of the centre of mass of the inner cylinder from its suspension point 
L2 distance of the centre of mass of the outer cylinder from its suspension point 
m mass of a body 
[M] mass matrix 
M
!

 torque 
ma mass of the balancing arm 
m1 mass of the inner cylinder 
m2 mass of the outer cylinder 
mg gravitational mass 
mi inertial mass 
mr reduced mass 
M#  mass of the Sun 
O origin of the reference frames S and SR 
PGB  pico gravity box 

ipαβ   i-th pole of the transfer function NR
,H (s)α β  

PM  phase margin 
P(s) transfer function of the PZT 
PZT piezoceramic 



 

 vii

Q′ vector of the generalized coordinates q′ i 
Q′0 vector of the generalized coordinates q′ i at equilibrium 
Q vector of the new generalized coordinates representing small oscillations  
 around the equilibrium position Q′0 
Q′$  vector of the generalized velocities iq′$  

0Q′$  vector of the generalized velocities iq′$  at equilibrium 
Q$  vector of the new generalized velocities representing small oscillations  
 around the equilibrium position 0Q′$  
Q quality factor 
Qw quality factor of the whirl motion 

iq′  i-th generalized coordinate 
0

iq′  value of iq′  at equilibrium 
qi new generalized coordinate representing the small oscillation around the  
 equilibrium angle 0

iq′  

iq′$  i-th generalized velocity 
0

iq′$  value of iq′$  at equilibrium 

iq$  new generalized velocity representing the small oscillation around 0
iq′$  

QS quality factor at the spin frequency 
r!  position vector 
�r  unit vector 
ℜ e real part of a complex quantity 
rw whirl radius 
Rξ reconstructed signal in the rotating frame obtained from Φξ 
Rη reconstructed signal in the rotating frame obtained from Φη 
R⊕  radius of the Earth 
R ⊕ #  Earth-Sun distance 
s  Laplace variable 
S (O,x,y,z)  non rotating reference frame 
SB (Ξ,Π,ϒ) reference frame fixed with the body 
SR (O,ξ,η,z)  rotating reference frame 
T  kinetic energy 
TC sampling period 
Td natural differential period, inverse of νd 
Tint integration time 
TP(s) transfer function of the system piezo+tiltmeter 
Ts spin period 
T(s) transfer function of the tiltmeter 
Tw  whirl period 
U  potential energy 
u!   input vector 
UFF  universality of free falling 
Ug gravitational potential energy 

Rot
iu  i-th input of the transfer functions matrix HRot(s) in the rotating frame SR 

Uk elastic potential energy 
Uc centrifugal potential energy 
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Ucc �Coriolis� potential energy 
Vnoise_tilt electrical noise affecting the tiltmeter 
Wb(t) backward whirl continuous time signal 
Wb(k) forward whirl discrete time signal 
Wf(t) forward whirl continuous time signal 
Wf(k) forward whirl discrete time signal 
x coordinate in the inertial frame S 
x!   state space vector 

e
nrX  experimental discrete time signals in the x direction of the laboratory frame 
t
nrX  experimental continuous time signals in the x direction of the laboratory frame 

y coordinate in the inertial frame S 
y!   output vector 

NR
iy  i-th output of the transfer functions matrix NRH (s)  in the non rotating frame 
Rot
iy  i-th output of the transfer functions matrix RotH (s)  in the rotating frame 
e
nrY  experimental discrete time signals in the y direction of the laboratory frame 
t
nrY  experimental continuous time signals in the y direction of the laboratory frame 

z coordinate in the inertial frame S  - vertical axis of the inertial frame S, 
 coinciding with the rotation axis  
z′ complex coordinate in the non rotating frame 

hz′  solution of the homogeneous equation 

izαβ   i-th zero of the transfer function NR
,H (s)α β  

pz′  particular solution of the general equation 
 
 
Greek Letters 
 
χ common mode rejection factor 
χ0 static (DC) value of the common mode rejection factor χ(s) in the limit s!0 

s01/ νχ  absolute value of 1/χ0 as a function of the spin frequency νs 

χx(s) common mode rejection factor in x direction as a function of frequencies 
χy(s) common mode rejection factor in x direction as a function of frequencies 

i,kδ  Dirac�s delta 

δν small shift of a natural frequency due to the anisotropy of the cardanic  
 suspensions 
∆L adjustable distance used to regulate the differential period 

comx∆!  common mode displacement 

difx∆!  differential mode displacement 
∆xEP differential displacement of the expected EP violation signal 
∆ξ distance of the centre of mass from the motor axis 
∆ξrel relative distance between the centres of mass of the cylinders 
ε!  the eccentricity or unbalance or offset 

2ε!  second offset 



 

 ix

Φξ vector of data acquired by the capacitance bridge sensitive along ξ direction in  
 the rotating frame 
Φξ(k) k-th component of Φξ 
Φη vector of data acquired by the capacitance bridge sensitive along η direction in  
 the rotating frame 
Φη(k) k-th component of Φη 

i′φ  angle from the ξ axis and the projection of the vector pointing to the centre of 
 mass of the i-th body on the ξ−η plane 

0
i′φ  value of i′φ  at equilibrium 

φi new angle representing the small oscillation around the equilibrium angle 0
i′φ  

γk loss factor 
γNR loss factor connected to the non-rotating damping 
γR loss factor connected to the rotating damping 
η coordinate in the rotating frame SR 
ηηηη    Eötvös parameter 
ϕ phase 
ϑ angular deviation of the horizontal plane from the initial position ϑ ref 
ϑd(ν) seismic disturbance as a function of frequency 

24h
dϑ  peak value of the total seismic disturbances at frequency ν24h 

i′ϑ  angle between the vertical axis z and the vector pointing to the centre of mass  
 of the i-th body  

0
i′ϑ  value of i′ϑ  at equilibrium 

ϑ i new angle representing the small oscillation around the equilibrium angle 0
i′ϑ  

24h
nϑ  peak value of the electrical noise affecting the tiltmeter at frequency ν24h 
24h
noiseϑ  peak value of the seismic noise at frequency ν24h 

ϑnoise_tilt electrical noise affecting the tiltmeter converted into an angle 
24h
pkϑ  peak value of the tidal effect at frequency ν24h 

ϑ ref reference angle 
λ eigenvalue 
λL latitude of the laboratory 
λNR dimensionless natural frequency  
Λ elastic anisotropy 
Λ′  elastic anisotropy in the rotating frame SR 
ν frequency [Hz] 
ν(νs) natural frequency ν as a function of the spin speed 
νC sampling frequency 
νc1 lowest natural frequency corresponding to a common mode in which the  
 centres of mass of the two cylinders oscillate in phase 

0
c1ν  value of the common mode natural frequency νc1 at zero spin rate 

νc2 highest natural frequency corresponding to a common mode in which the  
 centres of mass of the two cylinders oscillate in phase 

0
c2ν  value of the common mode natural frequency νc2 at zero spin rate 



 

 x

νd  natural differential frequency corresponding to a mode of oscillation in which  
 the centres of mass of the two cylinders oscillate in opposition of phase 

0
dν  value of the differential natural frequency νd at zero spin rate 

νd+ the differential natural frequency split up by +δν 
νd- the differential natural frequency split up by -δν 
νn natural frequency 

0
nν  natural frequency at zero spin rate 

νpole(νs) pole of the transfer function NR
,H (s)α β  as a function of the spin speed 

0
poleν  value of  νpole(νs) at νs=0 

νs spin frequency 
sν  spin frequency at which the best performances against common mode external  

 disturbances are obtained 
νzero(νs) zero of the transfer function NR

,H (s)α β  as a function of the spin speed 
0
zeroν  value of  νzero(νs) at νs=0 

ν12h frequency at which the tidal disturbances spectrum has the second peak 
ν24h frequency at which the tidal disturbances spectrum has the highest peak  
Π coordinate in the reference frame fixed with the body 
σ+   Fourier transform of the forward whirling motion signal 
σ-   Fourier transform of the backward whirling motion signal 
τ time constant 
τw time constant of the whirl motion 
τ1 time constant of the backward whirl motion 
τ2 time constant of the forward whirl motion 
ϒ coordinate in the reference frame fixed with the body 
ω angular velocity [rad/s] 
ω′ dimensionless angular velocity 
ω1 backward whirl frequency 
ω2 forward whirl frequency 
ωB band limit 
ωcr critical speed 
ωcr2 second critical speed 
ωmin smaller frequency component which can be identified with the FFT 
ωn  natural angular velocity 

sω!  angular velocity about the axis of rotation; it is also referred to as spin speed  
 or spin frequency 
ωw  whirl frequency 
ω⊕  angular velocity of the Earth 
ξ
!

 relative position vector 

iξ  i-th component of ξ
!

 
Ξ coordinate in the reference frame fixed with the body 
ψ(k) discrete vector in the frequency domain used to define the σ+ and σ- functions 
ζ complex coodinate in the rotating frame   
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CHAPTER 1 

INTRODUCTION TO THE DYNAMICAL BEHAVIOUR OF ROTORS. 
 

1.1: GENERAL CONSIDERATIONS. 
 

The present chapter originates from the need to give the required basic concepts of 
rotordynamics to the reader. The intention is to prepare the reader to the following chapters by 
introducing concepts such as �whirl motion�, �self centring� and �critical speed�. In the 
references, the author gives a list of  books and papers oriented towards the subjects of  the 
dynamics of rotating machinery here discussed. In particular, the presentation of the subject in 
the present chapter is widely inspired by [1]. 
A rotor is a body suspended through a set of cylindrical bearings and rotating around an axis 
whose direction is fixed in the inertial space1 ([1 - 3]). The part of the machine that does not 
rotate will be referred to stator. In the undeformed configuration, the rotation axis is well 
defined and fixed, and it coincides with one of the principal axis of inertia. Unfortunately, this 
is true only approximately, and the centre of mass of the suspended body does not coincide 
with the suspension point.  

 
Figure 1.1: Longitudinal section of a rotor spinning at angular frequency ωs. The centre of mass G does not 
coincide with the geometrical centre C of the disk. The shaft is elastic. 

A simple model of rotor is shown in figure 1.1. The model is sketched in its undeformed 
configuration. sω!  is the angular velocity about the axis of rotation and it is usually referred to 
as spin speed or spin frequency. G is the centre of mass of the suspended body. C is the 
suspension point of the body. In real world, the centre of mass G is not coincident with the 

                                                 
1 ISO definition. 
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centre C; the distance between the two points ε!  is said eccentricity (or unbalance) and it can 
strongly affect the system. ε!  is a constant vector in the rotating frame fixed to the rigid body. 
In the non-rotating frame (inertial frame) the eccentricity rotates with angular velocity ωs.  
Forces due to the unbalance of the rotor itself can be described as vector rotating with the spin 
angular speed in the inertial reference frame. The spin velocities at which one of the forces 
acting on the rotor has a frequency coinciding with one of the natural frequencies2 of the 
system are referred as critical speeds3.  If the natural mode of the system is uncoupled to the 
forcing function no resonance occurs. However, the resonance takes place at critical speeds: 
the amplitude of the vibration grows linearly in time and the rotor can incur a failure. In 
particular, the coincidence of the spin speed with one of the natural frequencies of the rotor is 
very dangerous. The range of frequencies spanning from 0Hz to the first critical speed ωcr is 
referred to as subcritical regime. Above ωcr, the supercritical range starts. Working in the 
supercritical regime offers some advantages but at least one of the critical speeds must be 
crossed. Note that the concept of critical frequency can be defined only in the case of linear 
systems (or in the case of linearized systems)4.  
Rotors develop an unstable behaviour in certain velocity range. In the study of non-rotating 
damped linear system the amplitude of free oscillations decays in time because of dissipation 
due to damping. In the case of rotors, instead, the centrifugal field can cause a growth in time 
of the amplitude of free vibrations. The frequency range in which these self excited vibrations 
can develop is said instability range: the kinetic energy stored in the rotor is some orders of 
magnitude greater than the elastic potential energy the system can store before failure and it 
can sustain vibrations with increasing amplitude. The instability regions are always located in 
the supercritical range and working in the instability range is impossible. Critical speeds are 
very different from instability ranges: they occur at well-defined spin frequencies and can be 
passed if adequate damping is present.  
If the time history of the system is expressed in the form x=x0 est, the system is stable when 
the real part of the complex eigenvalues s is negative. We adopt the definition of stability 
introduced by Liapunov [4]: let us consider the vector R(t) in the state space, i.e. 
R(t)=(x(t),v(t)), and use the expression  R(t) for its norm. An equilibrium position R0=(x0,0) 
is stable if "e>0 $d>0 such that the inequalityΩR(t)-R0Ω< e holds "tŒ[0,•] if ΩR(t=0)-
R0Ω<d, i.e. if any trajectory starting within a circle of radius d centred in the equilibrium point 
R0=(x0,0) remains within a circle of radius e for all values of time. The equilibrium position is 
asymptotically stable if ΩR(t)-R0ΩÆ0 when tÆ•.  
Once the inertial reference frame is stated, the six equations of motion under the action of the 
generic force F

!
 and torque M

!
 can be written in the form: 

mr=F

dLM=
dt







!!""
!!  (1.1) 

                                                 
2 The natural frequencies are the solutions of the characteristic equation associated to the equation of motion of 
the system. The natural frequencies of a rotor can depend on the spin speed. 
3 The coincidence between the critical speed with the natural frequency of the undamped system is not a general 
feature of the rotors. It is a characteristic of those rotors in which the natural frequencies do not change with the 
spin velocity.  
4 Because only in this case the concept of natural frequency can be applied. 
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The assumptions of small unbalance and small displacement allow the equations of motion to 
be linearized. This chapter will be devoted to the study of the dynamic behaviour of  simple 
rotors. In particular, some mathematical model that are not too complex will be discussed in 
order to introduce some of the most important characteristics of the rotors. 

1.2: THE LINEAR JEFFCOTT ROTOR. 
 
The simplest system that can be used to describe the dynamic behaviour of rotors is the so 
called Jeffcott rotor. The Jeffcott rotor consists of a point mass rigidly attached to a mass-less 
shaft. k is  the stiffness of the elastic shaft and m the mass of the suspended body. A simple 
sketch of a Jeffcott rotor is depicted in figure 1.2: G is the point mass and C is the centre of 
the cross section of the shaft. The distance between the two points is the eccentricity ε=CG

###!! . 
The point G is always contained in the x-y plane5.  r!  is the position vector of the point C with 
respect to the centre O of the undeformed shaft (O is also the origin of the (x,y,z) inertial 
reference frame). Gr r= + ε! ! !  is the position vector of the point mass G. The line AOB 
coincides with the undeformed spin axis (shaft) along z direction; the line ACB is the 
deformed shaft. The assumptions of small unbalance and small displacement allow the 
equations of motion to be linearized. In the non-rotating frame (inertial frame) the eccentricity 
rotates with angular velocity ωs ( s s �zω = ω!  is the angular spin speed of the rotor). ϕ=ωst is the 
angle between the eccentricity and the x axis of the inertial frame. 

 
Figure 1.2: Sketch of the Jeffcott rotor. G is the point mass and C is the centre of the cross section of the shaft. 

The distance between the two points is the eccentricity ε=CG
###!!

. r!  is the position vector of the point C with 
respect to the centre O of the undeformed shaft. Gr r= + ε! ! !

 is the position vector of the point mass G. The line 
AOB coincides with the undeformed spin axis (shaft); the line ACB is the deformed shaft. 

Let us assume the displacements x and y of the point C as generalized coordinates (two 
degrees of freedom), i.e.: 

r=OC=(x,y)
###!!

 (1.2) 

The position and velocity of point G are: 

                                                 
5 This simplification is true in the limit of small displacements.   
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s
G

s

x+εcos(ω t)
r =OG=

y+εsin(ω t)
 
 
 

###!!
 (1.3) 

s s
G

s s

x-εω sin(ω t)
r =

y+εω cos(ω t)
 
 
 

"!"
"

 (1.4) 

The Lagrange function is then: 

( ) ( )2 2 2 2 2 2
s s s s

1 1= m x +y +ε ω +2εω ycos(ω t)-xsin(ω t) - k x +y
2 2

 
 " " " "L  (1.5) 

Making the assumption of constant spin speed (i.e. sϕ = ω" ), the following equations of 
motion are obtained through the lagrangean of the system: 

2
s s

2
s s

m x-εω cos(ω t) +kx=0

m y-εω sin(ω t) +ky=0

  
  


   

""

""
 (1.6) 

By introducing the complex coordinate z′ = x+jy, the equation (1.7) is easily obtained from 
(1.6). 

sjω t2
smz +kz =mεω e′ ′""  (1.7) 

The general solution of the homogeneous equation is then: 
c r c rjω t -jω t

h 1 2z =z e z e′ +  (1.8) 

where crω k/m= is the critical speed of the system6, often called whirl speed. Equation (1.8) 
shows that z′ is a vector that rotates in the horizontal plane. The motion is the superimposition 
of a circular forward motion (also called forward whirl or direct whirl), occurring in the same 
direction as the spin angular velocity7, and a backward motion (backward or indirect whirl). 
The resulting whirl motion can be circular, elliptic or rectilinear. The particular solution of 
equation (1.7) is: 

s s
2

jω t jω ts
p 0 2 2

c r s

ωz =z e =ε e
ω -ω

′  (1.9) 

Equation (1.9) shows that the vector r! (i.e. the point C) rotates in the plane with angular 
velocity ωs, remaining in line with the vector ( )s sCG=ε cos(ω t),sin(ω t)

###!
, being  z0 the distance 

from the origin O of the reference frame8. Combining the equation (1.3) with (1.9), the 
position Gr

!  of the point mass G reduces to: 

( )
2
cr

G s s2 2
c r s

ωr =ε cos(ω t),sin(ω t)
ω -ω

!
 (1.10) 

                                                 
6 It coincides  with the natural frequency of the non rotating system. 
7 In this study the spin speed will be considered positive if anticlockwise.  

8 0z r= ! . 
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The value of the amplitude of rG as a function of the spin speed is shown in figure 1.3. The 
point mass G rotates in the horizontal plane of the inertial frame with angular velocity ωs. 
Instead, in a reference frame rotating with angular velocity s s �zω = ω! , with the origin in O and 
z-axis coinciding with that of the preceding frame, the point mass G is in equilibrium.  In 
subcritical regime, i.e. at spin speed lower than the critical one, the amplitude of Gr

!  grows 
from ε to an infinite value (in coincidence with the critical speed crω ).  In supercritical 
regime, ( i.e. ωs>ωcr), G lies between O and C. The value of the amplitude is negative and it 
decreases with the spin angular velocity: 

2
c r

G s c r
s

if
ω

r -ε , r - ε 0     ω ω
ω

 
≅ ≅ ≅ >> 

 

! ! ! !
 (1.11) 

Equation (1.11) means that in supercritical  region there is a self-centring of the body on the 
rotation axis (i.e. G is practically coincident with O). The phenomenon is known as auto-
centring in supercritical rotation9: the rotor rotates about its centre of mass instead of its 
geometrical centre. 

 
Figure 1.3 : Amplitude of the position vector Gr

!
 as a function of the spin speed. The amplitude grows from ε to 

an infinite value in coincidence with the critical speed crω . In the supercritical range, i.e. at frequencies higher 
than the critical one, the value is negative and it decreases with the speed.  

The final motion of the point C is the superimposition of a free whirl (circular, elliptic or 
linear) at frequency crω k/m= (see equation (1.8)) and a circular motion with angular 
velocity ωs (see equation (1.9)). 

                                                 
9In order for the system to reach its equilibrium position on the opposite side with respect to the offset vector ε! , 
it must have two degrees of freedom. Indeed, it is well known that 1D systems are highly unstable if spinning at 
frequencies above the critical one. On this argument see section 1.11. 
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1.3: VISCOUS DAMPING. 

 
Energy dissipation in rotating machines can cause the free motion to decay in time or increase 
([1], [5 - 8]). When considering a damped system, it is important to distinguish between two 
different kinds of damping: 

• the so called non-rotating damping, associated to the stationary parts of the apparatus 
• the so called  rotating damping, associated to the energy dissipation inside the rotor. 

In the following we will show that non-rotating damping is stabilizing at any speeds. Instead, 
we will show that rotating damping reduces the amplitude of oscillations in case of subcritical 
rotation (ωs<ωcr), but it has destabilizing effects (whirling motions) when the rotor is in 
supercritical rotation. The force due to non-rotating damping is given in the non-rotating 
frame by (viscous damping model proportional to the velocity): 

( )NR
xy NRF =-c x,y
!

" "  (1.12) 

where cNR is the non-rotating damping coefficient.  By using the complex notation, the force 
reduces to: 

NR NR NR
x y NRF =F +jF =-c z′

!
"  (1.13) 

Let us now introduce the rotating reference frame (O,ξ,η,z) with the origin O and the z axis 
coinciding with that of the inertial frame. Axes ξ and η rotate in the x-y plane with angular 
velocity ωs. The force due to rotating (viscous) damping is expressed in the rotating frame by: 

R
ξ η R

ξ
F =-c

η
 
 
 

"!
"

 (1.14) 

Introducing the complex position vector in the rotating frame ζ=ξ+jη, it is readily obtained 
ζ=z′ e-jωst.  The derivative of the complex coordinate ζ is then: 

( ) s-jω t
sζ= z -jω z e′ ′" "  (1.15) 

Combining equations (1.14) and (1.15), the force due to rotating damping in the rotating 
frame is obtained: 

( ) s-jω tR
ξη R R sF =-c ζ=-c z -jω z e′ ′
! " "  (1.16) 

In the inertial frame it reads: 

( )R
xy R sF =-c z -jω z′ ′
!

"  (1.17)  

 
1.4: THE JEFFCOTT ROTOR WITH VISCOUS DAMPING. 

 
By introducing the forces (1.13) and (1.17) at the right-hand side of the equation of motion 
(1.7), it follows10: 

sjω t2
R NR s R smz +(c +c )z +(k-jω c )z =mεω e′ ′ ′"" "  (1.18) 

                                                 
10 If the angular frequency of the rotor is not constant, the equation that describes the motion of even a simple 
body is more complex and it is easier to perform the numerical integration. This problem will be shown in 
section 1.6. 
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The characteristic equation of the associated homogeneous equation gives the values of  the λ 
eigenvalues: 

( ) 2
s R R NRR NR

2
4m k-jω c -(c +c )c +cλ=j ±

2m 4m
 (1.19) 

The eigenvalues (1.19) may be written in a more manageable manner by separating the real 
parts of the complex frequencies from the imaginary parts. 
After introducing the three parameters ( )2 2

R NRa= 4mk-(c +c ) 4m , R sb=-c ω / m  
and ( )R NRc= c +c / 2m  the first eigenvalue is obtained as11: 

2 2 2 2

1
a +b +a a +b -aλ =- +j c+

2 2

 
 
 
 

 (1.20) 

It has a negative real part, namely  ℜ e(λ1)<012. Hence, the corresponding motion 
1 1- m(λ )t j e(λ )t

1z =z e eℑ ℜ′  is a backward whirl mode. The imaginary part is always positive in the 
whole range of frequency. It corresponds then to a damped backward whirl with amplitude 
decreasing in time with exponential law. The centre of mass of the rotor spiralises toward the 
centre of rotation, i.e. the origin O of the reference frame. This whirl damps out quickly and 
has little practical interest. The second eigenvalue is: 

2 2 2 2

2
a +b +a a +b -aλ = +j c-

2 2

 
 
 
 

 (1.21) 

It has a positive real part and corresponds to a forward whirl motion. The imaginary part can 
be either positive or negative and the corresponding whirl can be either damped or excited. 
The condition for stability in terms of the sign of λ2 is ℑ m(λ2)>0. With simple algebra it can 
be shown to be: 

( )s cr NR Rω <ω 1+c c  (1.22) 

If only rotating damping is present the motion is unstable in whole supercritical regime. In 
case of highly supercritical rotation the condition for stability means:  

crNR R sc >c ω ω  (1.23) 

Equation (1.23) means that non-rotating damping has a stabilizing effect on the rotor. The 
condition is easy to fulfil due to the very low level of the rotating damping of real rotors. The 
particular integral of the non-homogeneous equation (1.18) is connected to the presence of the 
unbalance and can be written in the form: 

                                                 

11 
2 2 2 2a a b a a b

a jb j
2 2

+ + − + +
+ = +  

12 In the limit ωs>>√(k/m) and Q>>1 it is easily found: ℜ e(λ1) = -ωc r and ℜ e(λ2) = ωc r. 
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s s
2

jω t jω ts
p 0 2 2

c r s s NR

ωz =z e =ε e
ω -ω jω c m

′
+

 (1.24) 

Starting from equation (1.24) the motion of the centre of mass13 is readily obtained. In 
particular, we can write the value of the amplitude as a function of the spin speed: 

2
s

G s
2 2 s R
cr s

ωz (jω ) =ε +1ω cω -ω +j
m

 (1.25) 

By introducing the dimensionless parameter 

γR=cR/(2mωcr)=1/Q (1.26) 
equation (1.25) can be written as: 

2 22 2
2 s s s

G s R R2 2
crcr cr

ω ω ωz (jω ) =ε 1+4γ 1- + 2γ
ωω ω

   
   

  
 (1.27) 

Figure 1.4 shows the dependence of the amplitude of  zG (1.27) as a function of the angular 
spin frequency.  

 
Figure 1.4: Dimensionless amplitude of the distance of the point mass G from the rotation axis for three different 
values of rotating damping. 

                                                 
13 sjω t

G G Gz =x +jy =z +ε e′  
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In supercritical regime it decreases with the spin angular velocity and vanishes in the limit 
ωs→∞, i.e. there is a self-centring of the suspended body on the rotation axis. If the stability 
condition (1.23) is satisfied, the general solution of the equation (1.18) can be considered as 
the superimposition of a backward whirl motion (the solution corresponding to the eigenvalue 
(1.20)), which decays in time, a forward motion, with decreasing amplitude (the solution 
corresponding to (1.21)) and a circular motion at the spin frequency with constant amplitude 
(corresponding to (1.24)). There is a self-centring of the point mass G, instead,  on the 
rotation axis, at distance 2 2

cr sεω ω ε∼ % . 
 

1.5: STRUCTURAL DAMPING. 
 
Many materials, when subjected to cyclic loading, show a behaviour that can be described in 
terms of a hysteresis cycle. In these cases the damping is called �structural�. Structural 
damping is due to the relative motions of different parts in the material when subject to 
deformations. Let us introduce the complex stiffness k*=kR+jkI ([1], [9]): the real part kR is 
linked with the elastic stiffness of the material, while the imaginary part kI is connected to the 
damping. γk=kI/kR is the loss factor. The expression of the complex stiffness may be written as 
k*=k(1+jγk). For simplicity, we consider a model with only one degree of freedom, that is 
simple but demonstrates, at least qualitatively, the behaviour of more complex systems: on the 
point mass m can act a force function of time f(t) and the supporting point can move in the x 
direction. The equation of motion can be solved in the frequency domain: 

dink X( j ) F( j )ω = ω  (1.28) 

In equation (1.28) we have introduced the dynamic stiffness of the system with structural 
damping: 

2
din kk m k(1 j )= − ω + + γ  (1.29) 

The dynamic stiffness is a function of the forcing frequency, and in case of damped system, it 
is complex. The complex frequency of the free oscillations can be obtained by equating to 
zero the dynamic stiffness:  

c k n kk / m 1 j 1 jω = + γ = ω + γ  (1.30) 

where ωn is the natural frequency of the undamped system. 
After some simple algebra14, the real and the imaginary parts of the complex frequency can be 
easily separated: 

2 2
k k

c n n
1 1 1 1

j
2 2

+ + γ − + +γ
ω = ω + ω  (1.31) 

The loss factor is typically very small (γk<<1);  in this limit it follows: 

c ne( )ℜ ω ≈ ω  (1.32) 

                                                 
14 2 2 2 22(a jb) a a b j a a b+ = + + + − + +  
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k
c nm( )

2
γℑ ω ≈ ω  (1.33) 

Relations (1.32) and (1.33) show that the frequency shift due to the presence of structural 
damping is negligible for lightly damped systems.  
The ratio between the elastic stiffness and the dynamic stiffness is usually referred to as the 
frequency response H of the system. The expressions for the real and imaginary parts, its 
amplitude and phase are: 

( )
2

22 2 2
k

k me(H( j )) k
k m k

− ωℜ ω =
− ω + γ

 (1.34) 

( )
2

k
22 2 2

k

km(H( j ))
k m k

γℑ ω = −
− ω + γ

 (1.35) 

( ) ( )2 22 2 2 2 2 2
k n k

k 1H( j )
k m k 1

ω = =
− ω + γ − ω ω +γ

 (1.36) 

( )( )2 2k
k n2

k( j ) arctg arctg 1
k m

γ Φ ω = − = −γ − ω ω − ω 
 (1.37) 

Figure 1.5 shows the amplitude and phase of H as function of the forcing frequency for 
different values of the loss factor.   

 
Figure 1.5: Amplitude and phase of H(jω) as function of the forcing frequency. For different values of the loss 
factor. 
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The quality factor of the system with structural damping is defined as: 

( ) max
k

1Q H j= ω =
γ

 (1.38) 

Structural damping is then a form of linear damping and it can be assimilated  with viscous 
damping through the equivalent viscous damping coefficient: 

eq kc k /= γ ω (1.39) 

In equation  (1.39)  ω is the frequency at which the material goes through the hysteresis cycle. 
By inserting the relation (1.38) into the (1.39), it follows:  

eq
kc
Q

=
ω

 (1.40) 

On the basis of experiences with many rotating machines it is concluded that friction inside 
rotating parts (the suspensions) is essentially of structural nature. Hence, a structural damping 
model is usually better suited for the rotating damping. Note that the frequency at which the 
hysteresis cycle is gone through is now ω n-ωs  with ωs the spin speed: 

R
n

kc
Q

=
ω − ω

15 (1.41) 

In case of highly supercritical rotation, the relation (1.41) can be simplified in R k Qc ≈ ω, i.e. 
energy is dissipated at the high spin angular velocity and not at the low natural frequency. 
 

1.6: ACCELERATING  JEFFCOTT  ROTOR. 
 
If the spin speed is constant, the terms in sω"  in equation (1.18) are neglected. However, when 
the rotational speed is not constant, the angle between the two reference frames (inertial  and 
rotating; see section 1.2) can not be written as ϕ=ωst. ϕ is now a third generalized coordinate 
linked with the rotation about the z axis. A driving torque Mz is assumed to be applied to the 
shaft of the rotor (torsionally stiff) and the lagrangean of the system is expressed by the 
relation: 

( ) ( )2 2 2 2 2 2 2
z

1 1 1= m x +y +ε +2ε ycos( )-xsin( ) - k x +y J
2 2 2

 ϕ ϕ ϕ ϕ + ϕ " " "" " " "L    (1.42) 

The equations of motion are determined from (1.42) in the standard manner: 

( )2 j
R NR Rmz +(c +c )z +(k-j c )z =mε j e ϕ′ ′ ′ϕ ϕ − ϕ" " """" " 16 (1.43) 

( ) ( )2
z zJ m m xsin( ) ycos( ) M+ ε ϕ + ε − ϕ + ϕ ="" "" "" 17 (1.44) 

                                                 
15 For the non-rotating damping the equivalent coefficient is NR k Q nc ω= . 

16 If the spin speed is constant, equation (1.18) is easily obtained from (1.43) by performing the substitutions 
ϕ→ωst, dϕ/dt →ωs, d2ϕ/dt2 →0. 
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In this case it is better to introduce a rotating frame (which, however, does not rotate at 
constant speed). The position, velocity and acceleration of point C can be expressed as 
functions of complex coordinate ζ : 

jz e ϕ′ = ζ  (1.45) 

( ) jz j e ϕ′ = ζ + ϕζ" ""  (1.46) 

( )2 jz j 2 j e ϕ′ = ζ + ϕζ + ϕζ − ϕ ζ"" """ """  (1.47) 

By introducing the relations (1.45), (1.46) and (1.47) into the equations (1.43) and (1.44) it 
follows:  

( )2 2
R NR NRm +(c +c +2mj ) +(k+j c +j ) =mε jζ ϕ ζ ϕ ϕ −ϕ ζ ϕ − ϕ"" "" " "" " ""  (1.48) 

( ) ( )2 2
z zJ m m 2 M+ ε ϕ + ε η + ϕξ + ϕξ − ϕ η =""" "" " "" " 18 (1.49) 

When the time history of the driving torque is known, equations (1.48) and (1.49) can be 
solved by performing a numerical integration.  
We want, now, to evaluate the torque needed to operate at constant speed ωs. In this limit 
( 0ϕ ="" ), equations (1.48) coincide with equations (1.18) and the displacement ζ is constant at 
the value expressed by (1.24), namely: 

( )2 2 2
0 s c r s s NR=εω ω -ω jω c / mϕ=ζ +""  (1.50) 

By stating 0, , ts sϕ = ϕ = ω ϕ = ω"" " , equation (1.49) can be written in the form: 
2
s 0 zm Mϕ=− εω η =""

19 (1.51) 

By combining equations (1.50) with (1.51), the torque needed to operate at constant speed ωs 
is obtained: 

( )
2 5

NR s
z 2 222 2 s NR

cr s 2

cM
c

m

ε ω=
ωω − ω +

20 (1.52) 

                                                                                                                                                         

17 The equation (1.44) is obtained in the standard manner:
d

Mzdt
∂ ∂

− =
∂ϕ ∂ϕ"
L L

.  

18 In sections 1.2 and 1.3 we have introduced the complex variables z′=x+jy and ζ=ξ+jη. After some simple 
algebra, it follows: jz e− ϕ′ζ =  and jm(z e ) x sin( ) y cos( )− ϕ′ℑ = − ϕ + ϕ"" "" "" . Equation (1.44) can be written as 

2 j
z z( ) )J m m m z e M( − ϕ′+ ε ϕ + εℑ ="" "" . By noticing that  ( )j 2m z e 2− ϕ′ℑ = η + ϕξ + ϕξ −ϕ η""" " "" """ , equation (1.49) 

is readily obtained. 
19 We have equated to zero all derivatives of the generalized coordinates: 0ϕ = ξ = ξ = η = η =" """" " "" . 

20 ( )
( )

3
NR s

0 0 2 222 2 s NR
cr s 2

c / mm
c

m

ϕ= ϕ=
εωη = ℑ ζ = −

 ωω − ω + 
 

"" ""  
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Let us introduce the loss factors: 

R NR
R NR

c c;
2 km 2 km

γ = γ =   (1.53) 

The driving torque may be written in terms of non-dimensional parameters:  

( )
5 5

2 2 *s cr
z NR z22 2 2 2 2

s cr NR s cr

M 2 k 2k M
1 4

ω ω= γ ε = ε
− ω ω + γ ω ω

 (1.54) 

Figure 1.6 shows the non-dimensional driving torque *Mz  as a function of the ratio ωs/ωcr.   

 
Figure 1.6: Non-dimensional torque *

zM  as a function of the ratio ωs/ωcr. The torque has a peak at the critical 
speed. Inset: value of the torque at high spin speed. 

The torque has a peak at the critical frequency: 
2

cr z s cr
NR

kM M ( )
2

ε= ω = ω =
γ

 (1.55) 

and, in case of highly supercritical rotation, the torque needed to operate at constant speed 
grows linearly with the spin angular velocity: 

s

2
z NR sM 2kim

ω →∞
= ε γ ω&  (1.56) 
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Note that Mcr is also the smaller torque needed to operate at speed higher than the critical 
speed. 

1.7: COUPLED ROTORS. 
 
In order to investigate the properties of coupled rotors ([10 - 11]), we examine the simple 
problem of two bodies connected by dissipative springs. Two concentric, co-axial, hollow 
cylinders with mass m1=m2=m, weakly coupled by dissipative mechanical suspensions with 
elastic stiffness k, rotates around their symmetry axis (z axis) at constant spin speed ωs higher 
than the natural frequency of the system (supercritical regime). The rotation is counter-
clockwise21.  
In supercritical rotation mechanical suspensions are known to undergo deformation (and 
therefore to dissipate energy) at the spin frequency. Energy dissipation makes the spin rate to 
decrease, together with the spin angular momentum. Since the total angular momentum must 
be conserved, the bodies develop a whirl motion of increasing amplitude around each other at 
a frequency close to the natural differential22 one due to the coupling. In figure 1.7 a sketch of 
the two coupled cylinders is shown. Since the springs are very weak and their masses are 
negligible compared to the mass of the rotor, they will be obliged to follow the motion of the 
attachment points which rotate at ωs around the centre of mass of the respective test mass. 
The centres of mass of the springs will rotate around O at ωs. When the springs are going 
from position 1 to position 3 in figure 1.7, they will be forced to expand by 4rw (rw is the 
radius of the whirl motion), and when going from position 3 to 1 to contract by the same 
amount.  

 
Figure 1.7: Simple model of a system made of two bodies of mass m, coupled  by weak springs. Both bodies are 
spinning at the same angular velocity ωs around their respective centres of mass O1 and O2. O1 and O2 are 
whirling around the centre of mass O of the whole system at the natural frequency ωw=ωn.  

                                                 
21 This is a simplified model for the system spacecraft � PGB which will be studied in chapters 7,8 and 9. 
22 Natural differential frequency:  the cylinders� centres of mass move within the horizontal plane in opposition 
of phase while their symmetry axis remains aligned with the vertical z 
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The centres of mass O1 and O2 of the two cylinders rotate around O with angular frequency 
ωw=ωn (ωn is the natural frequency of the system). After the spring, starting from position 1, 
has completed one turn in the time Ts=2π/ωs, the whirling motion will have displaced position 
1 by an angle ±2πωw/ωs (the sign + refers to the forward whirling and the sign � to the 
backward one). Therefore, in order to reach again the position 1 of maximum contraction, the 
spring takes a time slightly different from Ts. This means that each spring is forced to oscillate 
at the frequency ωs±ωw. As a consequence, by considering the dissipation of the whole system 
as expressed by the quality factor Q, the coefficient of rotating damping is given as  
cR=k/(Qω s±ωw ) in agreement with equation (1.41). Let us consider 1r

! the position vector of 
the cylinder 1, 2r

!  the position vector of body 2, ε!  (eccentricity) the vector locating the 
suspension point of the spring with respect to the centre of the outer body 2 (see figure 1.8).  

 
Figure 1.8: Simplified model of the system. 1r

!
is the position vector of the cylinder 1, 2r

!
 the position vector of 

body 2, ε!  (eccentricity) the vector locating the suspension point of the spring with respect to the centre of the 
outer body 2. 

In the inertial reference frame the equations of motion of the centres of mass are: 

( )
( )

1 1 1 2 R 1 2 s 1 2

2 2 2 1 R 2 1 s 2 1

m r =-k(r -r +ε)-c r -r -ω ×(r -r )

m r =-k(r -r -ε)-c r -r -ω ×(r -r )






! ! ! ! ! ! ! ! !"" " "

! ! ! ! ! ! ! ! !"" " "
 (1.57) 

where the rotating damping (1.17) has been introduced. By defining the relative position 
vector 2 1 1 2ξ = r -r ( , )= ξ ξ

! ! ! , the reduced mass ( ) ( )r 1 2 1 2m = m m / m +m  and the natural frequency 
2
n rω = k m , we can write the equation  for the relative motion of the cylinders: 

( ) ( )2 R
n s

r

cξ=-ω ξ-ε - ξ-ω ×ξ
m

! ! ! !! !"" "  (1.58) 

By noticing that for a highly spinning rotor the coefficient of  rotating damping takes the 
value cR = mr ωn

2/(Qωs) and being the vector s s(t) (cos( t),sin( t))ε = ε = ε ω ω! !  a rotating vector 
in the inertial reference frame (it is fixed in the reference frame co-rotating with the rotor), it 
follows: 

( )
2 2

2 2n n
n s n

s s

ω ωξ+ ξ+ ω ξ- ω ×ξ =ω ε(t)
ω ω

 
 
 

! ! ! !! !"" "
Q Q

 (1.59) 

Equation (1.59) can be written in terms of the complex coordinate 1 2z =ξ +jξ′ : 

s
2 2

jω t2 2n n
n n

s

ω ωz + z + ω -j z =ω εe
ω

 
′ ′ ′ 

 
"" "

Q Q
 (1.60) 
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Before finding the solutions of equation (1.60), let us replace the right-hand side of this 
equation with the forcing function23 jωtf(t)=αe . The transfer function is now: 

( )
2

2 2 s n
n

s

Z(jω) ω-ω ωH(jω)= =1 ω -ω +j
ωF(jω)

  
  

  Q
 (1.61) 

In the particular case of  equation (1.60) (i.e. when  ω=ωs, 2
nα=ω ε  and the forcing function 

sj t2
nf (t) e ω= ω ε ) the transfer function (1.61) can be written as: 

( )2 2
s n sH(jω )=1 ω -ω  (1.62) 

The particular integral of the non-homogeneous equation (1.59) can be readily obtained from 
(1.62):  

( )
2
n

ε 2 2
n s

ωξ (t)= ε(t)
ω -ω

! !
 (1.63) 

Equation (1.10) obtained in the case of the Jeffcott rotor and equation (1.63) are very similar. 
In supercritical regime, the amplitude of the vector εξ (t)

!
decreases with the spin speed. The 

equation (1.60) is like equation  (1.18) and its solution are obtained in the same manner. In the 
limit of highly supercritical rotation ωs>>ωn and high quality factor Q>>1, its eigenvalues are: 

( )1,2 nλ = ω 1-j/ 2  ∓ Q   24 (1.64) 

Having the eigenvalues (1.64), the general solution of the homogeneous equation associated 
with (1.59) may be easily written in the form: 

n nn A n B-ω t/2 ω t/2
w

n A n B

cos( ω t+ ) cos(ω t+ )
ξ (t)=Ae Be

sin( ω t+ ) sin(ω t+ )
−   

+   −   

! Q Qϕ ϕ
ϕ ϕ

 (1.65) 

                                                 
23 We want to solve the general equation: 

2 2
2n n
n

s

ω ωz + z + ω -j z =f(t)
ω

 
′ ′ ′  

 
"" "

Q Q
 

24We  Start from equations (1.20) and (1.21) for the Jeffcott rotor. If cNR=0 the eigenvalues are: 

2 2
2 4 2 4r

1,2 n n n n
r s r

k / m1 k 1 kj
m 2 ω m2 2

 
    λ = ω + ω + + ± −ω + ω +         

∓
Q Q Q

 

Remembering the definition of the natural frequency ωn , it follows: 

2
2 4 2 4n

1,2 n n n n2 2
s

1 1 1 11 j 1
2 ω2 2

    ω λ = ω + ω + + ± −ω + ω +         

∓
QQ Q

 

In the limit x>>1, we have ( )2 21 1/ x 1 1/(2x )+ ≈ + .  

Then, the following approximated relations for the eigenvalues are obtained: 
2 2 2

2 n n n n n
1,2 n n n2 2 2

s s

ω ω ω ω ω1 1 1λ 2ω 1+ +j ± ω 1+ +j ± ω j
2 ω 2 ω 2 22 4 2 8Q

      
 ≈ ≈ ≈ ±    
       

∓ ∓ ∓
Q Q Q QQ Q
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wξ (t)
!

in (1.65) is the so called whirl motion.  It is the superimposition of a circular forward 
whirl motion (i.e. occurring in the same direction of the spin speed)  which is self-excited, and 
a circular backward whirl motion which is damped. They both occur at an angular velocity 
equal to the natural frequency of the non-rotating system.  
The solution of equation (1.59) can be obtained by adding the general solution of the 
homogeneous equation (1.65) to the particular integral (1.63) of the complete equation: 

( )
n n

ε w
2

n A n B-ω t/2 ω t/2n
2 2

n A n Bn s

ξ=ξ (t)+ξ (t)
cos( ω t+ ) cos(ω t+ )ω= ε(t)+Ae Be
sin( ω t+ ) sin(ω t+ )ω -ω

−   
+   −   

! ! !

! Q Qϕ ϕ
ϕ ϕ

 (1.66) 

Clearly, the damping time constant of the system due to the dissipation is proportional to the 
quality factor Q, namely n2 /τ = ωQ . If Q is large, whirl growth is very slow. Equation (1.59) 
has been integrated numerically and the results are shown in figures 1.9, 1.10 and 1.11.  
 
 

 
Figure 1.9: Simulation of the two body system.A forward whirl growing in amplitude. For demonstration 
purposes the numerical integration is carried with  a bad quality factor (Q=10) to have a short time constant. 
Black circle: starting point. 
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Figure 1.10: Enlargement of the previous figure. Black circle: starting point. Small oscillations at the spin 
frequency are visible.  

 
Figure 1.11: Simulation of the two body system. Relative distance along y direction as a function of time. The 
growth of the amplitude is evident. 
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We can now complete the mathematical model specializing here to the introduction of an  
external force Fe  (constant  or  slowly variable) acting on body 1; the  solution is the 
superimposition of three relative displacements: 

ε w Feξ=ξ (t)+ξ (t)+ξ (t)
! ! ! !

 (1.67) 

with: 

1 1
Fe e e2 2 2 2

r s r r r s r r

m m 1 �ξ (t)=- F (t)- z F (t)
k m +ω c km k m +ω c km

×
! ! !

Q
 (1.68) 

Feξ (t)
!

 in (1.68) is the vector describing the displacement of the equilibrium position due to 
the action of the external force. This result is interesting. For example, even though the 
external force has been applied along the x direction, finite differential displacements occurs 
along the y direction, due to the rotation and to the dissipative nature of the suspensions (the 
quality factor Q is finite. See figure 1.12). 

 
Figure 1.12: Simulation of the two body system. Relative motion in the inertial  reference frame. The figure 
shows the plane of motion in two cases: with (right) and without (left) the inertial force acting on body 2. It 
shows how the effect of an external force is that of displacing the equilibrium position of the system. A small 
phase lag (∆y/∆x) appears due to energy losses in the suspensions (i.e. finite quality factor Q=10). Due to these 
losses, whirl motion at the natural frequency of the system arises in either case around the corresponding 
equilibrium position. 

However, the magnitude of the displacement along the y direction (�orthogonal�) is depressed 
by a factor  1/Q  <<1 with respect to that along x. Hence, the two degrees of freedom are 
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coupled from the energy dissipation only because Q  has a finite value. The 2 body system is 
unstable. The simplest way to stabilize it is adding some non-rotating damping which is 
mathematically expressed by the terms containing the non-rotating damping coefficient cNR. 
To this aim, we introduce the force (1.12) and then recast this equation in the rotating 
reference frame: 

( ) ( ) 2
2 2NR n
n s s s

r s

c ωζ=-ω ζ-ε - ζ+ω ×ζ - ζ+ω ζ-2ω ×ζ
m ω

! ! ! ! ! ! !! ! !"" " " "
Q

 (1.69) 

ζ
!

 is the relative displacement between the bodies in the rotating reference frame. In 
agreement with (1.23), the condition for stability is cNR=cR ωs/ωn. Equation (1.69) has been 
integrated numerically and the result is shown in figure 1.13. This plot shows the approaching 
of the relative displacement to the equilibrium position. 

 
Figure 1.13: Simulation of the two body system. Polar  plot of the relative displacement in the inertial reference 
frame.  Forward whirl is damped.  cNR=100 cR ωs/ωn. 
 

1.8: WHIRLING MOTION AND STABILIZING FORCE. 
 
If there is friction inside rotating parts of the system this amounts to a non zero coefficient of 
rotating damping. Rotating damping has a destabilizing effect because it produces a spin 
down of the system and a corresponding forward whirling motion of the rotating bodies with 
an exponentially increasing amplitude. 
In the inertial frame, the frequency of the whirling motions is essentially the natural frequency 
of the non-rotating system ωw=ωn (ωn is the natural frequency of the system). In the rotating 
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frame, the deformations of the springs occur at the frequency ωs±ωw. As a consequence, whirl 
motions grows in amplitude at a rate which depends on the Q of the system at the frequency 
ωs±ωw, which is essentially the spin frequency: the higher the Q at this frequency, the slower 
the growth rate of the whirl. More precisely, rotor dynamics predicts that whirl grows with a 
negative Q opposite to the Q of the system at its spin frequency. This means that if rw is the 
amplitude of the whirling motion, it increases in time as follows: 

nω t
2

w wr (t)=r (0)e Q  (1.70) 

and its relative variation in one natural period Tn (if Q  >>1) is: 

w n
n

w

∆r ω T
r (0) 2

≅
Q

 (1.71) 

This increase in the amplitude can be interpreted as due to an increasing of the along track 
velocity, caused by a destabilizing acceleration ad such that: 

2
d n w

1 T 2π∆r
2

a ≅  (1.72) 

or  

2
d n w

1 ω r (0)≅a
Q

 (1.73) 

The destabilizing force [12] connected to the acceleration ad can be written as: 

2
d n w centrifugal spring

1 1 1F = mω r (0)= F = F
! ! !

Q Q Q
 (1.74) 

where centrifugalF
!

 is the centrifugal force and springF
!

 the elastic force of the spring. The 
destabilizing force is, then, a small fraction 1/Q<<1 of the elastic force. An active damping 
force opposite to dF

!
(1.74) and slightly larger is required to stabilize the system. 

 

1.9: ENERGY DISSIPATION IN WHIRLING MOTION. 
 
At this point we want to evaluate how much energy is gained by the whirling motion as 
fraction of the energy lost by the spinning rotor [13]. The spin energy of the rotor is: 

2
rotor s

1E = Iω
2

 (1.75.a) 

with I the moment of inertia. The along track velocity is vw=ωnrw and the energy of whirl 
motion is: 

2 2 2 2 2
w kinetic elastic n w w n w

1 1 kE =E +E = mω r + mr =mω r
2 2 m

 (1.75.b) 

The time derivatives of the two energies (1.75.a) and (1.75.b) are: 



Chapter 1: Introduction to the Dynamical Behaviour of Rotors. 

 22

2
rotor s s w w w wE =Iω ω ; E =2mω r r" "" "  (1.76) 

Since the total angular momentum (the spin angular momentum of the rotor Lrotor plus the 
angular momentum of the whirl motion Lw) has to be conserved it must be: 

2
rotor s w n w w rotorL =Iω ; L =mω r ; L +L =0" "  (1.77) 

Since the frequency nω is constant, it follows: 

s n w wIω +2mω r r =0" "  (1.78) 

from which the derivative of the spin speed sω"  can be obtained. By combining (1.77) with 
(1.78) we obtain: 

n
w rotor

s

ωE =- E
ω

" "  (1.79) 

Equation (1.79) shows that, in highly supercritical regime (ωs>>ωn), the energy gained by the 
whirling motion is a very small fraction of the energy lost by the rotor. All the rest is 
dissipated as heat inside the springs. 
 

1.10: ISOTROPIC JEFFCOTT ROTOR ON NON-ISOTROPIC SUPPORTS. 
 
In the study of rotating machinery a common assumption is that of axial symmetry of the 
rotor. If both stator and rotor are isotropic with respect to the rotation axis, particularly simple 
models can be built. On the contrary, if the rotor cannot be considered axially symmetrical, 
the study can become very complicated. In the following, we will study the simple model of 
the non-isotropic Jeffcott rotor [1]. With respect to the model in section 1.2, the only 
difference is, now, that the stiffness of the supports is not isotropic in the x-y plane. Assuming 
that the elastic constant along the x direction kx=k is lower than that along the y direction ky, 
we introduce the non-dimensional parameter Λ>1 so that ky=Λkx and kx=k.  
The Lagrangean of the system is expressed by the relation: 

( ) ( )2 2 2 2 2 2 2
s s s s

1 1= m x +y +ε ω +2εω ycos(ω t)-xsin(ω t) - k x + y
2 2

  Λ " " " "L    (1.80) 

By performing the relevant derivatives , the following equations of motion are obtained: 

2
s s

2
s s

m x-εω cos(ω t) +kx=0

m y-εω sin(ω t) + ky=0

  
  


  Λ  

""

""
 (1.81) 

The homogeneous equations of motion associated with the system (1.81) are coincident with 
the equations of the free motion of two system with one degree of freedom and their solutions 
are two harmonic motions with frequencies:  

x k / mω =  ;   y xk / mω = Λ = Λω  (1.82) 
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The two natural frequencies are independent from the spin speed and coincide with the two 
critical speeds of the system. The particular solution related to the presence of the unbalance 
is readily obtained imposing x 0="" and y 0="" .  

2
s

s2 2
x sp

2
p s

s2 2
y s

cos( t)
x (t)
y (t)

sin( t)

 εω ω ω − ω   =   εω   ω
ω − ω  

 (1.83) 

Starting from the definition of the centre of mass Gr
! , it follows: 

( )

2
x

ss 2 22 2
s xx sGp

2
Gp y s2 2s2 2 s xy s

1 cos( t)cos( t)
1x (t)

1 1y (t) sin( t)sin( t) 1

 εω  ωω   − ω ωω − ω     = = ε     εω  ω   ω Λ − ω Λω ω − ω    

 (1.84) 

Let us now introduce the complex coordinate z′=x+jy and define the elastic constants km and 
kd: 

( )m x yk k k / 2= +   (1.85.a) 

( )d x y xk k k / 2 k (1 ) / 2= − = − Λ  (1.85.b) 

the particular solution can be written in the form: 

( )( ) { }s s
2

j t j t2s
p m s d2 2

s s

mz (t) k m e k e
k m k m

ω − ωε ω  ′ = − ω − − ω Λ − ω
25 (1.86) 

When the equality 2
m sk m 0− ω =  is satisfied  (i.e. s mk / mω = ),  the amplitude of the forward 

whirl vanishes and the motion is a circular backward whirl with amplitude m dk / kε . This is an 
important result: in presence of anisotropy, backward whirling motions can be self-excited. 
The amplitude of motion of the point mass G and the components of the vector Gr

! are reported 
as a function of the spin speed in the non-dimensional plot of figure 1.14. This figure shows 
the presence of three different speed ranges:  
 
! in the range from 0Hz to the first critical speed (1.82.a) the components of the vector 

Gr
!  are positive and they are out of phase from each other by 90° (see equation (1.84) 

                                                 
25 Starting from (1.81) ( ) ( )2 2 2 2 2

p p p s s x s s y sz x jy cos( t) / jsin( t) / ′ = + = εω ω ω − ω + ω ω − ω  . Thanks to the 

well known formula ( )s sj t j t
scos( t) e e / 2ω − ωω = + and ( )s sj t j t

ssin( t) e e /(2 j)ω − ωω = − , it follows: 

 { } ( )( )s sj t j t2 2 2 2 2 2 2 2 2 2
p s x y s y x x s y sz ( ) / 2 e ( )e / 2ω − ω   ′ = εω ω + ω − ω + ω − ω ω − ω ω − ω    . 

By replacing x k / mω =  and y xk / mω = Λ = Λω , equation (1.86) is easily obtained. 
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or equation (1.86)). The orbit in the x-y plane is elliptic. The x component grows from 
ε to a value tending to infinity at the first critical speed, while the y component has a 
finite value. Hence, in the limit s xω → ω , the axis of  orbit along the x direction tends 
to infinity.  

 

! In the range from the first to the second critical speed, xG is negative and yG is 
positive.  At the frequency s mk / mω =  (see equation (1.86)) the amplitude of the 
forward whirl vanishes and the motion is a circular backward whirl with amplitude 

m dk / kε . In the range from the first critical speed to s mk / mω = , the ellipse is much 
elongated along the x direction. In the range from s mk / mω =  to the second  critical 
speed the ellipse is much elongated along the y direction. In the limit s yω → ω , the 
axis of  orbit along the y direction tends to infinity. 

 

! In the supercritical region ( s yω > ω ), the components of the vector Gr
!  are negative and 

they tend to zero when the spin speed tends to infinity. Hence, in supercritical  region 
there is a self-centring of the body on the rotation axis and the elastic anisotropy has 
negligible effect on the rotor. 

 

 
Figure 1.14:Non dimensional response of the Jeffcott Rotor on non-isotropic supports. Red curve: xG /ε. Blue 
curve: yG /ε. Inset: amplitude of the vector !Gr .  Λ=1.5. 
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1.11: NON-ISOTROPIC JEFFCOTT ROTOR. NATURAL FREQUENCIES. 
 
In this section, we will consider a Jeffcott rotor in which the shaft is not isotropic (the elastic 
constants along the direction ξ and η of the rotating frame are kξ  and k kη ξ′= Λ ) . Since the 
deviation from symmetry concern the rotor (not the stator), better evidence can be obtained by 
writing the equation of motion with reference to the rotating frame (O,ξ,η,z). 
Starting from the Lagrange function, the equations of motion26 can be written in a compact 
matrix form as: 

2
ss

2
s s

2
s

k m 00 2mm 0
2m 00 m 0 k m

cos( )
m

sin( )

ξ

η

 − ω− ω ξ    ξ ξ   
+ +         ω ηη η − ω          
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= εω  α 

"" "
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 (1.87) 

After performing the relevant derivatives with the assumptions 0ξ = η = ξ = η ="" """ " , the (1.87) 
yields two homogeneous algebraic equations:  
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The equilibrium position in the rotating frame is easily obtained: 
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η

 εω α
 − ωξ   =   η εω α   
 − ω 

 (1.89) 

The critical speeds are the frequencies at which the two denominators in (1.89) vanish: 

                                                 
26 Let us start by defining the relevant quantities for this problem; the eccentricity is ( )cos( ),sin( )ε = ε α α! where 
α is the angle between the ξ axis and the direction of the vector. The position vector of the point mass G is 

( )G , ,0= ε + ξ η!!r .  The spin angular velocity is ( )s s 0,0,1ω = ω! , i.e. it is aligned with the vertical axis z. We have 
to write the potential and kinetic energies in order to write the lagrangean function of the system:  the kinetic 
energy is  ( )2 2 2

GT mr / 2 m / 2= = ξ + η!" " "  while the centrifugal potential energy can be written in the form : 

( ) ( )2 2 2 2
c s G sU m r / 2 m 2 cos( ) 2 sin( ) / 2= ω × = ω ξ + η + εξ α + εη α! ! (see appendix 3.A for the definition of the 

�centrifugal� term of the lagrangean function of a body spinning in a rotating reference frame; note that  ε!  is 
constant in the rotating frame, hence the term 2 2

sm / 2ω ε , can be neglected ); the �Coriolis� potential energy 

( ) ( )cc G s G sU mr r m= ⋅ ω × = − ω ξη − ηξ! ! !" " " (see appendix 3.A for the definition of the �Coriolis� term of the 

lagrangian function of the system);  the elastic potential energy 2 2
kU k / 2 k / 2ξ η= ξ + η . The operative 

expression for the Lagrange�s function in the rotating frame is then: c cc kT U U U= + + −L .  
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k
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ξω =    (1.90.a) 
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The characteristic equation associated with equation (1.87) is: 
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By introducing the non-dimensional parameters: 
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 27 (1.92) 

equation (1.91) can be written in the form: 

( )( )4 2 2 2 22 1 1 0ξ ξ  ′ ′ ′ ′ ′λ − λ Λ + ω + + − ω Λ − ω =   (1.93) 

By solving equation (1.93) in 2
ξλ  it follows: 

( ) ( )2
2 2 2 11 2 1

2 4ξ
′Λ −′+ Λ′ ′ ′λ = ω + ± ω + Λ +  (1.94) 

The expression under the radical sign ( ) ( )22 22 1 1 / 4′ ′ ′∆ = ω + Λ + Λ −  is always positive and the 
solutions 2

ξλ  of (1.94) are always real. The one with the sign + is positive, hence there are two 
real solutions in ξλ :  

2
,1,2

1
2ξ

′+ Λ′λ = ± ω + + ∆  (1.95) 

The root with sign � is positive only if ( )2 1 / 2 0′ ′ω + + Λ − ∆ > ; after some simple algebra, this 
condition can be written as: 

( )4 2 1 0′ ′ ′ ′ω − ω + Λ + Λ >  (1.96) 

Let us define the function ( )4 2f ( ) 1′ ′ ′ ′ ′ω = ω − ω + Λ + Λ. It is easy to show that it can be written 
as the product of two polynomials of second order in ′ω : 

( )( )2 2f ( ) 1′ ′ ′ ′ω = ω − ω − Λ  (1.97) 

If f(ω′) is positive, the characteristic equation (1.93) has 4 real roots and the system is stable. 
If  f(ω′)  is negative (i.e. when 1 ′ ′< ω < Λ ), the characteristic equation (1.93) has 2 real and 
2 complex roots. One of  the two complex roots has a negative imaginary part which 
corresponds to an unstable behaviour of the system.  

                                                 
27 ω′=1 means that the system rotates at angular speed ωs=ωξ.  ω′=√Λ′ means that the system rotates at angular 
speed ωs=ωη. In the same manner: λξ=1 ⇒ ω=ωξ and λξ=√Λ′ ⇒ ω=ωη.  
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f ( ) 0′ω >  1′ω <  ∨  ′ ′ω > Λ  4 Real Roots Stable 

f ( ) 0′ω <  1 ′ ′< ω < Λ  2 Real Roots 
2 Complex Roots Unstable 

Table 1.1:Roots of the characteristic equation (1.93). 

The presence of the anisotropy causes the occurrence of an instability range that spans from 
ωξ to ωη

28. Rotating and non-rotating damping reduce the instability range between the two 
critical speeds. In the inertial frame we can introduce the non-dimensional parameter: 

NR NR
ξλ = ω ω  (1.98) 

that is the non dimensional whirl speed in the x-y plane. λNR is linked with λξ by the 
relationship: 

NR
ξ ′λ = λ + ω   (1.99) 

By combining equation (1.94) with (1.99), the whirl frequencies in the inertial frame are 
easily obtained: 

( ) ( )2
NR 2 2 11 2 1

2 4
′Λ −′+ Λ′ ′ ′ ′λ = ω ± ω + ± ω + Λ +  (1.100) 

The dynamical behaviour of the system (Λ′=1.5) is summarized by figure 1.15 where the 
natural frequencies are shown as function of the non-dimensional spin speed ω′ in the inertial 
reference frame. Only the first and the fourth quadrant are depicted, because they give a 
complete picture of the situation (the second and the third quadrant refer to the case of 
clockwise spin frequency). The frequency range between ω′ =1 and ω′ = ′Λ =1.22 is the 
instability range (we have seen that the system is unstable when (1.97) is negative, i.e. when 
1 ′ ′< ω < Λ ).  The cyan  dashed line λNR=ω′ separates the supercritical (λ<ω′) from the 
subcritical (λNR>ω′) region. There are four natural frequencies (the four solutions of equation 
(1.93)) that form four branches (yellow, blue, violet, red lines). 
For example, if ω′=ϖ the equation (1.93) has four roots (open circles 1,2,3,4 in figure): they 
are found by the intersection between  the vertical black line and the 4 coloured branches 
(yellow, blue, violet, red lines). The root numbered as 1 in figure 1.15 corresponds to a 
backward whirling motion (the corresponding value of λNR is negative). The roots numbered 
as 2,3,4 correspond to forward whirling motions.  In the high supercritical range (ω′>>1), two 

                                                 
28 In section 1.2  we have stated that self-centring is possible only if the system has al least two degrees of 
freedom. 1D systems are highly unstable if spinning at frequencies higher than the natural one. This is a 
consequence of the previous result. In fact, a system with one degree of freedom can be considered a limiting 
case of asymmetrical rotor. The stiffness along the η axis can be considered infinitely high and the 
corresponding critical speed is infinitely high too. The instability range spans from ωξ to ωη=∞, i.e. it extends for 
all values of spin speeds that are above the critical frequency ωξ. 
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natural frequencies grow linearly with 2νs, and the other two solutions are approximately 
constant29:  

! ω′→∞                         
( )

( )
NR

m

2 1 / 2 2

1 / 2 k / kξ

 ′ ′ ′ω ± + Λ ωλ = 
′± + Λ = ±

(
      (1.101) 

 
Figure 1.15: Non-isotropic (Λ�=1.5) Jeffcott rotor. Non-dimensional natural frequencies shown as function of the 
non-dimensional spin speed ω′ in the inertial reference frame. The frequency range between ω′ =1 and ω′ 
=√Λ�=1.22 is the instability range.  The cyan  dashed line λNR=ω′ separates the supercritical (λNR<ω′) from the 
subcritical (λNR>ω′) region. There are four natural frequencies (yellow, blue, violet, red lines) at each spin speed 
(the four solutions of equation (1.93)). For example, if ω′=ϖ the equation (1.93) has four roots (1,2,3,4): they are 
found by the intersection between  the vertical black line and the 4 coloured branches (yellow, blue, violet, red 
lines). The root numbered as 1 corresponds to a backward whirling motion (the corresponding value of λNR is 

                                                 
29 In the limit ω′→∞ , from equation (1.100) we obtain ( )NR 2 2 1′ ′ ′ ′λ ω ± ω ± ω + Λ( . Sign + before the 

radical sign: ( ) ( )( ) ( )NR 2 2 1 1 1 / 2 / 2 1 / 2′ ′ ′ ′ ′ ′ ′ ′ ′ ′λ ω + ω ± ω + Λ = ω + ω ± + Λ ω = ω ± + Λ( . Sign - 

before the radical sign: 

( ) ( ) ( )( ) ( )NR 2 2 1 1 2 1 / 1 1 / 2 / 1 / 2′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′λ ω − ω ± ω + Λ = ω − ω ± + Λ ω = ω − ω ± + Λ ω = ± + Λ(
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negative). The root numbered as 2 corresponds to a forward whirling motion. Roots numbered as 3 and 4 are 
subcritical (forward). In the high supercritical range (ω′>>1) two natural frequencies grow linearly with 2νs, and 
the other two solutions are approximately constant ( ( )1 / 2′± + Λ ). In the low frequency regime (ω′<<1) the 
natural frequencies are coincident with the critical frequencies. Blue cross: the second critical speed ωcr2 located 
at the intersection of the violet branch with the λ=2ω′ axis. Black cross: the intersection of the blue branch with 
the λ=0 axis. 

where we have used the mean constant ( )mk k k / 2ξ η= + . In the low frequency range (ω′<<1), 
the natural frequencies are coincident with the critical frequencies30: 

! ω′=0                           NR

1

 ′± Λλ = 
±

        (1.102) 

In figure 1.15 a second critical spin speed ω′cr2 is shown at the intersection of the free 
whirling violet branch with the straight line λNR=2ω′. All second critical frequency occur in 
the subcritical region and can not produce unstable whirl. Figure 1.15 also shows an 
intersection between the blue branch and the λNR=0 axis. The value of the spin frequency at 
which this intersection occur is31: 

NR 0
1
2 (1 )λ =

′Λ′ω =
′+ Λ

   (1.103) 

This frequency is about half of the primary critical speed ωξ
32: 

NR NR0 0

k k1
2m k k 2

ξ η ξ
ξλ = λ =

ξ η

ω
′ω = ω ⋅ω = ≈

+
   (1.104) 

There is then, at a well-determined spin speed, a natural frequency that vanishes (λNR→0). At 
this speed the system is resonant with a static force (DC force), i.e. with a force constant in 
modulus and direction.  
 

1.12: CONCLUSIONS. 
 
In this chapter we have introduced the Jeffcott rotor to model the dynamical behaviour of the 
rotors. This simple model allows an understanding of the most important phenomena typical 
of rotor dynamic. The self-centring in supercritical rotation has been described in section 1.2 
(see figure 1.3): the system will spin at a frequency either below or above the natural one.  
From (1.10), it follows that in the first case the equilibrium position will be farther away from 
the spin axis than the original offset ε, while in the second case equilibrium will take place 

                                                 
30 By inserting ω′=0 in equation (1.100), it follows ( )NR 1 1 / 2′ ′λ = ± + Λ ± Λ − . 

31 By inserting 0λ =  into (1.100) the value of the speed is obtained. 

32 
NR 0

k k k k1 1
2 (1 ) k m 2m k k

ξ ξ ξ η
ξλ =

ξ ξ η

′Λ′ω = ω ω = =
′+ Λ +
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closer than ε to the spin axis. The higher the spin speed, the lower the distance of the centre of 
mass of the suspended body from the undeformed rotation axis. In supercritical regime, the 
rotors tend to rotate about their centre of mass instead of their geometrical centre. The final 
motion of the centre of mass is the superimposition of a free whirl (circular, elliptic or linear) 
at frequency crω (see equation (1.8)) and a circular motion with angular velocity ωs (see 
equation (1.10)).  
In section 1.4 we have shown that rotating damping has a destabilizing effect on the rotor. In 
presence of rotating damping, the amplitude of whirling motions changes in time with 
exponential law: backward whirls (1.20) are stable, with decreasing amplitude, while forward 
whirl can be either damped or self excited (1.21). The  condition for stability is given by the 
inequality (1.22): if only rotating damping is present the motion is unstable in whole 
supercritical regime; instead, non-rotating damping has a stabilizing effect on the rotor. The 
rotating damping is the friction (viscous plus structural) between the rotating parts of the 
rotor. The corresponding losses produce the instabilities in weakly suspended rotors in 
supercritical regime. The non-rotating damping is the friction between two non-rotating parts 
of the stator. It is effective in damping transverse translational oscillations of the spin axis 
without slowing down its rotation. A third kind of damping is the friction in the bearings. This 
is a friction between the rotor and the stator, which is effective in slowing down the rotation 
but it is ineffective at damping whirling motion. 
In section 1.7 we have studied the problem of two weakly coupled rotors: energy dissipation 
makes the spin rate to decrease, together with the spin angular momentum. Since the total 
angular momentum must be conserved, the bodies develop a whirl motion. In supercritical 
regime, the final motion is the superimposition of a circular forward whirl motion (i.e. 
occurring in the same direction of the spin speed)  which is self-excited (1.65), a circular 
backward whirl motion  (1.65) which is damped (they both occur at an angular velocity equal 
to the natural frequency of the non-rotating system) and a circular motion with amplitude 
decreasing with the spin speed (1.63). 
In section 1.8 we have evaluated the destabilizing force connected to the energy dissipation in 
the suspensions (1.74), showing that it is a small fraction (1/Q<<1) of the elastic force of the 
springs. Note that the growth rate of whirls is determined by losses in the system, essentially 
in the mechanical suspensions as they undergo deformations at the frequency spin and the 
relevant Q is that measured at the spin speed.  
In section 1.9 we have evaluated the fraction of the energy lost by the spinning rotor gained 
by the whirling motion, showing that, in highly supercritical regime (ωs>>ωn), almost all the 
energy is dissipated as heat inside the springs (1.80) and do not contribute to the growth of the 
whirl. 
In sections 1.10 and 1.11 we have studied the problem of the non-isotropic Jeffcott rotor. 
Equation (1.86) shows that, in the case of non-isotropic support (non-isotropic stator), 
backward whirling motions can be self-excited. 
In section 1.11 we have considered a Jeffcott rotor in which the shaft is not isotropic. In the 
case of the non-rotating system ((1.102), (1.90.a) and (1.90.b)), the natural frequency is 
expected to split up (the system has two critical speeds ωξ and ωη). In the high supercritical 
range (1.101), two natural frequencies grows linearly with 2νs, and the other two solutions are 
approximately constant. The presence of this anisotropy causes the occurrence of an 
instability range that spans from the first critical speed ωξ to the second critical speed ωη 
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(figure 1.15 and table 1.1) which can be reduced by introducing non-rotating damping.  The 
system has, then, at a well-determined spin speed (1.104), a natural frequency that vanishes 
and then a resonance with a DC force is possible. 
 
 
 
 
 



Chapter 2: The GGG –“GG (Galileo Galilei) on the Ground” Differential Accelerometer for Testing the 
Equivalence Principle: Overview of the Experiment. 

 32

CHAPTER 2:  

THE GGG –“GG (GALILEO GALILEI) ON THE GROUND” 
DIFFERENTIAL ACCELEROMETER FOR TESTING THE EQUIVALENCE 

PRINCIPLE. OVERVIEW OF THE EXPERIMENT. 
 

2.1: INTRODUCTION. 
 

The Equivalence Principle (EP) is the founding principle of General Relativity. It can be 
tested from its most direct consequence, the universality of free fall (UFF), whereby all bodies 
fall with the same acceleration regardless the mass and composition. The most accurate 
experiments have been carried out with test bodies of different composition suspended on a 
torsion balance ([14 - 15]). These experiments have been aimed at obtaining increasing levels 
of accuracy ever since the landmark experiment by Eötvös [16], which has verified the EP 
with an accuracy ηηηη =∆a/a=10-9. This result has been improved to about 10-12 by Dicke et al. 
[17] and Braginsky and Panov [18] using signal modulation techniques. In a recent article by 
Adelberger and co-workers [19], the differential acceleration between test cylinders with an 
average composition similar to those respectively of the Earth and the Moon is reported with 
1σ statistical uncertainty 135.6 10−∆ = ×!a cm s-2, hence 13/ 9.3 10−∆ ×! ! "a a . The relevant 
theoretical question for a zero-test experiment is at which accuracy level, if any, a violation is 
to be expected. In an earlier work by Damour and Polyakov, based on string theory and the 
existence of the dilaton ([20 - 21]) the η values to observe a violation have been bracketed in 
the range 10-18<ηηηη<10-13. Fischbach and co-workers [22] have derived a non-perturbative 
rigorous result, according to which a violation at the level of 1710−"ηηηη must be expected, due to 
the coupling between gravity and processes of ν − ν exchange which would then differently 
affect masses of different nuclei. More recent work by Damour, Piazza and Veneziano [23] 
reverts back to the dilaton scenario and predicts a violation at the level 12 1310 10− −÷"ηηηη . While 
an 1310−=ηηηη is in principle accessible in a ground experiment, a sensitivity as high as 

1710−=ηηηη could be achieved only within a space mission: test bodies in low Earth orbit are 
subject to a driving signal by about 3 orders of magnitude stronger than on torsion balances 
on the ground. Another main advantage of space is weightlessness: the gravitational attraction 
of the Earth is largely compensated by the centrifugal force due to the orbital motion of the 
spacecraft so the main 1g local acceleration of gravity is absent. Three space experiments, 
aiming to test the equivalence principle, are under investigation by space agencies: µSCOPE 
([24 - 25]) with the goal ηηηη =10-15, “GALILEO GALILEI” (GG) ([10 - 11], [26 - 29]) with the 
goal η=10-17 and STEP ([30 - 31]), with the goal ηηηη =10-18. In all these experiments, the test 
bodies are weakly coupled, concentric, co-axial, hollow cylinders of different composition. 
The modulation of the signal at a frequency higher than the orbital one, reduce electrical and 
mechanical 1/f noises. The GG experiment (see chapters 8 and 9) is distinguished for being 
specifically conceived around these concepts. We have built a full-scale ground based 
prototype (GGG) for the proposed GG space experiment. We devote this chapter to describe 
the general aspects of the GGG experiment ([32 - 35]); some sections are taken from the 
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articles [33] and [34] available in Appendix_Articles. A mathematical model of the apparatus 
has been developed and it will be described in chapters 3 and 4 ([36 - 37]).  
 

2.2: BASIC CONCEPTS OF THE GGG MECHANICAL DESIGN. 
 
The GGG differential accelerometer is made of concentric coaxial hollow1 test cylinders 
operated in a vacuum chamber, that are weakly coupled by a balancing arm to form a vertical 
beam balance, with the arm suspended by its midpoint. The apparatus is schematically 
presented in figure 2.1; figure shows a section of the apparatus through the spin symmetry 
axis ẑ  inside the vacuum chamber VC. At the top-centre of the frame is a shaft turning inside 
ball bearings, indicated by x symbols in the figure, to which rotation is transmitted from the 
motor MO (drawn in brown) by means of O-rings OR mounted on pulleys2. The shaft holds 
the suspension tube ST (yellow)3, inside which the coupling arm (drawn in cyan) with mass 
ma=0.3kg and length 2L+∆L (about 0.38m), is suspended from its midpoint MP by means of a 
laminar suspension LS, with elastic constant k (about 10-3 J/m2) and length # =5⋅10-3m. The 
centre of mass of the coupling arm is displaced from the arm suspension point MP by a 
quantity ∆L/2. ∆L can be adjusted to be either slightly positive or negative. This is 
accomplished after moving in the vertical direction ẑ a small solid ring mounted around the 
lower half of the coupling arm. The central laminar suspension carries on the whole weight of 
the arm and of the test masses, suspended from the arm as follows. The inner cylinder m1 
(green in figure 2.1)  is suspended  from the bottom of  the coupling  arm, that is at distance  
L1 from the cylinder’s centre of mass (the green body in figure, with mass m1=10kg). The 
outer cylinder (blue), with mass m2=10kg, is suspended from the top of the coupling arm, that 
is at distance L2 from the cylinder’s centre of mass. The two corresponding suspensions LS 
(orange) with elastic constant k1=k2=k, nominally manufactured with identical characteristics, 
have a laminar shape (the flexible part has length # =5⋅10-3m)  and a metallic composition 
(CuBe), thereby ensuring passive electrostatic discharging of the test masses. The laminar 
suspensions (cardanic suspensions) are designed to be stiff against local gravity in the vertical 
(axial) direction ẑ , and soft in the ˆ ˆx, y directions determining the horizontal-sensitivity plane 
perpendicular to the spin axis. Figure 2.2 shows two photos (photo a) and b)) of  the laminar-
cardanic suspensions. Photo a) shows one of the old suspension used in GGG; they were 
smaller than the ones used at the present time and shown in photo b). The suspensions are 
carved out of a solid bar of CuBe and properly treated to ensure an high quality factor. Each 
suspension is composed of 4 thin laminar sheets (70 µm). Two sheets lie in the x-z plane and 
allow oscillations along the y-axis. The other two sheets lie in the y-z plane and allow 
oscillations along the x-axis. Photo c) in figure 2.2 shows the coupling arm inside the 
suspension tube ST. Finally a non-rotating passive damper is present under the lowest laminar 
suspension, and is used only for stabilization purposes in passing through the rotor critical 
speeds and instability regions. After reaching the final rotation speed, the passive damper can 

                                                 
1 For simplicity, we will omit from now on the term “hollow” when referring to the test cylinders.  
2 A new prototype with the motor located on the spin axis is under construction. In fact, we think that the rubber 
O-ring used to transmit rotation from the motor to the rotating suspension shaft may be a dangerous source of 
rotating damping (for details see chapter 5). 
3 In the new prototype, the shaft is an extension of the motor’s axis.  



Chapter 2: The GGG –“GG (Galileo Galilei) on the Ground” Differential Accelerometer for Testing the 
Equivalence Principle: Overview of the Experiment. 

 34

be disconnected and the finer active damper can be employed. From now on, the label λ=a,1,2 
will be used to refer to the coupling arm, inner and outer body parameters. 

 
Figure 2.1: GGG. Section through the spin axis of the differential accelerometer inside the vacuum chamber. 
VC: vacuum chamber.  x: the ball bearings. OR: O-rings. AD: annular dishes with the read-out electronics. CP: 
capacitance plates. OD : optical devices. MO: motor (brown). m1: inner test mass (green). m2: outer test mass 
(blue). LS: laminar suspensions (orange). ma: coupling arm (cyan). ST : suspension tube (yellow). The open red 
circle indicate the position of the bodies centre of mass CM. The relevant distances L1 and L2 of the centres of 
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mass of the inner and outer bodies from their suspension points are also sketched, along with the arm length 
2L+∆L. The drawing is to scale, as the inner diameter of the vacuum chamber is 1m.  

 
a)  b) 

 

 

 

 

 

c) 

Figure 2.2: Laminar suspensions in the GGG experiment. a) old design  b) new design, larger than the previous 
one c) the coupling arm inside the suspension tube ST, d) section through the spin axis of the suspension tube.  
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2.3: HOW IT WORKS. 
 
The GGG experiment has been designed to test the Universality of  Free Fall, which is the 
most direct consequence of the EP. Typically, the non-dimensional Eötvös parameter η (see 
equation 2.1) is used to quantify the violation of equivalence for two bodies of composition A 
and B, inertial mass mi and gravitational mass mg. 

g g g g

i i i iA B A B

m m m m
2

m m m m
          

= − +          
             

ηηηη  (2.1) 

In presence of an EP violation  (i.e. ηηηη ≠0) a differential acceleration between the two test 
cylinders is expected.  Hence, the GGG accelerometer is designed to be particularly sensitive 
to differential accelerations acting in the x-y plane perpendicular to the spin axis. In essence, 
the two test masses of GGG are coupled as in an ordinary beam balance, but here the beam is 
built vertical so as to obtain a differential coupling in the horizontal plane. Figure 2.3.a  shows 
a schematic model of a vertical beam balance. After having described the real instrument in 
section 2.2, we are now in a position to outline the minimal model used to describe its 
dynamical behaviour and obtain an approximated formula for the natural period of oscillation. 
In figure 2.3.b the bodies are not rotating and are placed at the ends of the coupling arm of 
length 2L+ ∆L. Three identical laminar suspensions with elastic constant k (i.e. k1=k2=ka=k) 
and length #  are used to couple the bodies (as in the real instrument). The arms L1 and L2 are 
depicted in figure 2.3.b but do not play any role in this content. The system in figure has just 
one degree of freedom. In chapter 3 we will develop a complete mathematical model (with 6 
degrees of freedom) and we will demonstrate that, in the differential mode, at zero spin rate, 
the coupling arm oscillates and the cylinders’ centres of mass move within the horizontal 
plane in opposition of phase while their symmetry axis remains aligned with the vertical z. In 
section 3.11, we will also show that the minimal model in figure 2.3.b is able to predict with 
great accuracy the natural (differential) period of free oscillation of the GGG accelerometer 
(but it is not able to predict the other natural modes at higher frequency), namely4: 

2

d 2 2
1 2

3k g LT 2
(m m )L 2L

∆= π −
+
#

 (2.2) 

                                                 
4 ϑ is the angle between the coupling arm and the vertical axis z. ϑ1 (ϑ2) the angle between L1 (L2) and the 
vertical axis z. Under the reasonable assumption that ϑ1=ϑ2=0 (their symmetry axis remains aligned with the 
vertical z; see section 3.11) the analytical (approximated) formula of the differential period (inverse of the 
differential frequency) can be derived from the general equations of motion describing the small oscillations of 
the angles with respect the equilibrium position ϑa=0. To this aim, let us begin with writing the total potential 
energy 2 2

1 2 a a 2 1 a 2 2 1 1U 0.5(k k k ) sin [m (L L) m L]g cos (m L m L )g= + + ϑ + + ∆ − ϑ + −# . By expanding it to the 

2nd order and neglecting the term 2 2 1 1(m L m L )g− , it can be written as: 2 2
1 2 a 2 aU (k k k ) m g L / 2 = + + − ∆ ϑ # . 

In the same manner the total kinetic energy of the system can be readily written as 
2 2 2

1 2 aT m L m (L L) / 2 = + + ∆ ϑ 
$ . The equation of motion is determined from the Langrange function in the 

standard manner: 2 2 2
1 2 a 1 2 a 2 a[m L m (L L) ] [(k k k ) m g L]+ + ∆ ϑ = − + + − ∆ ϑ$$ # . Then, the differential frequency is 

obtained,: 
2

1 2 a
d d 2 2

1 2

(k k k ) g L1/ T 2
(m m )L 2L

+ + ∆ν = = − π
+

# . ∆L is the critical parameter in the previous equation. ∆L 

can be adjusted to be either slightly positive or negative, resulting into a lower or higher differential frequency.  
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where g is the local gravity and ∆L can be either positive or negative. 

a) 

                       

 

= Laminar Suspension

ϑa 

L+∆L 

L 

Body 2 Body 1 

ϑa 

L2 

L1 

x

 

                                                            b) 

Figure 2.3: Simple dynamical scheme showing how the GGG test bodies are coupled. Part a) Vertical beam 
balance. Part b) Minimal model of GGG used to evaluate the differential period of oscillation. Three identical 
laminar suspensions (red points in the sketch) are used to couple the bodies and the balancing arm. 

 If ∆L<0, gravity acts as a positive spring, thus increasing the stiffness of the coupling, i.e. 
reducing the differential period. Instead, if ∆L>0, gravity acts as a negative spring and the 
ratio ∆L/L can be adjusted to reduce the denominator of (2.2) whereby increasing the value of 
Td.  A differential constant force acting between the two test cylinders in the x-y plane of the 
laboratory would incline the balance pivoted at its midpoint MP with respect to the vertical, 
thus giving rise to a relative displacement of the centre of mass of the cylinders in the 
direction of the force (the coupling arm oscillates and the cylinders’ centres of mass move 
within the horizontal plane in opposition of phase while their symmetry axis remains aligned 
with the vertical ẑ ). The longer is the period of oscillation, the more sensitive is the system to 
a differential force. The importance of a weak coupling, hence a long differential period, 
becomes apparent if we estimate the amount of relative displacement of the centres of mass of 
the test bodies to be expected in response to a differential force F (see figure 2.4.a): 

2
d

dif 2 1 2
T Fx x x

m4
∆ = − =

π
 (2.3) 

For a given force F, the resulting displacement grows quadratically with the natural period of 
oscillations of the bodies one with respect to the other. A real instrument can not, in practice, 
be perfectly differential. If a common force acts on the two test cylinders (see figure 2.4.b), 
the relative displacement can be written in the form: 

 
2
d CMR

com 2 1 dif CMR dif2
T Fx x x x x

m4
χ∆ = − = = ∆ χ ∆

π
%  (2.4) 
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                                                                  a)             
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                                                    b)
Figure 2.4:  Part a) – differential forces;  Part b) – common forces. 

In equation (2.4) we have introduced the common mode rejection factor χCMR, which 
describes the accelerometer’s capability to reject common forces as compared to those acting 
in a differential manner on the test bodies. For the system in figure 2.3.a, the common mode 
rejection factor is χCMR=∆L/2L. The rejection capability of the real instrument will be 
evaluated in chapter 4.  
In chapter 3 we will evaluate the dynamical behaviour of the GGG instrument set into 
supercritical rotation and we will show that the differential period (2.2) and the response to 
differential force (2.3) are not influenced by the rotation; instead, supercritical rotation allows 
high frequency modulation of the signals, reduction of 1/f electrical and mechanical noise. 
The model in figure 2.3.b is an oversimplification of the real rotor and it allows only a 
qualitative understanding of the functioning principle of the differential accelerometer. It is 
not able to predict the right value of the common mode rejection, the existence of natural 
modes at frequencies higher than the differential one (inverse of the differential period (2.1)) 
and the dependence of the natural frequencies from the spin speed. These problems will be 
discussed in detail in chapter 3 and 4 by developing a more complex mathematical model of 
the spinning rotor.  

 

2.4: THE SIGNAL OF AN EQUIVALENCE PRINCIPLE VIOLATION. 
 
If  two test bodies of different composition  are suspended on the ground each of them reaches 
equilibrium when the component on the horizontal plane of the centrifugal force due to the 
diurnal rotation of the Earth is balanced by the horizontal component of the local gravitational 
attraction.  This is the equilibrium position of an ordinary plumb line, which does not point to 
the centre of the Earth but it is displaced always along the North-South direction. Therefore, 
the EP signal (with the Earth as the source mass) is: 

2
PE L LR cos( )sin( )⊕

⊕ ⊕= ω λ λa ηηηη  (2.5) 

where λL is the latitude of the laboratory, ⊕ω&   is the diurnal angular velocity of the Earth and  
R⊕  its radius. The maximum value of (2.5) is at 45° latitude and amounts to 1.7⋅10-2ηm/s2 

(λL=45°). Being the displacement fixed in the North-South direction there is no modulation of 
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the effect. Unfortunately, the GGG accelerometer cannot be used for testing this effect ([31 - 
32]). In fact, spinning bodies are subject o gyroscopic effects, whereby they move not in the 
direction of the applied force but along the component of the external torque perpendicular to 
the spin axis. In a ground laboratory the gyroscopic effect for a body of mass m, angular 
momentum L

&
 and centre of mass suspended with an arm l

&
 is due to the torque generated by 

the local gravity and to the angular velocity of  the Earth’s diurnal rotation around its axis: 

( )g
lab

dL mg L L
dt ⊕ ⊕

 
= × − ω × = Ω − ω × 

 

& & & & && & &l  (2.6) 

where g mgl / LΩ = − . Gravity  makes the body precess around the local  vertical (unless the 
centre of mass lies exactly on the vertical itself), while the non-inertial nature of the 
laboratory reference frame (because of its diurnal rotation with the Earth) makes it precess 
around the Earth’s rotation vector; the suspensions produce a restoring force towards the 
vertical. Equilibrium is reached in the North-South direction, the only direction along which 
the acting torques can balance each other. The test cylinders of GGG undergo different 
gyroscopic effects, resulting in a net relative displacement in the North-South direction.  Its 
calculation shows a constant displacement at any given spin rate, and a linear increase with it, 
reaching several microns at a few Hz; if the laminar suspension of the inner test cylinder is 
substituted by a rigid connection the differential gyroscopic effect increases by about a factor 
of 10. In both cases it is expected in the same direction as the effect of an EP violation in the 
gravitational field of the Earth, and much larger. During 2001, numerous measurements have 
been performed, at various spin frequencies both in clockwise and counter-clockwise rotation.  

 
Figure 2.5: Relative displacements (crosses) of the test cylinders, fixed in the horizontal plane of the laboratory, 
as function of the spin frequency and the sense of rotation, with linear fit to a straight line (clockwise frequencies 
are indicated as negative, counter-clockwise frequencies as positive). The linear increase with the spin rate and 
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the change of sign can be ascribed to the gyroscopic effect.  The offset at zero spin is due to the inclination of the 
suspension shaft from the vertical. 

Measurements reported in figure 2.5 refer to an apparatus (2001) in which the laminar 
suspension of the inner test cylinder (at the bottom end of the coupling arm) had been 
replaced by a solid brass cylinder connecting to the lower half of the coupling arm, suspended 
from the central laminar suspension and show agreement with the theoretical predictions. 
Instead, a relative displacement due to an EP violation in the field of the Sun would show up 
as an additional vector following the daily motion of the Sun (24-hr period). For this reason 
the rotating differential accelerometer (GGG) can be used to test the equivalence principle in 
the field of the Sun, but cannot be used for testing it in the field of the Earth. If one takes the 
sun as the driving source mass, the equilibrium of the suspended body is between the 
gravitational attraction from the Sun and the centrifugal force due to the annual motion 
around it. The resulting signal is, at most:  

-2 -2
EW 2

GM
=0.6 10 ms

R ⊕
≤ ⋅! !

!
a ηηηη        (2.7) 

where R ⊕ ! is the Earth-Sun distance and M ! the mass of the Sun. The GGG rotating 
differential accelerometer can be used to test the equivalence principle in the gravitational 
field of the Sun to 1 part in 1013. This goal requires detecting low frequency (24-hr) relative 
displacements of the test cylinders of 10-13m (assuming a differential period of 80s), which in 
turn requires reducing daily seismic and thermal disturbances. 
 

2.5: THE READ-OUT SYSTEM. 
 
The read-out system (schemes of the electronics are shown in appendix G) reflects the 
cylindrical symmetry of the apparatus ([11], [32], [38 - 39]). Two capacitance plates CP 
working as displacements sensors (drawn as vertical yellow lines in between the cylinders in 
figure 2.1), are located halfway in between the test cylinders in correspondence to the ξ 
direction (they are fixed in the rotating reference frame (O,ξ,η,z)) with a clear gap of  5mm on 
either side, and connected to the suspension tube by means of an insulating frame. A similar 
pair of plates is placed in the η direction. Figure 2.6 shows the 4 plates and their insulating 
frame. They are part of two capacitance bridges in the ξ and η directions of the plane 
perpendicular to the symmetry axis (the plane of sensitivity of the instrument): each bridge is 
formed by four capacitors. 2 capacitors of the bridge are fixed capacitors to which a 
sinusoidal voltage is applied (see figures 2.7.b and Appendix 8.A). The other two are variable 
and are formed by a plate and the two test bodies: each capacitor (see figures 2.7.a and 
Appendix 8.A) is formed by two surfaces, one for each of the two test bodies (grounded), and 
one plate CP. Any differential displacement of the  test masses with respect to the plates 
causes a loss of balance of the bridge and therefore an output signal.  
Any displacement of the test masses is the combination of a common mode displacement 

comx∆ (both mass moves the same) and a differential mode displacement difx∆ (of one body 
relative to the other), as shown in figure 2.7.b. 
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Figure 2.6: The four capacitance plates CP and their insulating frame. 

a) 

b)
Figure 2.7: Part a) – Schematic drawing of the two capacitance sensor of the bridge of the GG read-out system 
for detecting relative displacements of the inner and outer test body with respect to one another. Each capacitor 
is formed by two surfaces, one for each of the two grounded bodies, and one plate, to which a sinusoidal voltage 
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is applied (1Volt, 500kHz). The other two capacitors of the bridge are fixed capacitors. Any differential 
displacement of the test masses with respect to the plates causes a loss of balance of the bridge and therefore an 
output signal. Part b) –The surfaces of the capacitors before a common mode displacement (left) and a 
differential mode displacement (right). 

For the general displacement the total relative change of capacitance will be given by: 

1 2
com dif2

0

C C 1x x
2C
− − ∆ − ∆∼ a b

aa
 (2.8) 

where C0 is the initial value of the capacitances, C1 and C2 the values changed due to the 
displacement. a and b are defined as in figure 2.7.a; a (b) is the nominal gap between the inner 
(outer) mass and one of the 4 capacitance plates. It is apparent from equation (2.8) that the 
measurement is unaffected by displacements in common mode only if the plates are positioned 
exactly halfway between the surfaces of the cylinders. Therefore, the bridges need to be 
mechanically balanced, i.e. the capacitance plates of figure 2.7.a must be positioned at equal 
distance from the surfaces of the test bodies with sufficient accuracy for all common mode 
displacements to be smaller than the expected differential signal. If ∆xEP is the differential 
displacement of the expected EP violation signal, it must be:  

EP

com

x
x

∆≤
∆

a - b
a

 (2.9) 

meaning that in the presence of a displacement in common mode ∆xcom the relative off-
centring of the plates (a-b)/a must not exceed the ratio in equation (2.9). The better the plates 
are centred, the less sensitive is the read-out to common mode forces, the more suitable it is 
for EP testing. Any disturbances from parasitic capacitances depend on the geometry of the 
system and act as DC effects, while the signal is detected at the spin frequency. A voltage 
signal (1 Volt) of high frequency (500kHz) is applied to the bridge in order to shift the signal 
of interest to a high frequency band with reduced 1/f noise. Since the capacitance bridges 
rotate with the accelerometer, power and data transfer must be ensured between the rotating 
and non-rotating frame. For power transfer we use rotating contacts, for data optical 
transmission. The high frequency bridge measurements are first amplified, demodulated and 
then converted from analog to digital (now 16 bit, in future 24 bit) to be optically transferred 
outside the chamber. An annular dish (AD in figure 2.1) is mounted around the upper half of 
the suspension tube (see figure 2.8), and contains the two capacitance bridge circuits and their 
preamplifiers. Here is the necessary electronics to demodulate the signal and convert it from 
analog to digital.  
In figure 2.1, at the top of the frame, two optical devices OD are present. Figure 2.9 shows 
these devices in details. In order to be able to transform the relative displacement as measured 
by the bridges in the rotating frame (0,ξ,η,z) of the rotor to the non-rotating frame of the 
laboratory (O,x,y,z), we need to know, in correspondence of each data point, also the phase 
angle of the rotor. For this purpose a 32-pinhole optical device (OD1) has been mounted, 
which provides a reference signal for the phase of the rotor and triggers for data acquisition: 
31 times per turn, in correspondence of the passage of the diodes under one single hole in the 
black non-rotating annular dish in figure 2.9, the device generates a voltage signal which 
triggers data acquisition by means of the annular dish in figure 2.8. This electronic card 
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combines this signal to the ξ and η channel data into an RS232 format for computer 
acquisition and send back these data to the circular card in figure 2.9.  

 
Figure 2.8: Annular dish (AD in figure 2.1) with the read-out electronics: bridges, demodulators, analog to 
digital converters. It is mounted on the suspension tube ST. 

 
Figure 2.9: A 32- pinhole optical device OD1 provides a reference signal
for data acquisition. The reference signal is combined with the ξ and η c
computer acquisition. Then, a second optical device OD2, shown at th
digitally converted signal from the rotor to the non-rotating frame and the
black annular dish with 32 holes is fixed to the non-rotating frame. 

 

OD2:  
Optical Emitter
to transmit 
outside the 
chamber
 for the phase of the rotor and triggers 
hannel data into an RS232 format for 
e very top of the shaft, transmits the 
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Then, a second optical device (OD2), shown at very top of the shaft in figure 2.1, transmits 
the digitally converted signal from the rotor to the non-rotating frame and then outside the 
vacuum chamber. Once per turn, when the diodes pass under the coupled holes in the black 
non-rotating annular dish (figure 2.9), the device OD1 generates two voltage signals: one 
signal triggers for data acquisition (as said before) and the other one provides a reference 
signal for the phase. 32 sets of data are acquired per turn. Their format is as follows: 
 

- 1 bit for the reference signal: 1 in correspondence of the coupled holes 
                                                     0 in correspondence of a single hole 
- time in milliseconds 
- ξ channel in the rotating frame (16 bit) 
- η channel in the rotating frame (16 bit) 
- 1bit for the scale: 1 high gain scale (high sensitivity) 

                                         0 low gain scale (low sensitivity) 
 
The read-out system can operate in a low gain scale (scale 0 with low sensitivity) and in an 
high gain scale (scale 1, 20 times more sensitive). When the electronics is turned on, data are 
acquired in the low gain scale 0. In scale 0, the gain is fixed so as the point of saturation of the 
signal is regulated in correspondence of the maximum allowable  displacement between the 
test masses (i.e. 2 times the gap of  5mm between the surfaces of the test cylinders and the 
capacitance plates). If the value of the acquired signal remains under a prefixed threshold 
(300µm) for an entire spin period, then the gain is increased by passing from scale 0 to scale 
1. If the value of a single data exceeds a second threshold (500µm) then the gain is reduced by 
passing from scale 1 to scale 0.  
The capacitance bridges are calibrated by displacing the outer test cylinder with respect to the 
inner one by a known amount and recording the voltage signal read by the capacitance 
sensors. Displacements are applied in both directions and linearity checks of the calibration 
curve are performed in both cases. We have obtained a 2% stability of the calibration factor in 
100 days. The electric zero of the capacitance bridges is first set at its nominal value, by 
setting the value of the variable capacitance of the circuit. More accurate checks are 
performed with the system in rotation, first below and then above the natural frequency of 
differential oscillations of the test cylinders as discussed in section 2.7.  
 

2.6: WHIRL CONTROL. 

Signal modulation performed at high spin rate is much desirable, to reduce 1/f mechanical and 
electrical noises. It is also desirable to soften the mechanical coupling between the test 
cylinders  (leading, as we have just discussed, to larger differential signals). The GGG rotor is 
actually set into supercritical rotation, at frequencies that are higher than the natural 
frequencies for differential oscillations of the test cylinders. It is well known ([1 - 3]) that 
under these conditions spinning bodies are able to self-centre, namely to greatly reduce any 
original offset between their centres of mass, which inevitably results from construction and 
mounting errors. These original offsets cannot be reasonably made smaller than 5-10µm. 
Since relative offsets of this size may result into disturbances masking the EP violation signal, 
self-centring is an essential concept. On the other hand, in highly supercritical rotation 
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dissipation of the mechanical suspensions produces unstable whirling motions, whose 
amplitude increases with time at a rate scaling as the inverse quality factor Q at the spin 
frequency. For instance, the centres of mass of the GGG test cylinders do develop an orbital 
motion in the horizontal plane of the laboratory at the natural frequency of differential 
oscillations around their position of relative equilibrium. 
  

 
Figure 2.10: The GGG rotor inside the vacuum chamber. 8 capacitance plates are placed near the outside surface 
of the outer cylinder. They are fixed with the vacuum chamber (i.e. fixed in the non-rotating frame). One half of 
them is used as sensors, and the other half is used as actuators.  

In GGG whirls are controlled actively by means of capacitance sensors/actuators (shown in 
figure 2.10; schemes of the electronics are shown in appendix G). 8 capacitance plates are 
placed near the outside surface of the outer mass, fixed with respect to the vacuum chamber 
(i.e. fixed in the non-rotating frame). One half of them is used as sensors (the two pairs of 
sensors forming the two halves of two capacitance bridges in the two coordinates of the 
horizontal plane): measurements of the displacement of the outer cylinder are used to build a 
damping command proportional to its velocity (see chapter 6 for more details). The 
electronics of these bridges is essentially the same as that of the bridges of the main sensors 
except for the fact that here smaller capacitances and less good sensitivity are needed. The 
other half is used as actuators: high voltage (in the range 0Volt-360Volt) is applied to produce 
an active force which simulates the non-rotating damping. Finally, a non-rotating passive 
damper is present under the lowest laminar suspension, and is used for stabilization purposes 
in passing through the rotor critical speeds. We have implemented two different kinds of 
passive dampers. Figure 2.11 shows a sketch of the last version of this damper: a needle is 
fixed with the inner cylinder and its point coincides with the centre of mass of the body. The 

Actuator 

Sensor 
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passive damper is equipped with a mechanism mounted in the vacuum chamber outside the 
accelerometer itself that can be activated from outside the chamber in order to move up and 
down a plane, under the point of the needle. A light and hollow disk is laid on the plane.  
 

Figure 2.11: Enlargement of figure 2.1. Open circle 1 indic
dragged by a needle fixed with the inner mass. The point of
inner body. Number 2 indicates the support which can be ope

When the plane goes up, the point of the needle en
of mass of the inner cylinder moves in the horizont
needle drags the little disk. Friction between the di
forces. After reaching the final rotation speed, the
the finer active damper can be employed. The 
efficient than the new one: it was made of  a very l
in low vapour pressure oil and mounted under the s
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two suspensions at the centre and the bottom. This is the coarsest adjustment. Then, on the 
coupling arm, close to (just below) the central suspension, are mounted two small masses (5g 
each) that can be displaced across the arm’s axis in the ξ and η directions (see figure 2.12; 
these masses are numbered as 1) in order to reduce the corresponding offsets, and therefore 
the inclination of the arm. For yet a finer adjustment there are two additional smaller masses 
(0.5g each), also movable in  ξ and η (numbered as 2 in figure 2.12).  

                             
Figure 2.12. The central laminar suspension and one half o
each) can be displaced across the arm’s axis in the ξ and η
2:  For yet a finer adjustment there are two additional small

However, a constant offset in the ξ and η measur
the centres of mass of the test cylinders as perfor
also be due to the bridge capacitances being out 
which would require the variable capacitances in
the inclination of the coupling arm. In order to s
adjustment, we perform these measurements by 
and then above the natural one for differential o
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by passing from the low gain scale 0 to the high g
1

2
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Around the lower half of the coupling arm is mounted a small solid ring movable in the 
vertical direction (not shown in the picture). A change in its vertical position, by changing the 
mass distribution of the beam balance, will change the natural period of the differential 
oscillations. Being symmetrical around the arm, the position of the ring affects only the 
quantity ∆L. From an operational viewpoint, this is the easiest way to change and adjust the 
differential period of the test cylinders. In the conceptual design of the differential 
accelerometer it is very important that the suspension tube (the tube ST enclosing the 
coupling arm, held by a shaft turning inside ball bearings)  be aligned with the local vertical. 
In the case of non zero inclination of the suspension tube from the local vertical, due to the 
shaft not being mounted perfectly vertical in the laboratory reference frame, there will be a 
non zero lateral deformation of the central suspension which suspends the beam balance and a 
consequent relative displacement of the test cylinders. The displacement is fixed in the 
laboratory (non-rotating) frame along the direction identified by the misalignment of the shaft 
and is modulated by the rotating capacitance bridges at their spin frequency. The ξ and η 
measurements are transformed into the x and y relative displacements in the non-rotating 
frame where the coordinates of the fixed displacement indicate the direction of the suspension 
tube.  They provide the driving signal for this adjustment, which is performed by means of 
three vertical motorized screws placed at 120° from one another (minimum incremental step: 
16nm) which control the inclination of the top plane (the plane with the ball bearings x in 
figure 2.1) of the frame around the shaft, hence also its verticality.  
 

2.8: LOW FREQUENCY SEISMIC NOISE. 
 
The following section is devoted to the study of the effect of the seismic noise on the 
experimental apparatus and it is part of the article [40] available in Appendix_Articles: if the 
terrain where the apparatus is located undergoes low frequency tilts of amplitude α  we need 
to evaluate the effects of such tilts on the experiment and reduce them if necessary ([34], 
[40]). Let us consider a body of mass m suspended by means of a laminar suspension with 
elastic constant k and length #  (cylindrically isotropic) as in figure 2.13. The tilt angle β at 
equilibrium is determined by the condition that the restoring force of the suspension equals 
the horizontal component of the local acceleration of gravity arising because of the tilt. The 
equilibrium equation is: 

/ (k ) (k mg)β α +" # #  (2.10) 
where g is the local gravity. If k / mg 1# % , so that terms of order 2(k / mg)#  or higher can be 
neglected, we get that tilts are reduced by the factor: 

/ k /(mg) 1β α " # %  (2.11) 
Let us now consider the case in which, instead of being subject to a terrain tilt, the system is 
subject to a horizontal disturbing acceleration with the same (low) frequency as the tilt, and 
amplitude a=αg. In the presence of a suspension providing a stiffness k in the horizontal 
plane, equilibrium is reached at a different angle γ with the original vertical: 

k1
g mg
 

γ − 
 

#" a
 (2.12) 
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Figure 2.13: Left: if the system is rigid, a terrain tilt will displace it by an angle α. Instead, if the mass m is 
suspended by means of a laminar cardanic suspension placed at the top of the suspension arm, giving rise to a 
stiffness k  in the horizontal plane the mass will reach equilibrium at a tilt angle β<α.. Right: If the terrain on 
which the apparatus is located is affected by a horizontal, low frequency, disturbing acceleration of amplitude a  
the test mass will feel an equal and opposite inertial acceleration which will move it behind to a new position of 
equilibrium along the direction of the new local vertical (shown by the red line). 

In the laboratory,  the  direction  of  a  new  local  vertical  is  given by the vectorial sum 
g a−& &  forming an angle  /a gα =  with the original vertical (defined by the direction of  local 
gravity g&  in absence of the disturbing acceleration). And the deviation from the new local 
vertical is β=α−γ, namely: 

k k
g mg mg

β = α# #" a
 (2.13) 

The effect of a suspension with horizontal stiffness k is therefore to make the test mass tilt 
from the new local vertical only by the same small angle β  as in the case of a terrain tilt by 
the angle /a gα =  given by (2.10) (in the same approximation in which terms of the order of 

2(k / mg)#  or higher are neglected). 
In terms of the acceleration acting on the test mass (in the horizontal, sensitivity plane), this is  

( )g k mg⊥ = γ− #a a = a  (2.14) 

This means a reduction, with respect to the local disturbing acceleration a  acting at the top of 
the system, by the ratio / 1k mg# % , just as in the case of the terrain tilts. We conclude that, 
because of the equivalence between inertial and gravitational mass which at this level can be 
assumed to be valid, local terrain tilts cannot be distinguished from horizontal disturbing 
accelerations. This is true as a matter of principle, and therefore any apparatus measuring tilts 
will be unable to distinguish them from horizontal accelerations, and vice-versa. The only 
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way to distinguish horizontal accelerations from tilts for a suspended test mass is by means of 
an instrument which were also sensitive to absolute changes in the direction of the local 
vertical, not only to relative displacements of the test mass with respect to it. Low frequency 
tilts in the vicinity of the GGG apparatus have been monitored with the ISA5 (Italian Space 
Accelerometer) tiltmeter/accelerometer ([41 - 42]). Daily effects turn out to have an amplitude 
of about 10-6rad (corresponding to horizontal accelerations of about 10-6 g). The resulting 
effect on the GGG test cylinders is to give rise to relative displacements (in the horizontal 
plane of the laboratory) at the same frequency and with an amplitude of about 4⋅10-7 m (the 
suspension arm relevant for the relative displacements of the test cylinders being about 0.4 m 
long). The goal of testing the Equivalence Principle to 10-13 with GGG requires detecting low 
frequency (24-hr) relative displacements of the test cylinders of 10-13 m, which in turn 
requires daily seismic disturbances to be reduced below this level.  This can be done partly 
actively and partly passively. Active reduction is done using as sensor a tiltmeter placed 
inside the vacuum chamber at the top of the GGG frame (not rotating), and as actuators a set 
of PZTs (also not rotating, at 120° in the horizontal plane around the symmetry axis, 
providing tilts of the apparatus through vertical displacements). The tiltmeter currently 
installed can detect tilts of  10-9rad/10-10rad. At the location of the PZTs the arm length with 
respect to the symmetry axis is about 0.1 m, and therefore the vertical effect of such tilts 
would be of about 10-10m/10-11m, which they can correct by applying a voltage of the order of 
a 1mV/0.1mV. If successful, this control would leave a residual relative displacement of the 
test cylinders of  about 4⋅10-10 m /4⋅10-11m. A further reduction by about 4/3 orders of 
magnitude, down to 4⋅10-14 m, which would bring the effects of tilts and horizontal 
disturbances well below the target signal, can be obtained using a passive cardanic 
suspension. It is worth noticing that in GGG the signal is a relative displacement of the test 
cylinders around the local vertical (the cylinders are the masses of a vertical beam balance, 
the beam being aligned along the local vertical). As the direction of the local vertical changes 
because of horizontal seismic accelerations (as in Figure 2), the beam of the balance will 
follow it, but these absolute displacements are not relevant for the GGG measurements [43]. 
 

 
 
 
 

                                                 
5 Kindly granted by Valerio Iafolla, IFSI (CNR), Roma. 
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CHAPTER 3:  

MATHEMATICAL MODEL OF THE GGG SYSTEM. 

3.1: INTRODUCTION. 
 
In the present and following chapter, we demonstrate that the original dynamical model of the 
GGG  instrument (set into supercritical rotation), which we have developed, can be used to 
predict the normal modes of the GGG experimental apparatus (present chapter) and its 
rejection behaviour (chapter 4). Analytical solutions are obtained under special limits, that fix 
the theoretical understanding. A simulational environment is set up, obtaining quantitative 
agreement with the available experimental data [36]. In this chapter we determine the normal 
modes of the GGG accelerometer in all regimes, from subcritical to supercritical rotation. The 
mathematical model is solved by means of a user-friendly simulation method. The physical 
content of the model is also discussed by means of approximated analytical solutions, useful 
to support the physical intuition. This chapter is organized as follows: after the definition of 
the generalized coordinates in the rotating reference frame in section 3.2, we introduce the 
mathematical model of GGG. We then turn in sections 3.3 � 3.8 to the description of the 
numerical method that we have implemented and present all the results on the determination 
of the normal modes in section 3.9. Approximated analytical solutions are shown in section 
3.10. 
  

3.2: GENERALISED COORDINATES AND THE GGG MATHEMATICAL MODEL. 
 
The GGG rotor is composed of 3 bodies, coupled by means of 3 cardanic suspensions, stiff in 
the axial direction and very soft in the horizontal plane (2 degrees of freedom for each 
suspensions), amounting to c=2×3=6 degrees of freedom. Hence, the problem can be studied 
using only six generalized coordinates1. We have chosen as generalized coordinates for each 
body the following two angles:  
 

a′ϑ  - it is the angle between the coupling arm and the vertical axis z (the axis z of the 
rotating frame coincides with the axis z of the inertial frame).  This angle runs in the 
 interval [0, π]. It is drawn  in figure 3.1. 
 

a′φ  - it is the angle from the ξ axis to the projection of the coupling arm on the ξ- η plane 
of the rotating reference frame (O, ξ,η,z) and runs in the interval [0, 2π].   

                                                 
1 The motion of a rigid body is described by six degrees of freedom. The GGG rotor is composed of 3 bodies, 
amounting to c=6×3=18 degrees of freedom.  The presence of the central suspension prevents the bodies from 
performing translational motions, thereby introducing v1=3×3=9 constraints. The presence of the motor, forces 
the three bodies to rotate at a constant angular velocity, introducing v2=1×3=3 new constraints. At the end, the 
degrees of freedom for the model amounts to n=c-v1-v2=18-12=6. Hence the problem can be studied using only 
six generalized coordinates. 
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From  now  on, the  label  λ=a, 1, 2  will  be  used  to  refer   to  the  coupling  arm,  the  inner  
and the outer mass. 1′ϑ  and 1′φ  are related to the inner body and are defined in the same way. 

2′ϑ  and 2′φ  refer to the outer cylinder. 

 
Figure 3.1: Generalized coordinates ϑ′  and φ′ of the point P. 

It is important to notice that these angles are defined in a slightly different manner with 
respect to the usual Euler angles [5 � 6]: 

Euler′ϑ = π − ϑ  (3.1) 

Euler 3 / 2′φ = φ + π  (3.2) 

Euler′ψ = ψ  (3.3) 

The derivatives of the angles are:  

Euler′ϑ = −ϑ! !  (3.4) 

Euler′φ = φ! !  (3.5) 

Euler′ψ = ψ! !  (3.6) 

We thus define  the  vector   [ ]T
1 2 3 4 5 6Q q , q , q , q , q , q′ ′ ′ ′ ′ ′ ′= of the generalized coordinates, i.e. 

1 a 2 2 3 1 4 a 5 2 6 1q ;q ;q ;q ;q ;q′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′= ϑ = ϑ = ϑ = φ = φ = φ , and the corresponding velocities Q! . After 
having described our choice for lagrangean coordinates, we are now in a position to outline 
the minimal model to describe the dynamical behaviour of the real instrument. Figure 3.2 
displays a schematic representation of the model in the reference frame (O, ξ,η,z) rotating 
with the shaft at the angular frequency s s2ω = πν around the z axis ( s s �zω = ω" ). The relevant 
parts of the instrument depicted in figure 2.1 are sketched in figure 3.2 with the same colours. 
MO (brown) is the motor. The arm with mass ma (drawn in cyan) and length 2L++∆L is 
suspended at its midpoint MP from the rotating shaft and suspension tube ST (yellow) by 
means of the central laminar suspension LS (orange) with elastic constant k. The vector ε"  
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displaces the suspension point of the coupling arm MP (black cross) from the rotation axis, 
and take into account possible offsets due to construction and mounting errors. The centre of 
mass of the coupling arm turns out to be displaced from the suspension point MP by a 
quantity ∆L/2, that is, if  ∆L=0, the arm centre of mass is located in its midpoint.  
 

 
Figure 3.2: Minimal model for the instrument drawn in figure 2.1, as detailed in the text. The various parts are 
drawn with the colours and the labels corresponding to figure 2.1. The relevant dimensions La, L1 and L2 of the 
coupling beams are indicated. The offset ε" due to construction and mounting imperfections is also indicated. 
MO (brown) is the motor. ST (yellow) is the suspension tube. The arm with mass ma (in cyan) and length 2L+∆L 
is suspended at its midpoint MP. Bodies are coupled by means of 3 laminar suspensions LS (red). The two 
cylinders have mass m2(blue) and m1(green). 

The outer cylindrical mass m2 (blue) is suspended from the top of the coupling arm, L2 being 
the distance of its centre of mass from the suspension. In a similar manner, the inner mass m1 
(green) is suspended from the bottom of the coupling arm, L1 being its characteristic distance. 
∆L can be adjusted to be either positive or negative, resulting into a shorter or longer 
differential period. In the model the laminar suspensions have length  # , and the central one is 
different from the other two, so that we assume k1=k2=k and define a new parameter Λ such 
that ky=Λkx, i.e. the central suspension is non-isotropic. In equations (3.7), (3.8) and (3.9) the 
unit vectors a

�L , 1
�L  and 2

�L  (see figure 3.2) are defined. 
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( ) ( ) ( ) T
a a a a a a

�L sin cos( ), sin sin( ), cos′ ′ ′ ′ ′= ϑ φ ϑ φ − ϑ    (3.7) 

( ) ( ) ( ) T
1 1 1 1 1 1

�L sin cos( ), sin sin( ), cos′ ′ ′ ′ ′= ϑ φ ϑ φ − ϑ    (3.8) 

( ) ( ) ( ) T
2 2 2 2 2 2

�L sin cos( ), sin sin( ), cos′ ′ ′ ′ ′= ϑ φ ϑ φ − ϑ    (3.9) 

The vectors pointing to the centres of mass of the arm and starting from the origin O is 

a a
L �r L
2

∆= ε −" "
 (3.10) 

The inner cylinder�s position vector with respect to the origin O is given by equation: 

1 a 1 1
� �r LL L L= ε + +" "

  (3.11) 

while the centre of mass of the outer cylinder is: 

2 a 2 2
� �r (2L L)L L L= ε − + ∆ +" "

 (3.12) 
 

3.3: THE LAGRANGEAN OF THE SYSTEM IN THE ROTATING REFERENCE 
FRAME. 

 
Equations (3.A.24) in Appendix 3.A, together with (3.A.25) and (3.A.26) yield the Lagrange 
function of a rigid body in a rotating reference frame. In equation (3.A.26), U includes the 
potential energies associated to gravity and to the elastic forces, namely 

g kU U U= +  (3.13) 

where the gravitational potential energy is: 

g
a,1,2

U m g Lλ λ
λ=

= − ⋅∑
"" 2 (3.14) 

and the elastic potential energy: 

22 22 2
k a a a a

1,2

1 1 �� � � � �U k L L L k L k L
2 2λ λ ξ η

λ=

 = × + ⋅ξ + ⋅η 
 ∑ #  (3.15) 

(clearly, � � �, , zξ η are the unit vectors related to the axes  ξ, η and z in the rotating frame). vλ
"  

(λ=a,1,2) are the total derivatives of the position vector rλ
" . For each body λ (λ=a,1,2) 

equations (3.A.25) and (3.A.26) can be applied performing the substitutions: R rλ→
" " , 

V vλ→
" " , M mλ→ , λ′ϑ → ϑ , λ′φ→ φ , ,I Iϒ ϒ λ→  e ,I IΞ Ξ λ→ . Collecting all the results as 

indicated by equation (3.A.24) the total Lagrangean L  is obtained.  
 

                                                 
2 �g gz= −"

is the local gravity. 
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3.4: EQUILIBRIUM POSITIONS AND SECOND-ORDER EXPANSION OF THE 
LAGRANGEAN. 

 
Normal and successful operation of the GGG rotor is based on small amplitude motions. The 
Lagrange function of the accelerometer can thus be expanded to second order in (Q′, Q′! ) 
around the equilibrium solution (Q′0, 0Q′! =0)3, to derive linearized equations of motion. To 
this aim, let us begin with determining the equilibrium position. This is determined from the 
equations: 

 
0

i

total

i q

U 0 i 1,...,6
q ′

∂ = ∀ =
′∂

     (3.16) 

We then use the assumption that during motion, the Q′ are slightly perturbed from their 
equilibrium values Q′0. Hence, it is possible to perform the substitution: 

0
i i i

i i

q q q i 1,...,6
q q

 ′ ′= + ∀ = ′ = ! !
 (3.17) 

or, equivalently, in terms of the angular coordinates ϑλ and φλ: 
0 0

1 a a a 4 a a a
0 0

2 2 2 2 5 2 2 2
0 0

3 1 1 1 6 1 1 1

q ; q ;

q ; q ;

q ; q

′ ′ ′ ′ ′ ′= ϑ = ϑ + ϑ = φ = φ + φ

′ ′ ′ ′ ′ ′= ϑ = ϑ + ϑ = φ = φ + φ

′ ′ ′ ′ ′ ′= ϑ = ϑ + ϑ = φ = φ + φ

 (3.18) 

The new equilibrium position is then: 

 { 0 0
i iq 0 ; q 0 i 1,...,6= = ∀ =! . (3.19) 

The Lagrange function (Q,Q)!L  can now be expanded to second order, namely: 

0 i i ij i j ij i j ij i j
i i<j i<j i,j

= + b q + q q + b q q + c q q∑ ∑ ∑ ∑! ! ! !a aL  (3.20) 

where we remark that now the qj�s are small4 according to the substitution (3.17) and (3.18), 
and that the linear terms have cancelled out because of (3.16). The matrix coefficients a0, bi, 
ai,j, bi,j and ci,j are known functions of the Q0 and of the governing parameters of the system, 
and in general are to be numerically evaluated. 
 

3.5: LINEARIZED EQUATIONS OF MOTION. 
 
The equations of motion in terms of the known a0, bi, ai,j, bi,j and ci,j coefficients are 
determined from in the standard manner: 

i
i i

d = i 1,2,...,6
dt q q

− =
∂ ∂
∂ ∂
!
L L

F  (3.21) 

                                                 
3 0T 0 0 0 0 0 0

1 2 3 4 5 6Q q , q , q , q , q , q′ ′ ′ ′ ′ ′ ′ =    

4 The new equilibrium position is 0 0(Q 0,Q 0)= =! , being [ ]T
1 2 3 4 5 6Q q , q , q , q , q , q=  
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where we have introduced the generalized forces: 
3

, j
i , j

ia,1,2 j 1

r
F

q
λ

λ
λ= =

∂
= ⋅

∂∑ ∑F  (3.22) 

starting from the Cartesian components Fλ,j of the forces acting on each body. At this level, 
the generalized forces (3.22) are to be consistently expanded to first order, namely 

i i, j j i, j j
j j

q q= α + β∑ ∑ !F   (3.23) 

Combining equations (3.20) and (3.23) together5, the equations of motion can be written in a 
compact matrix form as 

[ ] [ ] Q
M Q S

Q
 

⋅ = ⋅ 
 

!!
!  (3.24) 

with the obvious notation: 
1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

6 6 6

q q q
q q q
q q q

Q ; Q ;Q
q q q
q q q
q q q

     
     
     
     

= = =     
     
     
     
          

! !!
! !!
! !!! !!
! !!
! !!
! !!

  (3.25) 

In equation (3.24) M is the �mass�-matrix  (6×6) composed by the coefficients: 

( )i, j i, j i, j i, j i, jM 2b b 1= δ + − δ  (3.26) 

where the factor of 2 on the diagonal elements is a consequence of the restricted j<k sum in 
the expansion (3.20). S is a 6×12 matrix containing the  a0, bi, ai,j, bi,j and ci,j coefficients: 

[ ] [ ] [ ] [ ] [ ]2 2S A C= + α + + β  (3.27) 

The first matrix in equation (3.27) is: 

[ ]2 i, j i, j i, j i, ji, jA 2 (1 ) j 6

0 6 j 12

= δ + − δ ≤

= < ≤

a a
 (3.28) 

i.e. 

[ ]

1,1 1,2 1,3 1,4 1,5 1,6

1,2 2,2 2,3 2,4 2,5 2,6

1,3 2,3 3,3 3,4 3,5 3,6
2

1,4 2,4 3,4 4,4 4,5 4,6

1,5 2,5 3,5 4,5 5,5 5,6

1,6 2,6 3,6 4,6 5,6 6,6

2 0 0 0 0 0 0
2 0 0 0 0 0 0

2 0 0 0 0 0 0
A

2 0 0 0 0 0 0
2 0 0 0 0 0 0

2 0 0 0 0 0 0

 




= 





a a a a a a
a a a a a a
a a a a a a
a a a a a a
a a a a a a
a a a a a a










 (3.29) 

                                                 
5 i,i i ij j ji j

i j i j

d =2b q b q + c q
dt q ≠

∂ +
∂ ∑ ∑!! !! !
!
L ;  i,i i ij j ij j

i j i j
=2 q q + c q

q ≠

∂ +
∂ ∑ ∑ !a aL ; i

i, j
jq

∂
= α

∂
F ; i

i, j
jq

∂
= β

∂!
F  
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The second matrix is: 

[ ] i, ji, j j 6

0 6 j 12

α = α ≤

= < ≤
6 (3.30) 

i.e. 

[ ]

1,1 1,2 1,3 1,4 1,5 1,6

1,2 2,2 2,3 2,4 2,5 2,6

1,3 2,3 3,3 3,4 3,5 3,6

1,4 2,4 3,4 4,4 4,5 4,6

1,5 2,5 3,5 4,5 5,5 5,6

1,6 2,6 3,6 4,6 5,6 6,6

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

α α α α α α 
 α α α α α α 
 α α α α α α

α =  α α α α α α 
 α α α α α α

α α α α α α 




 (3.31) 

The third matrix in  (3.27) is then: 

[ ]2 i, j

i, j 6 j 6,i

C 0 j 6

c c 6 j 12− −

= ≤

= − < ≤
  (3.32) 

i.e.  

[ ]

1,2 2,1 1,3 3,1 1,4 4,1 1,5 5,1 1,6 6,1

2,1 1,2 2,3 3,2 2,4 4,2 2,5 5,2 2,6 6,2

3,1 1,3 3,2 2,3 3,4 4,3 3,5 5,3 3,6 6,3
2

4,1 1,4 4,2 2,4 4,3

0 c -c c -c c -c c -c c -c0 0 0 0 0 0
c -c 0 c -c c -c c -c c -c0 0 0 0 0 0
c -c c -c 0 c -c c -c c -c0 0 0 0 0 0

C
c -c c -c c -0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

=
3,4 4,5 5,4 4,6 6,4

5,1 1,5 5,2 2,5 5,3 3,5 5,4 4,5 5,6 6,5

6,1 1,6 6,2 2,6 6,3 3,6 6,4 4,6 6,5 5,6

c 0 c -c c -c
c -c c -c c -c c -c 0 c -c
c -c c -c c -c c -c c -c 0

 
 
 
 
 
 
 
 
  

 (3.33) 

The fourth matrix in (3.27) is: 

[ ]i, j

i, j 6

0 j 6

6 j 12−

β = ≤

= β < ≤
7 (3.34)  

i.e.: 

[ ]

1,1 1,2 1,3 1,4 1,5 1,6

1,2 2,2 2,3 2,4 2,5 2,6

1,3 2,3 3,3 3,4 3,5 3,6

1,4 2,4 3,4 4,4 4,5 4,6

1,5 2,5 3,5 4,5 5,5 5,6

1,6 2,6 3,6 4,6 5,6 6,6

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

β β β β β β 
 β β β β β β 
 β β β β β β

β =  β β β β β β 
 β β β β β β


β β β β β β 



 (3.35) 

                                                 
6 i,k k,iα = α  
7 i,k k,iβ = β  
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3.6: EQUATIONS OF MOTION IN STATE-VARIABLE FORM. 
 
For all practical purposes, it is convenient to turn (3.24) into a more symmetric form 
involving only first-order time derivatives ([44-47]). To this aim, we define the 12-
components state vector x"  as: 

[ ]T
1 1 2 2 3 3 4 4 5 5 6 6 a a a a 2 2 2 2 1 1 1 1x q q q q q q q q q q q q [ ]= = ϑ ϑ φ φ ϑ ϑ φ φ ϑ ϑ φ φ" ! ! ! ! ! !! ! ! ! ! !  (3.36) 

i.e.: 

2i 1 i

2i i

x q
i 1,...,6

x q
− =

= = !
 (3.37) 

Equation  (3.24) can be written as: 

[ ] [ ]1 Q
Q M S

Q
−  

= ⋅ ⋅ 
 

!!
!  (3.38) 

Combining equations (3.37) and (3.38), we obtain8: 

( )

( ) ( )
2i 1 2i

6 6
1 1

2i 2 j 1 2 ji, j i,2 jj 1 j 1

d x x i 1,...,6
dt
d x M S x M S x
dt

−

− −
−

= =

 = =

 = +


∑ ∑
 (3.39) 

(3.39) is a system of 12 equations involving only first-order time derivatives. These equations 
can be written in a compact matrix form as: 

x=A x⋅" "!  (3.40) 

where A is now the square matrix 12×12 defined from M-1 and S after inserting rows and 
zeros: 

o i even, k odd      ( )-1
k-1i,k i, +1
2

= M Sa  (3.41) 

o i even, k even     ( )-1
k-2i,k i, +7
2

= M Sa  (3.42) 

o i odd                 i,i+1

i,k i 1

1
0≠ +

=
 =

a
a

 (3.43) 

                                                 

8 Inserting the definition (3.37) in (3.38) we obtain:
( )

2i 1 i

1
2i i Line i

d dx q
dt dt

Qd dx q M S
Qdt dt

−

−

 =

   = =    

! !
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The relations (3.40), (3.41), (3.42) and (3.43) are central equations, written in a form 
amenable for numerical evaluation. The eigenvalues of the A matrix correspond to the normal 
modes of the rotor, and the solution of the set of differential equations (3.40) completely 
determines the small-amplitude dynamical behaviour of the rotor modelled in figure 3.2.  
 

3.7: ROTATING AND NON-ROTATING DAMPING. 
 
By means of equations (3.21), (3.22) and (3.23) we can in principle impose any known force 
determining the dynamical behaviour of the rotor. In the following we specialize such a 
procedure to include dissipative force damp _ RF

"
due to rotating and damp _ NRF

"
due to non-rotating 

damping mechanism.  
The rotating part of the dissipative force (3.44) is to be ascribed to the dissipations of the 
laminar suspensions. In supercritical rotation, this acts to destabilize the system, generating 
whirl motions. 

( ) ( )damp _ R Ra a a R a a
1,2

� � � � � �� �F L L z z L L L Lλ λ λ
λ=

   ′ ′= −Γ − ⋅ ⋅ − Γ − ⋅ ⋅      ∑
" ! ! ! !

 (3.44) 

The non-rotating damping has instead  the effect of stabilizing the system in supercritical 
rotation. In our rotor, it is applied only to one mass: the passive damper acts only on the inner 
mass while the active damper acts only on the outer one. It can be written as: 

damp _ NR NR i s iF v L = −Γ + ω × 
" """

 (3.45) 

 

3.8: NUMERICAL SIMULATION OF THE GGG SYSTEM. 
 
The simulational method that we have implemented, rigorously follows the derivation 
outlined in this chapter. We have found very convenient to use the Matlab environment, with 
special packages that are the Symbolic Toolbox and Simulink, as it allows us to perform all 
the needed symbolic calculations and numerical evaluations, together with the data analysis 
from the experiment ([48 - 49]).  
This means that we start from the formal Lagrange function written in equations (3.A.24), 
(3.A.25), (3.A.26) and (3.13) by means of symbolic vector operations. We thus specify the 
choice (3.1),(3.2) and (3.3) for the generalized coordinates with respect to the rotating 
reference frame and define accordingly all the vectors entering the lagrangean function. We 
then keep carrying on the symbolic computation by linearizing and expanding the Lagrange 
function as in (3.20), and define the matrices A2, C2, α, β and A. Once the system parameters 
are fixed (see below), the numerical computation takes place, which uses standard packages to 
find eigenvalues and eigenvectors of the A matrix, that are the nominal frequencies and 
modes of the spinning rotor. The A matrix is then inserted as input to perform the dynamical 
simulation within standard transfer-function method used in the Simulink toolbox.  
The parameters which govern the GGG physics are the geometrical dimensions of the three 
bodies, their weight, the mounting error ε" , the elastic constants, length and anisotropy factor 
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of the three laminar suspensions, and the quality factor Q. To these parameters, which are 
fixed after construction, we must add the spinning frequency νs=ωs/2π that can be varied in 
the course of the experiment by acting on the stepping motor. The balancing of the beams and 
the differential period of oscillation can also be adjusted as already discussed, by moving 
small masses along the arm (i.e. by changing ∆L in the model). Of the whole set of 
parameters, the anisotropy factor Λ of the suspensions and the construction and mounting 
error ε are not measured from the instrument. Λis fixed together with the balancing ∆L so as 
to reproduce the natural frequencies of the non-spinning instrument. The mounting error ε is 
taken to be in the range 1µm - 200µm, and it is a posteriori checked to have a non-sizable 
effect on these results. Q values have been taken from measurements (see chapter 5). We have 
inserted as inputs of the numerical calculation all the above parameters as determined from 
the real instrument, and listed in tables 3.1 and 3.2, the spinning frequency varying in the 
range 0Hz ≤ νS ≥ 5Hz.  

 

Body Mass 
(kg) 

Inner Radius 
(cm) 

Outer Radius 
(cm) 

Height 
(cm) 

Lλ 
(cm) 

Arm 0.3 3.3 3.5 38+∆L 19 
Mass 1 10 8.0 10.9 21.0 4.5 
Mass 2 10 12.1 13.1 29.8 42.5+∆L 

Table 3.1: Governing parameters for the numerical calculations: geometrical dimensions of the real bodies. 

Suspension #  (cm) k  (dyne/cm) Λ 
Central 0.5 106 2 2

a/ L# =6.9⋅102 2.58 
Mass 1 � Inner Cylinder 0.5 106 1 
Mass 2 � Outer Cylinder 0.5 106 1 

Table 3.2: Governing parameters for the numerical calculations: the laminar suspensions. 

 

3.9: NORMAL MODES AS DERIVED FROM THE NUMERICAL SIMULATION. 
 
We have solved for the eigenvalues νn of the matrix A in equations (3.41), (3.42) and (3.43), 
using the system parameters listed in tables 3.1 and 3.2. We summarize in figure 3.3 our 
results for νn in the non-rotating frame as function of the rotor spinning frequency νs. 
Theoretical data for νn vs. νs are displayed both in the absence (solid-blue lines) and in the 
presence (open circles) of damping, and are compared with the available experimental data 
(red crosses). The Fast Fourier Transform has been used to find the frequency components of 
the signal acquired by the capacitance bridge of GGG, after conversion in the non-rotating 
reference frame. The bisecting red line separates the supercritical (ν<νs) from the subcritical 
(ν>νs) region. Vertical lines bound the instability regions. Positive and negative signs of the 
frequency refer to the counter-clockwise and clockwise spinning rotor. Figure 3.3 represents 
the central result of this chapter, and in the following we proceed to provide a detailed 
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description of its relevant features. These are the comparison against the experiment and the 
role of damping, the low-frequency behaviour, the scissor shape, the splitting of crossing 
modes, and the presence of instability regions. 

 
Figure 3.3: Normal modes of the GGG rotor. The frequency νn of the normal modes is plotted as a function of 
the spin frequency. Solid-blue lines: theoretical results without damping, showing no significant difference with 
the case in the presence of damping (open circles). Red crosses: experimental data. The bisecting red line ν=νs 
separates the supercritical (ν<νs) from the subcritical (ν>νs) region. Vertical black  lines bound the instability 
regions.  
 

3.9.A: COMPARISON WITH THE EXPERIMENT. 

 
In the experiment, the rotor is first accelerated to spin at given νs by means of the stepping 
motor. Then, the natural modes are excited by forcing the test bodies into oscillation in the x′ 
or y′ directions at frequencies close to 0

n n s( 0)ν = ν ν = by means of the actuators. The 
excitation is performed for a variable amount of time corresponding to several periods of 
oscillation. The actuators are then switched off, and the bodies� displacements are recorded as 
functions of time by means of the read out described in chapter 2. Data are acquired in the 
rotating reference frame. A coordinates transformation is then performed (see chapter 5 for 
details) to obtain the relative displacement between the two test masses in the non-rotating 
reference frame.  The Fast Fourier Transform (FFT) is used to find the frequency components 
of the signal. The strong peaks in the FFT of the signal are in correspondence with the natural 
frequencies of the rotor.  In the experimental spectra as well as in the theory, the weights of 
the modes in the subcritical region ν>νs, are quite small, indicating that the non dispersive 
modes are preferably excited. For this reason, while the peaks in correspondence with the 
non-dispersive modes have always been found, the frequencies in correspondence with the 



Charter 3: Mathematical Model of  the GGG System. 

 62

subcritical modes were not always excited. The experimental data, resulting from averaging 
over several measurements, are represented as red crosses in figure 3.3, while the theoretical 
prediction is displayed by the solid lines. Excellent agreement is evidently found between the 
theory and the experiment, which validates the model developed. 
 

3.9.B: THE ROLE OF DAMPING. 

 
We have numerically checked that the very small dissipations present in our system do not 
significantly shift the natural-mode frequencies. This is seen from figure 3.3 where the results 
for the rotor with inclusion of damping (open circles) stay on the solid lines, obtained in the 
absence of damping. As expected, dissipation affects instead the line-shape of the peaks, 
making them wider than in the absence of damping. 
 

3.9.C: THE LOW-FREQUENCY LIMIT. 
 
At zero spinning frequency (νS=0Hz), previous theoretical and experimental results for the 
non-rotating system have been recovered. In this case, data are acquired in the inertial 
reference frame. As shown in figure  3.4, zoomed from figure 3.3, the non-spinning  rotor  is 
characterized  by three  normal  frequencies  for  the  instrument  with ideally isotropic 
springs, the three bodies oscillating in a vertical plane.  

 
Figure 3.4: Normal modes of the GGG rotor. The low-frequency behaviour is zoomed. Solid-blue lines: 
theoretical results. Red crosses: experimental data. 

The frequency 0
dν =0.09 Hz corresponds to the differential mode, where the centres of mass of 

the two test bodies oscillate in opposition of phase; the frequencies 0
c1ν =0.91Hz  and 
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0
c2ν =1.26 Hz correspond to common modes, in which the total centre of mass of the two test 

bodies is displaced from the vertical (i.e. the centres of mass of the two cylinders oscillate in 
phase). It is important to notice that the frequencies 0

dν =-0.09 Hz, 0
c1ν =-0.91 Hz and 0

c2ν =-
1.26 Hz  are also present9.  If the springs have non-isotropic behaviour in two orthogonal 
directions, as in the case of our real cardanic suspensions, each natural frequency is expected 
to split up ( ν → ν ± δν where 2 310 10 Hz− −δν ÷$ ). This is zoomed in figure 3.5, where the 
splitting for the differential mode is evident. Each couple of splitted frequencies has a 
corresponding couple with negative sign. The total number of frequencies is then 12, 6 with 
negative sign and 6 with positive sign,  corresponding to the eigenvalues of the matrix A 
(12×12). 
 

3.9.D: NORMAL MODES AS FUNCTIONS OF THE SPIN FREQUENCY. 

 
Figure 3.5 shows that each natural frequency of the non-spinning system is split up into two 
branches at νs>0 Hz, a lower branch remaining approximately constant and an upper branch 
increasing with 2νs. This characteristic scissors� shape can be traced back to general 
properties of spinning bodies (see also chapter 1, sections 1.10 and 1.11). 

 
Figure 3.5: Differential mode 0

dν =0.09Hz  of the GGG rotor. The splitting of the mode due to anisotropy of the 
cardanic suspensions, is evidenced starting from νs=0Hz. Solid-blue lines: theoretical results. Red crosses: 
experimental data. 

The two branches may cross at selected frequencies in the regime 0 0
d s c22 2ν < ν < ν . 

Crossing and anticrossing of degenerate modes is a very general concept, which applies to a 
variety of physical systems running from classical to quantum mechanics, from single to 
                                                 
9 From now on, positive frequencies are connected with forward whirl (anti-clockwise), negative frequencies 
with backward whirl (clockwise).  
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many-particles physics. We have found in the numerical results all the 15 crossings expected 
for our system. At the present time, their role is still under investigation. 
 

3.9.E: INSTABILITY REGIONS. 
 
Dynamical instability may occur whenever the values of the natural frequencies are in 
proximity of the spinning frequency. In such regions, the oscillation amplitude is 
exponentially growing. This is a well-known characteristic of rotating machines, and in 
chapter 1 it has been described within the simple model of the so-called Jeffcott rotor. The 
number of instability regions can be predicted from figure 3.3 after drawing the dotted-dashed 
line ν=νs. We have found indeed three instability regions, and zoomed the one at lowest 
frequency in figure 3.6.  

 
Figure 3.6: Normal modes of the GGG rotor. The lowest-frequency instability region is zoomed from figure 3.3. 

We may have a flavour of the unstable behaviour of the system by evaluating the 
characteristics of the instability region connected with the differential natural frequency dν . 
We have shown that if the springs have non-isotropic behaviour each natural frequency is 
expected to split up. The differential natural frequency dν  is split up into 

d d 0.095Hz+ν = ν + δν =  and d d 0.085Hz−ν = ν − δν = (red crosses in figure 3.7), where δν  is 
a small shift in the frequency, typically of order of 10-2÷10-3 Hz. We have also shown the 
presence of the frequencies d+−ν  and d−−ν  with negative sign, corresponding to backward 
whirls. Hence, we have demonstrated that there are branches increasing with 2νs. We can 
combine these three properties of  the system and find the intersection between the flat branch 

s d( ) −ν ν = ν  with the increasing branch s d s( ) 2−ν ν = −ν + ν . The intersection is found for 
s d−ν = ν , i.e. when the two branches cross the bisecting line s s( )ν ν = ν . The presence of an 
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elastic anisotropy of the rotating part of the system causes the occurrence of an instability 
range that spans from the lowest s d−ν = ν  to the highest s d+ν = ν  critical speed. The same 
conclusion has already seen in section 1.11 dealing with the non-isotropic Jeffcott rotor and it 
is still valid for the common mode natural frequencies. Interestingly enough, this theoretical 
results shown in figures 3.3 and 3.6 may explain the difficulty that we meet in the experiment 
while spinning the rotor through the frequency range 0.9→1.3 Hz. In this range indeed, we 
see from figure 3.3 that two sizable and adjacent instability regions are predicted. The 
unstable behaviour of the instrument in this frequency range normally requires the use of a 
passive damper (see chapter 2 for details). In fact, non-rotating damping reduces the 
instability range between the critical speeds. 
 

3.9.F: GGG FREQUENCY RESPONSE. 
 
In figure 3.7 the FFT of the x component of the relative displacement between the two test 
bodies for the non-spinning rotor is shown (red curve) in comparison with the theoretical 
transfer function of the system.  

 
Figure 3.7: Comparison with the experiment. Red curve: FFT of the relative displacement (experimental data) as 
function of the frequency for the non-spinning rotor. Blue curve: theoretical frequency response of the system as 
predicted by the mathematical model of GGG. At high frequency (i.e. ν>2Hz), the red curve is almost flat.  This 
is connected with the 16bit electronics� limit of resolution. 

Since the rotor was not spinning, only three peaks are visible at frequency 0
dν =0.1 Hz (it 

corresponds to the differential mode; when those data have been acquired (September 2001) 
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the differential period was about  10s, i.e. a little different from the differential period (about 
11s in May 2002) in figures 3.3 � 3.6), and at frequencies 0

c1ν =0.91Hz  and 0
c2ν =1.26 Hz. 

Note that if we had shown the y component of the relative displacement, the figure would 
have been similar but the peaks would have been at frequencies a little different because of 
the anisotropy.  A good agreement is evidently found between the theory and the experiment. 
In figure 3.8 the frequency components of the relative displacement between the test bodies  
along x direction in the laboratory frame (rotor spinning at νs =.05Hz) is shown. Data have 
been acquired in August 2002. 4 peaks can be recognized: one corresponding to νs, two 
corresponding to the differential frequency splitted up into d d+ν = ν + δν  and d d−ν = ν − δν , 
and one corresponding to the increasing branch d s2−−ν + ν . 

 
Figure 3.8: Frequency components of the relative displacement. The rotor was spinning at 0.05Hz.  4 peaks can 
be recognized: one corresponding to the spin frequency νs, two corresponding to the differential frequency 
splitted up into d d+ν = ν + δν  and d−ν = ν − δν , and one corresponding to the increasing branch 

d s2−−ν + ν . 
 

3.10: APPROXIMATED FORMULA FOR DERIVING THE NORMAL MODES. 
 
The frequencies d d 0.095Hz+ν = ν + δν =  and d d 0.085Hz−ν = ν − δν = correspond to 
differential modes of oscillation, where the centres of mass of the two test bodies move in 
opposition of phase. If the springs have isotropic behaviour in the horizontal plane, the small 
shift δν vanishes and d d d+ −ν = ν = ν . In section 2.3, for simplicity reasons, we have evaluated 
an analytical expression of the differential frequency (period) in the very simplified case in 
which the springs are isotropic and the bodies are neither rotating (i.e. φa=φ1=φ2 =0) nor 
subject to any dissipative or other external forces except for gravity. The numerical study of 
the eigenvalues and eigenvectors of the A matrix in equations (3.35) and (3.36) demonstrates 
that in the differential mode the coupling arm oscillates and the cylinders� centres of mass 
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move within the horizontal plane in opposition of phase while their symmetry axis remains 
aligned with the vertical �z  (i.e. ϑ1=ϑ2=0). The minimal model of the system is drawn in 
figure 2.3.b. 

 
Figure 3.9: Differential period (inverse of the differential frequency νd) as a function of  ∆L.  Excellent 
agreement is found between the results of numerical simulations (red) and the approximated formula (blue). 

Under the reasonable assumption that ϑ1=ϑ2=0 and φi=0 the analytical formula of the 
differential period (2.2) is easily obtained. ∆L can be adjusted to be either slightly positive or 
negative, resulting into a lower or higher differential frequency, while the value of common 
mode frequencies is not influenced by it. In figure 3.9 the differential period (inverse of the 
differential frequency) is shown as a function of  ∆L; the approximated value (blue) of the 
period (2.2) is compared with the results of the numerical simulations (red). We have derived 
an approximated formula for the natural frequency νc1=0.9 Hz too. In the common mode νc1, 
the coupling arm and the cylinders� centres of mass oscillate in phase (i.e. ϑ1=ϑ2=ϑa). Only 
the central laminar suspension undergoes deformations. The minimal model of the system is 
drawn in figure 3.10.  

= Spring

ϑa 

ϑ2 

ϑ1  
Figure 3.10: Common modeνc1. Minimal model of GGG as detailed in the text. 

The natural frequeny is easily obtained after writing the equation of motion10, namely: 

( )
( )

2
1 2 1

c1_ app 2
1 2 1 2 1

k m m g(L L )
2

I I m m (L L )
+ + +

ν = π
 + + + + 

#
 (3.46) 

                                                 
10 They can be written starting from the lagrangean L .  The total potential energy U expanded to 2-nd order is: 

( )2 2
1 2 1 aU 0.5[k m m g(L L )]= + + + ϑ# . The kinetic energy is: ( ) 2 2

1 2 1 2 1 aT 0.5[(I I ) m m (L L ) ]= + + + + ϑ! .  
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The natural frequency (3.46) corresponding to the parameters listed in tables 3.1 and 3.2 is 
evaluated to be ν=0.94 Hz  in reasonable agreement with the measured value 0.91 Hz. It is 
important to notice that equation (3.46) depends only on the governing parameters of the 
system and it is not a function of ∆L.  
At last, we derive an approximated formula for the natural frequency νc2=1.26 Hz. In the 
common mode νc2 the coupling arm and the outer cylinder oscillate in phase (i.e. ϑ2=ϑ-αϑ a). 
The inner cylinder oscillates in opposition of phase, i.e. ϑ1=-αϑ a. 
  

= Spring

ϑa 

ϑ2 

ϑ1 

 
Figure 3.11: Common modeνc2. Minimal model of GGG as detailed in the text. 

The α coefficient is determined by imposing that the displacement of the outer cylinder�s 
centre of mass ~L2ϑa(1-α)-Lϑa to be equal to the displacement of the inner cylinder�s centre 
of mass ~Lϑa-αL1ϑa, i.e. α=L1/2L. The natural frequency is obtained in the standard manner: 

( ) ( )22 2 2 2
a 2 1 1 1 2 2

c2 _ app 2 2 2 2
1 2 1 1 2 2

k k (1 ) k g m L m L 1
2

I I (1 ) m (L L ) m (L (1 ) L)

 + α + + α + α + − α ν = π
 α + − α + − α + − α − 

#
 (3.47) 

The natural frequency (3.47) corresponding to the parameters listed in tables 3.1 and 3.2 is 
evaluated to be ν=1.01 Hz  while the measured value is 1.26 Hz. As for νc1, νc2 (3.47) 
depends only on the governing parameters of the system and it is not a function of ∆L. 
Equations (2.2), (3.46) and (3.47) are simple expressions for the natural frequencies of the 
GGG accelerometer. They are useful in order to understand the dependence of these 
frequencies from the governing parameters of the apparatus.  
 

3.11: CONCLUDING REMARKS. 
 
We have demonstrated that the linearized model set up in this chapter can quantitatively 
account for the dynamical response of the GGG rotor, as determined from the experiment 
(section 3.10). We have shown that a qualitative understanding is also possible by means of 
helpful analytical solutions of the simplified model under special limits. Along these lines, we 
have been able to establish a detailed knowledge of the instrument functioning and features, 
especially in regard to the normal modes in the whole range of spinning frequencies from 
subcritical to supercritical rotation, and as functions of the governing parameters listed in 
table 3.1 and 3.2. 
To be definite, the following result is of central importance from this chapter. The normal 
modes of the non-spinning rotor split up into two scissor-like branches as in figure 3.3, once 
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the instrument is set in rotation. Of the two branches, only the non-dispersive one remains 
significantly excited, meaning that rotation can be considered coupled from the intrinsic 
response of the system only in the intermediate range of νs. We have also found that damping 
due to dissipative suspensions is not a concerning issue, and verified the presence of 
mechanical instability regions, allowing us to predict at which frequencies a stabilizing 
passive damper has to be used. 
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CHAPTER 4:  

DYNAMICAL RESPONSE OF THE GGG DIFFERENTIAL 

ACCELEROMETER. 

4.1: INTRODUCTION. 
 
The GGG experiment has been described in chapter 2, and its underlying physics has been 
embodied  (in chapter 3) in an effective model that fully accounts for the measured normal 
modes of the GGG rotor in the whole range of frequencies from subcritical to supercritical 
rotation.  
The solution of the model equations, performed after setting an user-friendly and versatile 
simulational environment, also demonstrates two good features of GGG, namely that rotation 
is decoupled from the normal modes  of the non spinning instrument, for a wide range of (low 
and high) frequencies, and that damping does not introduce appreciable shifts of the modes 
frequencies. In the present chapter, we apply the model to evaluate the rejection capability of 
the GGG rotor as determined by all the governing system parameters [37].  
This study naturally provides an effective tool to optimise the real instrument in response to 
external disturbances. While we refer to chapters 2 and 3 for all the definitions and descriptive 
parts of the experiment and of the model, chapter 4 is organized as follows. We complete in 
section 4.2 the description of the numerical method as already initiated in chapter 3, 
specializing here to the introduction of external forces. In section 4.3 and 4.4 we define the 
coefficients of two new matrices, B and C, already  introduced in section 4.2.   
We show in section 4.5 how the transfer matrix and thus the output are transformed in the 
non-rotating reference frame. In sections 4.6, 4.7, 4.8 and 4.9 we first define the rejection 
factor and  fix the theoretical understanding by evaluating it in the case of the non spinning 
rotor  in terms of a scaling parameter, and then present the simulational results that validate 
the analytical solution in the low and high spin frequency regime, and demonstrate the 
enhanced rejection for intermediate frequencies. We devote section 4.10 to place these results 
in the realistic range of parameters of the GGG rotor. Sections 4.11 and 4.12 are devoted to 
the self-centring.  
 

4.2: EXTERNAL FORCES AND COMPUTATION OF THE TRANSFER FUNCTION. 
 
In charter 3 we have introduced only internal forces with the exception of the non-rotating 
damper. We devote this section to the introduction of external forces: here we describe the 
problem in the state � variable form, where the external forces determining the rotor 
dynamical behaviour, expanded to first order in the coordinates ix  and to zero order in the 
forces,  are included on the right hand side of equation (3.40), that becomes: 

x=A x+B u⋅ ⋅! ! !"  (4.1) 
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where u!  is an input vector1.  (4.1) is a system of 12 equations involving only first-order time 
derivatives ([44-49]). The A matrix (see equation (3.41), (3.42) and (3.43)) is said  � State 
Matrix �  and it is n × n, while the B matrix is known as �Input Matrix �, and it is n  × m ( u!  
has m components). The definition of the problem is completed after specifying the p 
components output vector y! , by means of the general expression: 

y=C x+D u⋅ ⋅! ! !
 (4.2) 

involving the output p × n matrix C, and the coupling input � output matrix D with 
dimensions p × m. In our problem D=0, and the y! �s components are the displacements of the 
masses from their equilibrium positions.  
Equations (4.1) and (4.2) are solved in the frequency domain ( x(t) X(s), u(t) U(s)→ →! ! �), after 
Laplace transform to the variable s=jω: 

( ) ( ) ( )
( )

s I X s = A X s +BU s

Y(s)=CX s





 (4.3) 

(I is the identity matrix). Combining the two equations in (4.3) into one equation, we have 
direct link between the output vector and the input forces: 

( ) ( ) ( )
( )

( ) ( )
1

1X s = sI-A BU s
Y(s)=C sI-A BU s

Y(s)=CX s

−
− ⇒


 (4.4) 

Equation (4.4) can be written in a more compact form:  

( )RotY(s)=H (s)U s  (4.5) 

Equation (4.5) defines the p × m transfer matrix H in the rotating frame in terms of the A, B 
and C matrices:  

( ) 1RotH (s)=C sI-A B−
 (4.6) 

The derivations of B and C for the present problem are reported in sections 4.3 and 4.4. As we 
need the output YNR(s) into the laboratory frame, we show in section 4.5 how the transfer 
matrix is transformed in the non-rotating frame. 
 

4.3: THE C MATRIX. 
 
Starting from equations (3.36) and (3.37), the equilibrium position is defined as: 

T0 0 0 0 0 0 0
2 1 2 1x 0 0 0 0 0 0 = ϑ ϑ ϑ φ φ φ 

!
 (4.7) 

As in chapter 3, the label �a� refers to the suspension arm, the labels �1� and �2� to the inner 
and outer cylinders respectively.  By combining equations (3.10), (3.11) and (3.12) with (4.7), 

                                                 
1 In this work it is made of the m components of the external forces acting on the rotor. 
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the vectors pointing to the three bodies� centers of mass in the equilibrium position are readily 
obtained: 

0,Rot
a

0 0sin(x )cos(x )71
0 0sin(x )sin(x )71

0cos(x )1

Lr
2

−

 
 ∆= ε −  
 
  

! !
 (4.8) 

( )0,Rot
2 2

0 00 0 sin(x )cos(x )sin(x ) cos(x ) 3 971
0 0 0 0sin(x )sin(x ) sin(x )sin(x )71 3 9

0 0cos(x ) cos(x )1 3

r L L L
− −

  
  

= ε − + ∆ +   
  

      

! !
 (4.9) 

0,Rot
1 1

0 0 0 0sin(x )cos(x ) sin(x )cos(x )7 51 11
0 0 0 0sin(x )sin(x ) sin(x )sin(x )7 51 11

0 0cos(x ) cos(x )51

r L L
− −

   
   

= ε + +   
   
      

! !
 (4.10) 

At a certain time t, the position vectors of the three bodies are given by the following 
equations: 
 
- coupling arm 

0 0
1 1 7 7

Rot 0 0
a 1 1 7 7

0
1 1

0 0 0 0 0 0
1 1 7 7 1 7 1 7

0 0 0 0 0 0
1 1 7 7 1 7 1 7

sin(x x )cos(x x )
Lr (t) sin(x x )sin(x x )
2

cos(x x )

x cos(x )cos(x ) x sin(x )sin(x ) sin(x )cos(x )
L x cos(x )sin(x ) x sin(x )cos(x ) sin(x )sin(x )
2

 + +
 ∆= ε − + + 
 

− +  

− +
∆ε − + +

−

! !

!∼
0 0
1 1 1cos(x ) x sin(x )

 
 
 
 

+  

 

0 0 0 0
1 1 7 7 1 7

0,Rot 0 0 0 0
a 1 1 7 7 1 7

0
1 1

x cos(x )cos(x ) x sin(x )sin(x )
Lr x cos(x )sin(x ) x sin(x )cos(x )
2

x sin(x )

 −
 ∆− + 
 
  

!∼  (4.11) 

 

- outer cylinder: 

( )

0 0 0 0
1 1 7 7 1 7

Rot 0,Rot 0 0 0 0
2 2 1 1 7 7 1 7

0
1 1

0 0 0 0
3 3 9 9 3 9

0 0 0 0
2 3 3 9 9 3 9

3

x cos(x )cos(x ) x sin(x )sin(x )

r (t) r L L x cos(x )sin(x ) x sin(x )cos(x )

x sin(x )

x cos(x )cos(x ) x sin(x )sin(x )

L x cos(x )sin(x ) x sin(x )cos(x )

x si

 −
 

− + ∆ + 
 
  

−

+ +

! !∼

0
3n(x )

 
 
 
 
  

 (4.12) 
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- inner cylinder: 
0 0 0 0

1 1 7 7 1 7
Rot 0,Rot 0 0 0 0

1 1 1 1 7 7 1 7
0

1 1

0 0 0 0
5 5 11 11 5 11

0 0 0 0
2 5 5 11 11 5 11

x cos(x )cos(x ) x sin(x )sin(x )

r (t) r L x cos(x )sin(x ) x sin(x )cos(x )

x sin(x )

x cos(x )cos(x ) x sin(x )sin(x )

L x cos(x )sin(x ) x sin(x )cos(x )

x

 −
 

+ + 
 
  

−

+ +

! !∼

0
5 5sin(x )

 
 
 
 
  

 (4.13) 

The displacements from the equilibrium positions is then: 
- outer cylinder  

Rot Rot 0,Rot
2 2 2r (t) r (t) r∆ = −! ! !

 (4.14) 

- inner cylinder 
Rot Rot 0,Rot

1 1 1r (t) r (t) r∆ = −! ! !
 (4.15) 

Finally, we have the linearized expression of the relative position vector: 

( )

0 0 0 0
1 1 7 7 1 7

Rot Rot Rot 0 0 0 0
2 1 1 1 7 7 1 7

0
1 1

x cos(x )cos(x ) x sin(x )sin(x )

r (t) r (t) r (t) 2L L x cos(x )sin(x ) x sin(x )cos(x )

x sin(x )

 −
 

∆ = ∆ − ∆ = − + ∆ + + 
 
  

! ! !  

0 0 0 0 0 0 0 0
3 3 9 9 3 9 5 5 11 11 5 11

0 0 0 0 0 0 0 0
2 3 3 9 9 3 9 1 5 5 11 11 5 11

0 0
3 3 5 5

x cos(x )cos(x ) x sin(x )sin(x ) x cos(x )cos(x ) x sin(x )sin(x )

L x cos(x )sin(x ) x sin(x )cos(x ) L x cos(x )sin(x ) x sin(x )cos(x )

x sin(x ) x sin(x )

   − −
  

+ + − +  
  
     






 

 (4.16) 

In our experiment, equation (4.5) is characterized by 2 outputs (the 2 components of y! ), that 
are the components of the relative displacement Rotr (t)∆!  (4.16) between the two test cylinders 
in the sensitivity plane ξ-η as measured in the rotating frame: 

Rot
1

Rot
2

∆ry
y= =

y ∆r
ξ

η

  
  
    

!
 (4.17) 

Combining equations (4.2), (4.16) and (4.17), we obtain the coefficients of the C matrix:  

( ) 0 0
1,1 1 7C 2L L cos(x )cos(x )= − + ∆   (4.18.a)  

0 0
1,3 2 3 9C L cos(x )cos(x )=  (4.18.b) 

0 0
1,5 1 5 11C L cos(x )cos(x )= −  (4.18.c) 

( ) 0 0
1,7 7 1 7C 2L L x sin(x )sin(x )= + ∆  (4.18.d) 

0 0
1,9 2 9 3 9C L x sin(x )sin(x )= −  (4.18.e) 
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0 0
1,11 1 11 5 11C L x sin(x )sin(x )=  (4.18.f) 

( ) 0 0
2,1 1 7C 2L L cos(x )sin(x )= − + ∆  (4.18.g) 

0 0
2,3 2 3 9C L cos(x )sin(x )=  (4.18.h) 

0 0
2,5 1 5 11C L cos(x )sin(x )= −  (4.18.i) 

( ) 0 0
2,7 7 1 7C 2L L x sin(x )cos(x )= − + ∆  (4.18.l) 

0 0
2,9 2 9 3 9C L x sin(x )cos(x )=  (4.18.n) 

0 0
2,11 1 11 5 11C L x sin(x )cos(x )= −  (4.18.o) 

while all the coefficients not listed above are equal to zero. For all practical purposes, it is 
convenient to turn  (4.18) into a more symmetric form: 

0 0
1k k k k 6

0 0
1k k k 6 k

0 0
2k k k k 6

0 0
2k k k 6 k

C cos(x )cos(x ) k 6

C sin(x )sin(x ) k 6

C cos(x )sin(x ) k 6

C sin(x )cos(x ) k 6

+

−

+

−

 = γ ≤


= γ >


= γ ≤
 = −γ >

 (4.18.p) 

where γ1= -γ7= -(2L+∆L), γ3= -γ9=L2, γ5= -γ11= -L1 and γk=0 for even k. 
 

4.4: THE B MATRIX. 
 
In our model, the vector u!  in equation (4.1) is defined as the components of the given 
external forces F

!
 applied to the centers of mass of the two test bodies in the sensitivity plane 

in the rotating reference frame. As a consequence, u!  had to be composed of four components.  
Under  reasonable  conditions,  instead,  the  problem  can  be  studied  by considering a two 
components input vector u! 2. 

Rot
1

Rot
2

Fu
u= =

u F
ξ

η

  
  
    

!
 (4.19) 

Hence, the B matrix transforms the 2 components u!  vector into its 12 components 
counterpart Bu! . In this section we define the coefficients of the B matrix. To this aim, let us 
begin with writing equation (3.24) as follows: 

[ ] [ ] g
Q

M Q S F
Q
 

⋅ = ⋅ + 
 

""
"  (4.20) 

                                                 
2 For example, in case of common mode forces, the forces acting on the two bodies are the same, while when 
acting in a differential manner, they have the same amplitude but opposite sign. 
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where  we  have  introduced  the  6 component  vector gF
!

 of the generalized forces3 defined as 
g gF B u =  
! ! . [Bg]  is a 6×2  matrix. In the case of common mode external forces, we may 
figure out them as acting on both test masses and the coupling arm in the same way. The 
resulting Bg matrix is then: 

a, 1, 2, a, 1, 2,a a

a 1 a a a 1 a a

2, 2,

2 2

1, 1,

1 1
g

a, 2, 1, a, 2, 1,a a

a 1 a a a 1 a a

2, 2,

2 2

r r r r r rm m
m m

r r

r r

B
r r r r r rm m

m m
r r

ξ ξ ξ η η η

ξ η

ξ η

ξ ξ ξ η η η

ξ η

∂ ∂ ∂ ∂ ∂ ∂   
⋅ + + ⋅ + +   ∂ϑ ∂ϑ ∂ϑ ∂ϑ ∂ϑ ∂ϑ   

∂ ∂
∂ϑ ∂ϑ
∂ ∂
∂ϑ ∂ϑ

=
∂ ∂ ∂ ∂ ∂ ∂   

⋅ + + ⋅ + +   ∂φ ∂φ ∂φ ∂φ ∂φ ∂φ   
∂ ∂
∂φ ∂φ
∂ 1, 1,

1 1

r rξ η

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ∂
 ∂φ ∂φ  

 (4.21.a) 

In equation (4.21.a), the factor ma/m1 has been introduced so that the external force produces 
on the arm the same force as on the inner and outer bodies. In the case of a differential force, 
we may figure out it having opposite signs when acting on the two test cylinders. The Bg 
matrix is expressed as: 

1, 2, 1, 2,

a a a a

2, 2,

2 2

1, 1,

1 1
g

1, 2, 1, 2,

a a a a

2, 2,

2 2

1, 1,

1 1

r r r r

r r

r r

B
r r r r

r r

r r

ξ ξ η η

ξ η

ξ η

ξ ξ η η

ξ η

ξ η

 ∂ ∂ ∂ ∂   
− −    ∂ϑ ∂ϑ ∂ϑ ∂ϑ    

 ∂ ∂
 − −

∂ϑ ∂ϑ 
 ∂ ∂ 
 ∂ϑ ∂ϑ 

=  
∂ ∂ ∂ ∂    − −    ∂φ ∂φ ∂φ ∂φ    

∂ ∂ 
− − ∂φ ∂φ 

 ∂ ∂
 ∂φ ∂φ 





 (4.21.b) 

                                                 
3 See equations (3.21), (3.22) and (3.23). 
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The coefficients bi,k  of the matrix B are determined starting from the definition of the matrix 
Bg

4: 

o i even,      ( ) ( )
12 12

-1 -1
i,1 g i,2 gh,1 h,2i,h i,hh=1 h=1

= M B ; = M B∑ ∑b b  (4.22.a) 

o i odd         i,k 0=b  (4.22.b) 

 

4.5: THE TRANSFER FUNCTION IN THE NON-ROTATING REFERENCE  FRAME. 
 
We here show how to transform the transfer function (4.6) into the non-rotating frame. In this 
section the label NR refers to the vectors in the non-rotating frame while Rot to the same 
quantities in the rotating reference frame. In our setting, we may write for the two components 
outputs NRy! and inputs NRF

!
in the non-rotating frame as function of their counterparts in the 

rotating frame: 

NR Rot
s s1 1

NR Rot
s s2 2

cos( t) sin( t)y y
=

sin( t) cos( t)y y

   ω − ω 
⋅    ω ω       

 (4.23.a) 

NR Rot
s s1 1

NR Rot
s s2 2

cos( t) sin( t)F u
=

sin( t) cos( t)F u

   ω − ω 
⋅    ω ω       

 (4.23.b) 

We show in appendix 4.A how the equation (4.5) is transformed in the non-rotating frame. 
The result5 is: 

{ } { }
{ } { }

Rot Rot Rot RotNR NR11 s 21 s 12 s 22 s1 1
NR NRRot Rot Rot Rot
2 211 s 21 s 12 s 22 s

e H (s j ) jH (s j ) e H (s j ) jH (s j )y (s) F (s)

y (s) F (s)m H (s j ) jH (s j ) m H (s j ) jH (s j )

 ℜ − ω + − ω ℜ − ω + − ω    = ⋅       ℑ − ω + − ω ℑ − ω + − ω     
 (4.24) 

We have obtained the transfer function for the non-rotating outputs YNR(s) in response to the 
non-rotating forces FNR(s), namely: 

{ } { }
{ } { }

Rot Rot Rot Rot
11 s 21 s 12 s 22 sNR
Rot Rot Rot Rot
11 s 21 s 12 s 22 s

e H (s j ) jH (s j ) e H (s j ) jH (s j )
H (s)

m H (s j ) jH (s j ) m H (s j ) jH (s j )

 ℜ − ω + − ω ℜ − ω + − ω
 =
 ℑ − ω + − ω ℑ − ω + − ω  

 

 (4.25) 

                                                 

4 Starting from equation (4.20) we find [ ] [ ] [ ]1 1
g

Q
Q M S M F

Q
− − 

= ⋅ ⋅ + ⋅ 
 

""
" .  Using  (3.39), equations (4.22.a), 

(4.22.b) and (4.22.c) are obtained. 
5 Let us introduce the complex function K(s) A(s) / B(s) jC(s) / D(s)= + , where A(s), B(s), C(s) and D(s) 
are polynomials with real and constant coefficients. We define e(K(s)) A(s) / B(s)ℜ =  and 

m(K(s)) C(s) / D(s)ℑ = .  
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Let us now look at the poles and zeros of the rotor response6. The rotating transfer function 
RotH (s)αβ  can be decomposed as: 

*
s si i

Rot i
*

s sk k
k

(s z j )(s z j )
H (s)

(s p j )(s p j )

αβ αβ

αβ αβ αβ

− + ω − − ω
=

− + ω − − ω

∏

∏
 (4.26) 

showing that poles (zeros) in the rotating frame are the combination of a DC component kpαβ  
( izαβ ) and of a term ±jωs modulated at the spin frequency. By inspection from equation 
(4.26), since  HRot(s) coincides with HNR(s) when ωs=0 rad/s, the DC components of the poles 
(zeros) in the rotating frame are equal to the poles (zeros) in the non-rotating frame, i.e. kpαβ  
and izαβ  are the poles and the zeros of  HNR(s). From equation (4.26) we have: 

*
si i

Rot i
s *

sk k
k

(s z )(s z 2j )
H (s j )

(s p )(s p 2j )

αβ αβ

αβ αβ αβ

− − − ω
− ω =

− − − ω

∏

∏
 (4.27) 

By inserting  equation (4.27) in (4.25),  we may write the transfer function HNR(s) in the non-
rotating frame as function of the poles kpαβ  and izαβ . By inspection from equation (4.26) it 
follows that the poles are shifted from skp jαβ ± ω  to kpαβ  and skp 2jαβ + ω , namely at zero and 
twice the spin frequency. It is important to underline that the 4 functions RotH (s)αβ have 
different zeros izαβ  but the poles are the same.  
 

4.6: THE COMMON MODE REJECTION FACTOR. 
 
The rejection function χ describes the rotor�s mechanical ability to reject common forces as 
compared to those acting in a different manner on the test bodies. The smallest χ is, the best is 
the performance of the instrument. The rejection is a function of frequency, as much as the 
dynamical response of the system does.  We have proceeded to numerically evaluate χ(ν) by 
first determining the transfer function in the rotating frame for the two cases of common and 
differential forces acting on the test cylinders. The common NR

comH (s) and differential 
NR
difH (s) transfer functions are then calculated in the non-rotating frame, yielding the 

corresponding relative displacements: 

NR
COM XNR

COM sNR
Y1COM

x (s) F (s)1H (s j )
F (s)my (s)

 ∆  
= − ω ⋅ ⋅   

∆    
 (4.28) 

NR
DIF XNR

DIF sNR
Y1DIF

x (s) F (s)1H (s j )
F (s)2my (s)

 ∆  
= − ω ⋅ ⋅   

∆    
 (4.29) 

The factor  ½  in  (4.29)  is introduced to make the values of common and differential forces 
                                                 
6 The zeros are simply the numerator roots, and the poles, the denominator roots. 
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 equal. With this definition, if  Fcom= F is the force acting in a common manner on the two test 
masses, the differential forces are Fdif1= F/2 and Fdif2= -F/2=- Fdif1, so that ∆F= Fdif1- Fdif2=F. 
The rejection functions on the x and y directions thus are: 

NR
COM

X NR
DIF

x (s)(s)
x (s)

∆χ =
∆

 (4.30) 

NR
COM

Y NR
DIF

y (s)(s)
y (s)

∆χ =
∆

 (4.31) 

Since the EP signal in the GGG experiment is modulated at the very low frequency 
νmod=11.574µHz of diurnal Earth motion, in the following we focus on the χ(s→0)≡χ0 
behaviour of the rejection function at different values of the spin frequency νs.  
 

4.7: ANALYTICAL SOLUTION AT ZERO SPIN. 
 
Before proceeding to the numerical evaluation of χ(ν) we show that the ν=0 behaviour can be 
predicted by carrying out an analytical solution to the equations for the rotor in figure 3.2. Let 
us now write the right�hand�side  of equation (2.3) by inserting the expression (2.2) for the 
differential period of oscillation. After some simple algebra  and defining the total elastic 
constant Kt=k+k1+k2 and the total mass Mt=m1+m2+ma=2m+ma (m=m1=m2), we obtain: 

2
dif t

dif 2
t t

M Lx
K gM L / 2

∆ =
− ∆$

a
 (4.32) 

We have to evaluate the relative displacement between the two cylinders due to common 
forces. These can be obtained from equation (3.16) of chapter 3 in the limit of small angles 
and null spin frequency, and after adding the terms embodying in the potential energy U the 
work done by the external force. This procedure leads to the equations7: 

( )
( )

2
1 1 1 a 1 com 1

2
2 2 2 a 2 com 2

2 2 2
t t a 1 1 2 2 t com

mgL k F L 0

mgL k F L 0

K M g L / 2 k k M LF / 2m 0

 ϑ − ϑ − ϑ − =
 ϑ − ϑ − ϑ − =

 − ∆ ϑ − ϑ − ϑ + ∆ = 

$

$

$ $ $

 (4.33) 

From the first and the second equation of the system (4.33) we have: 

( ) ( )2 2
1 a 1 com 1 1 1L F (k ) 1 mgL (k )ϑ = ϑ + +$ $  (4.34) 

( ) ( )2 2
2 a 2 com 2 2 2L F (k ) 1 mgL (k )ϑ = ϑ + +$ $  (4.35) 

                                                 
7 In the limit ν→0Hz, the problem has three degrees of freedom. Hence it can be studied using only three 
generalized coordinates, i.e. the angles  ϑa, ϑ1 and ϑ2. 
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By substituting (4.34) and (4.35) in the third equation of the system (4.33), the approximated 
value of the equilibrium angle ϑa of the coupling arm is obtained:  

2 2
t 1 2

1 22 2
1 1 2 2

a com
2

t t

1 M L k kL L
2 m k mgL k mgL F1K M g L

2

∆ − −
+ +ϑ −
− ∆

$ $
$ $∼
$

 (4.36) 

The angles ϑ1 and ϑ2 may be evaluated by inserting the expression (4.36) into equations  
(4.34) and (4.35): 

2
1 1 t com 1

1 com2 2 2 2
1 1 1 t t 1 1

k mL M L F L F
mk mgL k 2K M g L k mgL

 ∆ϑ = − + − ∆ + 

$ ∼
$ $ $ $

 (4.37) 

2
2 com2

2 2

L F
k mgL

ϑ
+

∼
$

 (4.38) 

In the limit of small angles, the displacement ∆xcom is: 

( )com 2 2 1 1 ax L L 2L L∆ = ϑ − ϑ − + ∆ ϑ  (4.39) 

After substituting  (4.36), (4.37) and (4.38) into (4.39) we eventually obtain8:  

( ) ( )( ) ( ) t2 2
2 1 t t 2 1

com
com

2
t t

2L L LgM1L L K M g L 2L L k k
2 2Fx

1m K M g L g
2

+ ∆ ∆   − − ∆ − + ∆ + +  
  ∆

 − ∆ 
 

$ $
∼

$

 (4.40) 

With the use of the relations L2=2L+∆L+L1 and Kt=k+k1+k2 and after expanding equation 
(4.40) in the parameters 2

t tK M g L / 2 1− ∆ <<$  (see tables 3.1 and 3.2), the displacement can 
be written as: 

( ) 2
com

com 2
t t

2L L k Fx
mgK M g L / 2

+ ∆
∆

− ∆
$

∼
$

 (4.41) 

The inverse rejection factor turns out to be: 

( )
2

dif t dif
2

0 com com

1 x M gL F
x F2L L k
∆= =

χ ∆ + ∆ $
 (4.42) 

                                                 

8 

( )

( )
( )

( )
( )

2 2 2 2
2 t t 2 1 t t 1

com 2 1
2 2 2 2

t t 2 2 t t 1 1

t com
2

t t

1 1L K M g L 2L L k L K M g L 2L L k
2 2x mL mL
1 1K M g L k mgL K M g L k mgL
2 2

2L L LM F
m2K M g L

    − ∆ − + ∆ − ∆ + + ∆          ∆ = −
    − ∆ + − ∆ +       

+ ∆ ∆ + 
− ∆ 

$ $ $ $

$ $ $ $

$
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The rejection factor (4.43) results from equation (4.42) after setting dif comF F= , and 
neglecting the ratio ∆L/L and ma/m1,2. 

2

0
k
mgL

χ $∼  (4.43) 

With the values listed in table 3.1 the rejection factor is χ0=1/745. 
 

4.8: LOW AND HIGH SPIN FREQUENCY REGIME. 
 
The relation (4.43) results from a series of approximations (small oscillations, ∆L/L<<1, 
ma/m<<1 and 2k / mgL 1λ λ <<$ ) performed to describe the non-spinning rotor. We devote 
section 4.8 to numerically evaluate the extent to which equation (4.43) is valid for low (0Hz < 
νS <νd/2)  and high frequencies (νS >νc2/2), postponing to the next section the discussion of 
the more complex case of the rotor spinning at intermediate frequencies (νd/2< νS <νc2/2). 
 

4.8.A: THE PERIOD OF NATURAL DIFFERENTIAL OSCILLATION. 
 
In order to calculate the dependence of the rejection on the scaling parameter χ0 (4.43), we 
proceed to vary the governing parameters one at a time in a way to keep the differential period 
TD fixed.  

Curve Kx′ (dyne/cm) Λ $  (cm) 
a) 106 2.58 0.5 
b) 106 1 0.5 
c) 5⋅105 1 0.5 
d) 2.5⋅105 1 0.5 
e) 1.5⋅105 1 0.5 
f) 5⋅104 1 0.5 
g) 106 1 0.15 

Table 4.1: Legend corresponding to figure 4.1.  

This condition can be fulfilled by varying ∆L9, as emerges from figure 4.1, where TD vs. ∆L is 
displayed under the different experimental conditions listed in table 4.1. 
 

4.8.B: RELATIVE DISPLACEMENT AS FUNCTION OF FREQUENCY OF THE EXTERNAL FORCE. 
 
Once the differential period is fixed, we need to set the observables that are needed to extract 
the rejection function.  We numerically evaluate the relative displacement resulting from the 
application of a common force acting at frequency ν, for the rotor spinning at frequency 
νs=2.5Hz and report the result in figure 4.2. 
                                                 
9 The differential period depends on ∆L as shown by equation (2.2). The scaling parameter χ0  is not a function 
of ∆L instead, as it will shown in the following sections. 
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Figure 4.1: Differential Period as a function of the balancing parameter ∆L.  Different curves refer to different 
values of the other system parameters with νs=2.5Hz, as in table 4.1. 

 
Figure 4.2: Numerically evaluated common mode relative displacement as function of frequency ν in Hz (non-
rotating frame). The rotor is spinning at νs=2.5 Hz. TD=12.5s. The other parameters are typical of the instrument 
and they are listed in tables 3.1 and 3.2. Vertical axis: 20log10(∆xcom / (Fcom/m)) expressed in c.g.s. units. 

In the case of common input forces, the rotor is seen to respond at all its natural frequencies. 
Figure 4.2 shows peaks at frequencies νpoles corresponding to the differential 0

dν =0.09 Hz, to 
the common 0

c1ν =0.91 Hz  and 0
c2ν =1.26 Hz, and to their combinations with 2νs, namely 

2νs± 0
dν ,  2νs± 0

c1ν  and  2νs± 0
c2ν . Two zeros of the transfer function are also evident, the first 

located in between 0
dν  e 0

c1ν  and the second in between 0
c1ν  and 0

c2ν . 
The relative displacement resulting from the application of a differential force acting at 
frequency ν, for the rotor spinning at frequency νs=2.5Hz is displayed in figure 4.3. In the 

νd νc1 

νc2 



Chapter 4: Dynamical Response of the GGG Differential Accelerometer. 

 82

case of differential input forces instead, no zeros are present in the transfer function, and only 
the mode at frequencies 0

dν =0.09 Hz is significantly excited while that at 2νs± 0
dν  has 

vanishing weight. The ν→0Hz value of the relative displacement turns out to be in perfect 
agreement with equation (4.32). 

 
Figure 4.3: Differential mode relative displacement as function of frequency  ν in Hz (non-rotating frame). It is 
numerically evaluated for the rotor  spinning at νs=2.5 Hz. TD=12.5s. The other parameters are typical of the 
instrument and they are listed in tables 3.1 and 3.2. Vertical axis:20log10(∆xdif  /(Fx /m) ) expressed in c.g.s. units. 

The inverse rejection factor resulting from equations (4.30) and (4.31) is displayed in figure 
4.4 as function of frequency ν in Hz.  

 
Figure 4.4: Numerically evaluated inverse rejection function 1/χ(ν) vs.  frequency in the x (top) and y (bottom) 
directions of the non-rotating  frame for the rotor spinning at νs=2.5Hz. The other system parameters are the 
same as in figure 4.2 and 4.3. 
 

νd 
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Even though the external forces (common and differential) have been applied along x 
direction in the non-rotating frame, finite differential displacements occur also along y, due to 
the dissipative nature of the suspensions (the quality factor Q is finite; on this argument see 
section 1.7). For this reason, the spectrum along the y direction shows an additional peak at 
the differential mode frequency. However, the magnitude of both the common and differential 
y displacements are very small, depressed by a factor Q with respect to those along x direction 
(their ratio remaining of the same order of magnitude as that in the x direction). 
 

4.8.C: COMMON MODE REJECTION OF LOW FREQUENCY FORCES. 
 
We have thus varied one at a time each of the system parameters according to equation (4.77) 
and keeping TD fixed. Figure 4.5 displays the behaviour of the static value of 

( )01 1 0Hzχ = χ ν =  after changing either one of the following quantities: the balancing 
arm length L, the mass mλ of the suspended cylinders, the elastic constant k of the central 
laminar suspension and its length $ , and finally the anisotropy Λ.  

 
Figure 4.5: Numerically evaluated inverse static rejection 1/χ0 as a function of various system parameters. From 
top to bottom vs. L, mλ, k, $ and the anisotropy Λ. Solid line: non-spinning rotor. Points: rotor spinning at 
νs=2.5Hz. The parameters are changed one at a time from the values reported in the tables 3.1 and 3.2. 
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In each panel we report the results for the non-spinning rotor (solid lines from equation 
(4.43)) and for the rotor spinning at 2.5Hz (points), namely in the low and high frequency 
region. Negligible differences are seen between the results obtained in the two cases. This 
means that equation (4.43)  represents the rejection factor in regime of low (0Hz < νS <νd/2) 
and high (νS >νc2/2) spin frequencies. This is explained by noticing that in the low and high 
spin frequency range the flat and the 2νs linear branches of the normal modes are to a very 
good extent decoupled (see section 3.9), and the linear branch is less excited than the 
corresponding flat one because of energy reasons. We have verified this statement by 
performing a spectral analysis of the weights of the linear branch modes in the data available 
from the experiment. This conclusion is not valid in the intermediate frequency regime, where 
the flat and linear modes are coupled and both are expected to give a significant contribution, 
as it will be shown in section 4.9. We can now collect all the results discussed so far to 
quantify the validity of equation (4.43). The bisecting solid line in figure 4.6 refers to the 
numerically evaluated 1/χ 0 in the case of a non-spinning rotor with isotropic central 
suspension (Λ=1), which coincides with equation (4.43). This result hold also in the case of 
the non-isotropic rotor spinning at both low and high frequencies. Circles refer to the case of a 
rotor with isotropic central suspension spinning at very low frequency. For high spin 
frequencies, the inverse rejection of the non-isotropic spinning rotor is still proportional to the 
scaling parameter (4.43), through a coefficient that deviates from unity as shown by the 
triangles in figure 4.6. The amount of the deviation depends on Λ, as displayed in the bottom 
panel of figure 4.5. 

 
Figure 4.6: Numerically evaluated results for the inverse static rejection 1/χ0 as a function of the scaling 
parameter mgL/(k 2$ ), showing perfect agreement with (4.43) in the low and high spin frequency regime. Solid 
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line: isotropic (Λ=1) non-spinning rotor, that is numerically seen to coincide with the case of isotropic spinning 
rotor at both low and high frequency. Symbols: non-isotropic rotor (Λ=2.58) spinning with low (circles) and high 
(triangles) frequencies. The dashed line is a guide for the eye. The system parameters in figure 4.3, 4.4 and 4.5 
correspond to mgL/(k 2$ )=745.   

 

4.9: INTERMEDIATE SPIN FREQUENCIES REGIME. 
 
We turn now to evaluate the inverse rejection function 1/χ(ν)  for intermediate values of the 
spin frequency νd/2< νS <νc2/2. We have repeated the same calculations as those displayed in 
figure 4.4 in the whole range of increasing spin frequencies νS from 0Hz to 5Hz, picking the 
ν=0Hz value of  1/χ0. The resulting ( )S S01 1 0Hzν νχ = χ ν =  is reported in figure 4.7, where 
the best performance of the instrument is predicted at the values 0

s d0.36Hz>  ν ν% and 
0

s d0.6Hz>  ν ν% for the current set of system parameters. With these parameters, values of 
1/χ0 as high as 106 are computed.  

 
Figure  4.7:  The  static  

S01 νχ  as  a   function  of  the  spin  frequency  (numerically evaluated).  The  system  

parameters are reported in table 3.1 and 3.2. The numbered arrows indicate crossing points and minima (see text) 
and correspond to those in figure 4.8.   

The difference between the νs→0 (1/χ 0→ 745) and the νs→∞ (1/χ 0→ 360) values of  
1/χ 0 is due to the anisotropy of the central suspension, as already remarked from figure 4.6. 
We have run the same system of figure 4.7 but with isotropic elastic constants, and have 
numerically verified that 1/χ 0(νs=0Hz) = 1/χ 0(νs→∞) =745, the positions of the peaks 
being slightly changed according to the corresponding change in the differential period.  
The enhanced rejection behaviour at intermediate spin frequencies is related to the 
dependence of the zeros and of the poles of the transfer matrix on νs, as explained below.  In 
section 3.10 (see figure 3.5) we have demonstrated that the poles change with the spin 
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frequency showing the two branches behaviour, namely two flat branches pole
0± ν  and two 

branches increasing with 2νs, pole pole
0

s s( ) 2ν ν = ± ν + ν . As for the poles of the transfer 
function, also the values of the zeros change in the same manner, namely 0

zero± ν  and 
0

zero s zero s( ) 2ν ν = ± ν + ν . 

 
Figure 4.8: Absolute value of the zeros (dashed lines) of the transfer function H(s) vs.  the spin frequency. The 
flat branches correspond to the differential frequencies ± δνdν  splitted by the anisotropy. For νs within the 
shaded areas, the response is dominated by the zeros of the transfer function H(s), and the relative distance due 
to common mode forces is strongly suppressed.  

This is evidenced in figure 4.8 where the absolute values ν zero  of the zeros and ν pole  of 
the poles are displayed by dashed and solid lines. The flat branches in figure 4.8, represented 
by the solid horizontal lines, correspond to the poles at the differential frequencies, that are 
splitted because of the anisotropy. The zeros branches, represented by dashed lines, are 
characterized by minima indicated by the points 1 and 5 which correspond to the maxima of 
the function  S01 νχ  in figure 4.7. As consequence, the best performances against the 
rejection of common mode external disturbances  such as tidal   forces  and   seismic  noise  
are  obtained   when  zero s( ) 0Hzν ν = ,  i.e.  when  the following condition is satisfied: 

0
s zero / 2ν = ν  (4.44) 

In general, if zero s d( )ν ν < ν  (i.e. when 0
zero s zero s d( ) 2ν ν = − ν + ν < ν ) the value of the 

inverse of the rejection factor S01 νχ  is increased with respect to its value for the non-
spinning rotor 1/χ0 (i.e. S0 01 1νχ > χ ). We see that there are range of spin frequencies for 
which zero s d( )ν ν < ν . This occurs within the shaded region of frequencies indicated in 
figure 4.8, whose width is easily evaluated to be precisely νd

10.  

                                                 
10 νd is also the peak�s width (about 10-1 Hz ÷ 10-2Hz) 
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For example, when the system spins at frequency sν = ν , its natural frequencies are found by 
the intersections (a, b, c, d,�) between  the vertical red line in figure 4.8 and the branches 

0
zero s zero s( ) 2ν ν = ± ν + ν  and pole pole

0
s s( ) 2ν ν = ± ν + ν .  The mode labelled as �a� 

corresponds to a zero of the transfer function. Instead, �b�, �c� and �d� are poles. In this case 
zero s d( )ν ν < ν  (i.e. a<b, c, d), the low frequency rotor response is dominated by the position 

of the zero labelled as �a�, and thus the value of comx ( 0Hz)∆ ν→  is strongly suppressed. We 
have found 10 com x20 log ( x /(F / m)) 190∆ ≈ −  (c.g.s. unit) at νs=0.36Hz. For comparison, we 
notice that in the case displayed in figures 4.2 and 4.3 we have instead  zero s d( )ν ν > ν  and a 
pole dominated response with larger common mode displacements 

10 com x20 log ( x /(F / m)) 120∆ ≈ −  (c.g.s. unit).  The zeros minima are shifted from the minima 
of the poles branch, that are located at the points 3 and 6. At the points 2 and 4, the zeros 
branch with 0

zero s zero s( ) 2ν ν = − ν + ν  crosses the poles� branch with pole pole
0

s s( ) 2ν ν = − ν + ν . 
To make the correspondence clear, we have reported in figure 4.7  the same points 1-5 
marked in figure 4.8. We thus see that the peaks of  S01 νχ  correspond to the minima 1 and 5 
of the zeros branches, the valleys of S01 νχ to the minima 3 and 6 of the poles branches, and 
finally the saddle points of S01 νχ  to the crossings 2 and 4 between zeros and poles branches. 
The fundamental question thus arises how we can move the location of the peaks in figure 4.7 
to enhance the rejection behaviour at larger supercritical values of νs, as it is needed for best 
modulation of the signal in the GGG rotor. We face this question in the next section. 
 

4.10: ENHANCED COMMON MODE REJECTION. 
 
We have so far shown that away from the regime of intermediate spin frequencies, the scaling 
parameter (4.43) precisely describes the rejection behaviour of the GGG rotor, the differential 
period being adjusted for every set of parameters after varying ∆L. We have then introduced 
the tuning of the spin frequency in the intermediate regime, as a way to obtain enhanced 
rejection in a non-trivial manner. We now need one more independent knob to move the 
rejection function�s peaks towards higher spin frequencies, where the GGG rotor is normally 
operated. One could think of varying the scaling parameter in the intermediate frequency 
range. However, as shown in figure 4.9, this amounts to move the νs/Hz →0 and the νs/Hz 
→∞ values of  S01 νχ , according to 4.6, while leaving the position of the peaks unaffected. 
On the other hand, we can still vary the remaining free parameters L1,2 while keeping 
mgL/(k 2$ ) fixed. Figure 4.10 shows that increasing values of L1 have indeed the effect of 
increasing the separation between the peaks of S01 νχ . All the cases displayed in figure 4.10 
refer to a realistic rotor. In particular, in the four panels mgL/(k 2$ )=370, with k=105 dyne/cm, 
L=19cm, $ =1cm, m=10kg and L1 varying from 2.5 to 15 cm. For the top panel with 
L1=15cm, the inverse static rejection function displays a peak at νs=1.12Hz, that becomes as 
high as 1/χ 0 =1.5⋅105. 
 

4.11: MOMENT OF INERTIA AND SELF-CENTRING OF ROTORS. 
 
In chapter 1 we have studied the dynamical behaviour of the Jeffcott rotor (un-damped 
(section 1.2), damped (section 1.3), coupled (section 1.7) and non-isotropic (sections 1.10 and 
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1.11)). In all the models the rotor was assumed to be a point mass. Actually, the moments of 
inertia of the cylinders in the GGG apparatus can influence its dynamic behaviour, in 
particular the self-centring mechanism and the equilibrium position in the rotating frame. 
Hence, before proceeding with the evaluation of the equilibrium position in the GGG rotor, 
we introduce a simplified model  which allows an understanding of the most important 
phenomena connected to the non-null value of the moment of inertia. 

 
Figure 4.9: Inverse static rejection S01 νχ as a function of the spin frequency. Curves with  increasing 
thickness refer to increasing values of the scaling parameter (4.43) mgL/(k 2$ )=370, 745 and 2070, while 
keeping L1=4.5cm fixed. Note that variations of the parameter leave the position of the peaks unaffected.  

We consider only one spinning cylinder (see figure 4.11) with mass m, moments of inertia IΞ 
and Iϒ ((M,Ξ,Π,ϒ) is the reference system fixed with the body. Its axes coincide with the 
principal axes of inertia of the cylinder. M is the body�s centre of mass. Clearly, it is IΠ=IΞ). 
We conveniently write all the vectors in the (O,ξ,η,z) rotating reference frame. The centre of 
mass M of the cylinder is suspended at distance L from  the point K by means of a cardanic 
suspension with non-isotropic elastic constant (kξ= k, kη=Λk) and length $ . There is an offset 
ε!  along the ξ direction.  We study the dynamical behaviour of this simple rotor in appendix 
4.B by following the steps in appendix 3.A [37]. The problem can be studied by using only 
two generalized coordinates. We have chosen as generalized coordinates the two angles ϑ′  
and φ′ shown in figure 4.11. ϑ′  is the angle between the KM arm and the vertical axis z and it 
runs in the interval [0, π];  φ′ is the angle from the ξ axis to the projection of the arm KM on 
the ξ-η plane of the rotating reference frame (O,ξ,η,z) and runs in the interval [0, 2π]. The 
vector r!  starts from the origin O and points to the centre of mass M of the body. We 
introduce the effective length 2 2L =L +I /m-2I / mΞ ϒ′ 11 which takes into account the extended 
                                                 
11 Only if 2

L +I /m >2I /mΞ ϒ  (as in the case of GGG) L′ can be defined. 
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nature of  the suspended body (L′=L for a point-like mass). After  some  manipulations  (see  
appendix  4.B),  in  the  limit  of  small  oscillations,  the equilibrium angles are obtained: 

0 2 2
n s

ε 1
L (L / L) (ω /ω )

′ϑ =
′ −

∓  (4.45) 

(with 2 2 2
nω g/L k /(mL )= + $  the natural frequency of oscillation for the system in figure 4.11 

in the case of a non spinning point-like body, i.e. ωs=0rad/s, IΞ=Iϒ=0 kg⋅m2) and with 
0 ' 0 ( )φ = π in the case of the upper (lower) sign in equation (4.45), respectively.   

 
Figure 4.10: Inverse static rejection S01 νχ as a function of the spin frequency at different values of L1 and the 
scaling parameter (4.43) fixed as 370. From bottom to top: L1=2.5cm, 4.5cm, 9cm and 15cm. Note the increasing 
separation between the peaks, leading to enhanced rejection under supercritical rotation, i.e. νs=1.12Hz. 

 
Figure 4.11: Sketch of the rotor. M is the centre of mass of the cylinder. KM is a rigid arm. ε! is the eccentricity.  
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Note that the equilibrium position is in the ξ direction, namely in the direction of the offset ε.  
The cylinder�s centre of mass is eventually located at the distance: 

( )
2
s

0 2 2 2 2
s n

ω∆ ε L =ε 1
ω L /L -ω

 
 ξ ± ϑ −
 ′
 

∼  (4.46) 

In the case of an extended body (L′≠L), equation (4.46) can be written as: 

 

2
2 2
s n

2
2 2
s n

L 1 ω ω
L

∆ =ε
Lω ω
L

  ′  − −   
    ξ  

′  −    

 (4.47) 

The displacement ∆ξ(ωs) has two zeros (only if L′>L) : 

z
s n2 2

Lω
L L

= ± ω
′ −

 (4.48) 

and two poles: 
p
s nω L / L′= ± ω  (4.49) 

In the case L′=L (point-like mass), equation (4.46) is equivalent to (1.8). In particular, 
equation (1.8) shows that, in supercritical rotation (ωs>ωn),  the distance ∆ξ decreases 
monotonically for increasing values of the spin speed while the system is resonant at 
frequency ωs=ωn. We can then obtain the constant ∆ξ=ε value from this equation in the limit 
of small spin frequencies (ωs<<ωn). In the case L′≠L, the position of the poles (4.49) is shifted 
with respect to the point-like case ( p

s nω =ω ); the shift is dictated by the difference between L 
and L′. Below the frequency (4.49), the equilibrium is reached at distance ∆ξ=ε, i.e. the 
values of ∆ξ coincide for both cases (i.e L′=L and L′≠L) to the same constant. Above 
resonance in supercritical rotation, the behaviour of the extended body is remarkably different 
from that of the point-like mass. The ∆ξ has a minimum related to the presence of the zeros 
(4.48) in equation (4.47); the position of this minimum evidently shifts towards higher 
frequencies as long as L′→L. In the limit ωs>>ωn, equation (4.47) yields 

2 2 2 2 2
n
2 2 2
s

ω L L L Lε ε ε
ω L L

′ ′− −∆ξ − +
′ ′

∼ ∼  (4.50) 

that explains how the cylinder�s equilibrium position ∆ξ tends to a constant for increasing 
values of the spin speed. Instead, in the limit ωs→∞, the point at distance 2L L / L′=' from the 
suspension point has the best self-centring with ∆ξ=0. We can consider a more complex 
system with 2 offsets ε and ε2 as shown in figure 4.12. The presence of the second offset does 
not affect very much the behaviour of the rotor as can be argued from figure 4.13 where the 
self-centring capability ∆ξ is reported as  a  function of the spin frequency, in the cases of  a 
cylinder and of a point-like mass. 
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Figure 4.12: Sketch of the rotor. G is the centre of mass of the cylinder. KM is a rigid arm. The distance between 
M and the centre of mass G is the  eccentricity 2ε =MG

((((!!
.  The projection of 2ε

!
 in the ξ−η plane forms an angle 

α with �ξ . 

 
Figure 4.13: Distance  ∆ξ  of the centre of mass from the motor axis as a function of the spin frequency, showing 
agreement with equations (4.46), (4.47) and (4.50). The self-centring case of a point-like mass (only one offset ε)  
is displayed as the red line. In the limit of small spin frequencies the values of the distance coincide for all the  
cases to the same constant, then ∆ξ  increases up to a maximum value, that is located at slightly shifted position 
for the three cases. In supercritical rotation, the behaviour of the cylindrical body is remarkably different from 
that of the point-like mass. In the limit of high spin frequencies, the cylinder�s equilibrium position has a 
minimum and then tends to a constant value, while for the point-like mass it decreases monotonically. 

4.12: SELF-CENTRING IN THE GGG ROTOR. 
 
We have then introduced a second offset 2ε

!  in the mathematical model of the GGG rotor (see 
figure 4.14). 2ε

!  and ε!  are not parallel, i.e. 2ε
!  is not aligned with the ξ axis. We have 

numerically evaluated the equilibrium position for the rotor as a function of the spin speed.  
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Figure 4.14: Minimal model for the instrument drawn in figure 2.1 in presence of 2 offsets ε!  and 1ε
!

(in violet). 
The various parts are drawn with the colours and the labels corresponding to figure 2.1. The relevant dimensions 
La, L1 and L2 are indicated. MO is the motor. ST is the suspension tube. The arm with mass ma and length 
2L+∆L is suspended at its midpoint MP. Bodies are coupled by means of 3 suspensions LS.  

Numerical results are plotted in figures (4.15) and (4.16). Figure 4.15 shows the equilibrium 
position (non-dimensional distance of the centre of mass of the inner cylinder  from  the spin  
axis)  as  a  function  of  the  spin  speed. Three  peaks are present, at frequencies νd, νc1 and 
νc2.  Thus, the same peak/minimum structure as in figure 4.13 occurs for the natural modes of 
the two hollow cylinders composing the GGG rotor. As a result, the ∆ξ of the GGG cylinders 
in the limit of very low and very high spin frequencies has the same cylinder�s behaviour 
displayed in figure 4.13. Figure 4.16 shows the non-dimensional relative distance (∆ξrel/ε) 
between the test cylinders as a function of the spin speed in correspondence of the equilibrium 
position shown in figure 4.15. Three peaks are present, at frequencies νd, νc1 and νc2. There 
are also two zeros at frequencies νzero (i.e. ∆ξrel/ε→0 for νs→νzero); we have checked that the 
zeros in the relative distance ∆ξrel/ε are the same as the zeros in the transfer function 
∆xcom/Fcom (see equation (4.28) and figure 4.2). Instead, in section 4.9 (see figures 4.7 and 4.8) 
we have shown that the best performances against common mode external disturbances  are 
obtained when s zero / 2ν ν∼ , i.e when the condition (4.44) is satisfied. Figure 4.16 shows that 
the relative distance ∆ξrel between the test cylinders for the rotor spinning at frequency 
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s zero / 2ν ν∼  is about 7⋅10−1ε, i.e. it is not as good as the level of self-centring required by the 
target of an EP test at the level of ηηηη=10-13. This problem can be solved by considering that the 
horizontality of the plane on which the motor is mounted can be regulated by means of 3 high 
resolution DC actuators (see figure 7.4, sections 2.8 and 7.2 for details on the actuators and 
their accommodation). If this plane forms an angle ϑ ref  with the horizontal plane, the central 
suspension does not exert a restoring force towards the local vertical; instead, the restoring 
force is directed towards the non perfectly vertical motor axis. This fact can be used to 
improve the level of self-centring, hence the performances of the apparatus. The output of the 
read-out electronics in the rotating frame is the driving signal which can be used to adjust the 
angle ϑ ref  in order to obtain a better level of self-centring at frequency s zero / 2ν ν∼ . 
Numerical results are shown in figure 4.17 (ϑ ref=1.05⋅10-4rad). This figure shows the presence 
of a new zero in correspondence of the spin frequency s zero / 2ν ν∼ . It is very important to 
note that the position of the original zeros is slightly affected by the correction of the angle 
ϑ ref. As a consequence, best performances against common mode forces and best levels of 
self-centring can be obtained at the same spin frequency s zero / 2ν ν∼ . 

 
Figure 4.15: Non-dimensional distance of the centre of mass of the inner cylinder from the motor axis as a 
function of the spin frequency showing agreement with the simple system in figure 4.12.  

 

4.13: CONCLUDING REMARKS. 
 
Figures 4.7, 4.8 and 4.17 represent central results of this chapter, as they show the way to 
perform a controlled tailoring of the rejection capability of GGG.  This can be done by tuning 
νs, L1 and the governing parameters combined in mgL/(k 2$ ). In the experiment, the most 
convenient way is to first fix  mgL/(k 2$ ) and L1 in such a way that  the values of the zero and  
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the pole at higher frequencies (for the non spinning system) are increased.  

 
Figure 4.16: Non-dimensional relative displacement between the test cylinders at the equilibrium as a function of 
the spin speed. 3 peaks are present, at frequencies νd, νc1 and νc2. Two zeros are also present.  

 
Figure 4.17: Non dimensional relative displacement between the test cylinders at the equilibrium as a function of 
the spin speed. An additional zero is obtained when ϑ ref ≠0rad. It is possible to regulate ϑ ref  in order to have the 
zero at frequency s zero / 2ν ν∼ . 
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We can then tune  νs to bring the zero below the differential frequency (i.e. 
0 0
zero s d2− ν + ν < ν , see section 4.9) as depicted in figure 4.8. This can be done in a highly 

controlled way (i.e. when s zero / 2ν ν∼ ), allowing to place the system in correspondence to 
one of the peaks of S01 νχ (see figure 4.7). By regulating the inclination (ϑ ref ≠0) of the plane 
on which the motor is mounted it is possible to obtain a level of self-centring as good as we 
need at the spin frequency s zero / 2ν ν∼  (see figure 4.17). 
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CHAPTER 5:  

EXPERIMENTAL RESULTS ON WHIRL MOTION  AND  QUALITY 

FACTOR. 

5.1: INTRODUCTION. 
 
In charter 1, we have seen that supercritical rotors tend to rotate about their centre of mass 
instead of their geometrical centre (equations (1.10), (1.11), (1.63) and figures 1.3 and 1.14). 
We have also seen that they develop whirling motions (equations (1.8) and (1.65)); in 
particular, in presence of rotating damping, forward whirl are unstable (self excited) and their 
amplitude grows in time with exponential law (figure 1.9, equations (1.21) and (1.23)). Whirl 
is due to losses in the suspensions (the higher the quality factor, the slower the growth rate) 
and needs to be damped (1.23), but it can be separated from data to recover the equilibrium 
position. 
In this chapter we report the results obtained during several months of operation (in particular 
May 2002) of the rotating differential accelerometer. These results concern the growth rate of 
whirl motion and the quality factor of the system. Measurements are performed in the rotating 
frame (sections 5.2 and 5.3); after coordinate transformation to the non-rotating reference 
frame, whirl forward and backward can be extracted and compared with a theoretical model 
(sections 5.4, 5.5 and 5.6).  
Quality factors at the natural frequencies can be measured for the whole system, at zero spin 
rate, by exciting oscillations at this frequencies and measuring the decay in the oscillation 
amplitude (sections 5.7, 5.8 and 5.9); these results are also collected in [34] (this article is 
available in Appendix_Articles). 
 

5.2: THE MEASUREMENT DATA. 
 
The relative displacements of the test cylinders in the ξ and η directions1 of the plane 
perpendicular to the spin axis are read by two capacitance bridges, rotating with the system 
(see section 2.5 for details).  From now on, the symbol Φξ will be used to refer to data 
acquired by the capacitance bridge sensitive along ξ direction in the rotating frame, and Φη 

will be used to refer to data acquired by the bridge sensitive along η direction. 32 data per 
spin period are acquired by the electronics (for each channel). The sampling frequency is 
then: 

νC=32νS (5.1)  

and the sampling period 

TC=1/(32νS) (5.2) 

                                                 
1 Rotating reference frame: (O,ξ,η,z). Inertial Frame= Non-rotating frame: (O,x,y,z). 
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Suppose that Φξ (n) equals the time sample of the continuous time process Φξ (t) (the relative 
displacement between the test cylinders along ξ axis as a function of time):  

Φξ=[Φξ (1), Φξ (2), Φξ (3),�, Φξ (n),�] (5.3) 

where Φξ(n) is n-th data sampled. In figure 5.1, the signal acquired on 15 May 2002 at 2:29 
P.M. is shown (the system was spinning at frequency νS=1.9Hz; active and passive dampers 
were disconnected). This set of data will be analysed in the following sections. 

 
Figure 5.1: The signal acquired on 15 May 2002 (at 2:29 P.M.). Black: Φξ.  Red: Φη. Spin frequency: 
νS=1.9019Hz. 

The process Φξ can be seen as the superimposition of a deterministic signal (which we want to 
recover) and random noise. By applying the Fourier filter described in appendix 5.A ([50 � 
52]), it is transformed into the process Rξ (Rξ(n) is a discrete time process sampled at 
frequency  1/(8TC)=νC/8 in the rotating frame; the noise is partly reduced by the Fourier 
filter). In the same manner, Rη is the signal obtained starting from the process Φη acquired by 
the capacitance bridge sensitive along η direction after applying the same filter. In figure 5.2 
the  FFT of the reconstructed Rξ signal, sampled at frequency νC/8, is shown as a function of 
frequency (the FFT of Rη is similar and it is not shown). 
 

5.3: THEORETICAL MODEL OF THE WHIRL. 
 
Rξ and Rη are discrete time signals representing the relative displacements of the test 
cylinders along the ξ and η axis of the rotating reference frame. They have been extracted 
from the original sampled data Φξ and Φη, after applying the Fourier filter.  By performing a 
coordinate transformation to the inertial non-rotating reference frame, the discrete time 
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signals in the laboratory frame are obtained, namely e
nrX  and e

nrY   (from now on, the label �e� 
refers to the experimental data and �t� refers to the expected theoretical signal). In figure 5.3 
we show the FFT of the signal e

nrX  in the non-rotating (laboratory)  reference  frame.  In  this  
run  the  residual  low frequency noise was about 10-7m and it was due to the electronics 
noise2. In section  1.7 we have shown that the whirling motion is the superimposition of a 
circular forward whirl (i.e. occurring in the same direction of the spin speed)  which is self-
excited, and a circular backward whirl motion which is damped (see equation 1.65). In section 
1.11, then, we have seen that in the case of a non-isotropic rotor the frequencies of forward 
and backward whirl are slightly different (1.100). 

 
Figure 5.2: FFT of the discrete time signal Rξ  in the rotating reference frame. Top panel: the magnitude of the 
signal as a function of frequency.  In particular, it is possible to recognize  three high peaks: the peak at the spin 
frequency νs= 1.9 Hz, the peak corresponding to the forward whirling (at frequency lower than νs , about 1.8Hz), 
and the peak corresponding to the backward whirl (at frequency higher than νs , about 2Hz). Bottom panel: the 
phase of the signal as a function of the frequency.  

We thus expect the whirl motion in the non-rotating reference frame to be written in the form: 

1 2

1 2

t t t
nr nr1 nr2
t
nr

t t
nr1 nr2

t / t /
1 1 1 2 2 2

t / t /
1 1 1 2 2 2

X A cos( t )e A cos( t )e X X
Y A cos( t / 2)e A cos( t / 2)e

Y Y

− τ τ

− τ τ







= ω + ϕ + ω + ϕ = +

= ω + ϕ +π + ω +ϕ −π
= +

(5.4) 

                                                 
2 The maximum allowable displacement between the test masses is ≈10mm. It is acquired by the electronics 
described in chapter 2 (16 bit ). Hence, there is the correspondence 1bit → 10mm/215≈3µm. When the read-out is 
operated in �high gain scale�, it is about 20 times more sensitive; unfortunately, this is only a recent 
improvement of the apparatus, and the measurements reported in this chapter refer to the previous version (less 
sensitive) of the read-out. 
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where ω1 is the angular velocity of the backward whirl with amplitude decreasing in time and 
ω2 the angular speed of the self excited, forward whirl. The labels 1 and 2 refer to the 
backward and forward whirl parameters. 

 
Figure 5.3:FFT of the signal in the laboratory frame (X component). Two peaks are present, at frequencies 
slightly different, i.e. 0.086Hz and 0.093Hz.  

The theoretical signals along x and y axis of the laboratory frame are out of phase from each 
other by 90°. They are continuous time function of the temporal variable t.  By analysing the 
theoretical signals  t

nrX   and t
nrY , we  want  to develop  a procedure  to  extract  the forward  

and  backward  whirl motions from data. From (5.4), it follows: 

1 2

1 2

t t t
nr nr1 nr2
t t t
nr nr1 nr2

t / t /
1 1 1 2 2 2

t / t /
1 1 1 2 2 2

X A cos( t )e A cos( t )e X X
Y A sin( t )e A sin( t )e Y Y

− τ τ

− τ τ

 =


=

= ω + ϕ + ω +ϕ +

= − ω +ϕ + ω +ϕ +
 (5.5) 

Given the signals t
nr1X , t

nr2X , t
nr1Y , t

nr2Y  in (5.5), their Fourier transforms ( )ℑ ω are: 

( ){ }t
nr1

t 1
nr1 1 1X 2 2 2

1 1 1

1 jX ( )=A  
1 2 j

+ ωτ→ ℑ ω τ
 + τ ω −ω + ωτ 

 (5.6) 

( ){ }t
nr1

t 2
nr1 1 1 1Y 2 2 2

1 1 1

1Y ( )=-A  
1 2 j

→ ℑ ω ω τ
 + τ ω −ω + ωτ 

 (5.7) 

( ){ }t
nr2

t 2
nr2 2 2X 2 2 2

2 2 2

j 1X  ( )=A  
1 2j

ωτ −→ ℑ ω τ
 + τ ω −ω − ωτ 

 (5.8) 
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( ){ }t
nr2

t 2
nr2 2 2 2Y 2 2 2

2 2 2

1Y  ( )=A  
1 2j

→ ℑ ω ω τ
 + τ ω −ω − ωτ 

 (5.9) 

Clearly, the Fourier Transform of  t
nrX  and t

nrY  (5.5) is obtained in the following manner: 

( ) ( ) ( )t t t
nr nr1 nr2X X Xℑ ω = ℑ ω + ℑ ω  (5.10) 

( ) ( ) ( )t t t
nr nr1 nr2Y Y Yℑ ω = ℑ ω + ℑ ω  (5.11) 

Let us now introduce the functions σ+ and σ−, defined (in the frequency domain) as: 

( )t t
nr nr

C C CX Y
1( ) ( ) j ( ) / 2; 2
2+σ ω = ℑ ω + ℑ ω ω<ω ω = πν  (5.12.a) 

( )t t
nr nr

CX Y
1( ) ( ) j ( ) / 2
2+σ ω = ℑ ω − ℑ ω ω>ω  (5.12.b) 

( )t t
nr nr

CX Y
1( ) ( ) j ( ) / 2
2−σ ω = ℑ ω − ℑ ω ω<ω  (5.12.c) 

( )t t
nr nr

CX Y
1( ) ( ) j ( ) / 2
2−σ ω = ℑ ω + ℑ ω ω>ω  (5.12.d) 

In appendix 5.B we demonstrate that the Fourier Transform σ+ contains only the spectral line 
corresponding to the forward whirling motion (i.e. a peak at frequency ω2), while the Fourier 
transform σ- contains only the line corresponding to the backward whirling motion at 
frequency ω1. By performing the inverse Fourier transform of σ+, the resulting signal is, in 
essence, the forward whirling motion. Instead, starting from σ-  the backward whirl is 
obtained.    
 

5.4: BACKWARD AND FORWARD WHIRLS IN THE EXPERIMENT. 
 
Having a suitable physical theory of the line formation, the backward and forward whirling 
motions can be read off from the experimental data e

nrX  and e
nrY . As said before, they are 

discrete time signals acquired  at the rate of 1/(8TC) samples per second and their discrete 
Fourier transforms are called ( )nrX kℑ 3 and ( )nrY kℑ . Note that e

nrX  and e
nrY  are 4N 

components vectors4. Hence, their discrete Fourier transforms have 4N spectral components.  
Note that although the sequences e

nrX  and e
nrY  are real,  ( )nrX kℑ  and ( )nrY kℑ  are complex. 

The first component of the transformed data ( )nrX 1ℑ  ( ( )nrY 1ℑ ) is the constant contribution 
proportional to the mean value of e

nrX ( e
nrY )  and the ( )nrX 2N 1ℑ + ∈ !  element corresponds 

to the Nyquist frequency5. The (2N+1+k)-th component corresponds to the complex conjugate 

                                                 
3 The measurements are performed for N=1400 spin periods, the total integration time is 
Ttot=32NTC=2660s>>TC. The smaller frequency component which can be identified in the frequency domain is 
then: min tot C2 / T 2 /(32NT ) 2 0.000376Hzω = π = π = π⋅ . The Fourier transform ( )ℑ ω is computed only at 
discrete values of ω, namely: min(k) (k 1)ω = − ω for k=1,2,�,2N.  
4 The original vector X has 32N components while Xnr has 32N/8 components.  
5 Nyquist frequency: νC/2. 
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of the (2N+1-k)-th component in the first half of ( )nrX kℑ , i.e. 
( ) ( )( )nr nrX X2N 1 k 2N 1 k ∗ℑ + + = ℑ + − . The whirl frequencies ω1 and ω2 are not known �a 

priori�, but they are obtained by searching for the peaks in  ( )nrX kℑ  and ( )nrY kℑ . Their 
values are listed in tables 5.1 and 5.2. 

Multiple of ωmin 
k 

Frequency  
[Hz]        

Xnr : Magnitude  
[µm]      

Xnr : Phase 
[Degrees] 

226 0.085007 18.27 -75.8 

227 0.085383 41.27 -73.3 

228 0.085759 65.92 158.7 

229 0.086135 19.62 127.2 

230 0.086511 11.48 134.8 

Table 5.1:  Frequency components of nrX (k)ℑ .  Backward whirl occurs at frequency ω1=2π⋅0.085759rad/sec 
(i.e. k=228). Magnitude value is intermediate between the initial and final value of the oscillation�s amplitude. 

Multiple of ωmin 
k 

Frequency 
[Hz] 

Xnr : Magnitude 
[µm] 

Xnr : Phase 
[Degrees] 

246 0.09253 22.05 -151.5 

247 0.092906 41.28 -124.4 

248 0.093282 124.33 -28.9 

249 0.093658 22.24 16.8 

250 0.094034 14.15 27.9 

Table 5.2:  Frequency components of  nrX (k)ℑ . Forward whirl occurs at frequency ω2=2π⋅0.093282rad/sec (i.e. 
k=248). 

To proceed further, we have to introduce the new vector (k)Ψ , which helps us to construct 
the vectors σ+(k) and σ−(k) defined in section 5.3 (equations (5.12.a), (5.12.b), (5.12.c) and 
(5.12.d)). Its components are obtained from nrY (k)ℑ as follows: 

nrY(1) (1)Ψ = ℑ  (5.13.a) 

nrY(2 : 2N) j (2 : 2N)Ψ = ℑ  (5.13.b) 

nrY(2N 1) (2N 1)Ψ + = ℑ +  (5.13.c) 

nrY(2N 2 : 4N) j (2N 2 : 4N)Ψ + = − ℑ +  (5.13.d) 

(k)Ψ is a complex vector, and its inverse Fourier transform is real. By combining the 
definitions (5.12) and (5.13), it readily follows: 

( )nrX(k) (k) (k) / 2+σ = ℑ + Ψ  (5.14) 

( )nrX(k) (k) (k) / 2−σ = ℑ −Ψ     (5.15) 

In figure 5.4 σ+(k) (5.14) is plotted as a function of the frequency ν(k).  



Chapter 5: Experimental Results on Whirl Motion and Quality Factor. 

 102

 
Figure 5.4: σ+ as a function of the frequency. The strong peak at the frequency  0.093Hz (forward whirl) is 
easily recognized.  The peak at the frequency 0.086 Hz has disappeared.  

Figure 5.5 shows the σ−(k) function as defined by (5.15).  

 
Figure 5.5: σ− as a function of the frequency.  The strong peak at the frequency  0.086Hz (backward whirl) is 
easily recognized. The peak at the frequency 0.093 Hz has disappeared. 

νννν2 

νννν1 
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As expected (see (5.B.9) and (5.B.16) in appendix 5.B), σ-(k) has only a peak at frequency ω1 
corresponding to a backward whirl and σ+(k) a peak at frequency ω2 corresponding to a 
forward whirl. Hence, backward and forward whirls have been separated. The frequency 
components of σ−(k) and σ+(k) are listed in tables 5.3 and 5.4. 

Multiple of ωmin 
k 

Frequency 
[Hz] 

σ+: Magnitude 
[µm] 

σ+: Phase 
[Degrees] 

227 0.085383 40.92 -70.8 
228 0.085759 64.16 158.0 
229 0.086135 19.13 122.4 

Table 5.3:  Frequency Components of σ+. 

Multiple of ωmin 
K 

Frequency  
[Hz]        

σ-: Magnitude  
[µm]      

σ-: Phase  
[Degrees] 

247 0.092906 42.40 -122.1 
248 0.093282 126.50 -28.9 
249 0.093658 22.88 14.1 

Table 5.4:  Frequency Components of σ−.   

By performing the inverse discrete Fourier transform of σ+ (5.14), the forward whirl Wf(t) is 
obtained as a function of time. In the same manner, the backward whirl Wb(t) is obtained by 
performing the inverse discrete Fourier transform of σ- (5.15). In figure 5.6, the discrete time 
function Wf(t) is plotted as a function of time. Its  amplitude grows with exponential law.  

 
Figure 5.6: The discrete time function Wf(t) is plotted as a function of time. Its amplitude grows in time with 
exponential law. 

In figure 5.7, instead, the discrete signal Wb(t) is plotted.  
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Figure 5.7: The discrete time function Wb(t) is plotted as a function of time. Its amplitude decreases in time with 
exponential law. 

Clearly, this is a backward whirl with decreasing amplitude. The relative displacements of the 
test cylinders in the horizontal (non-rotating) plane of the laboratory (polar plot e

nrY  vs. e
nrX ) 

with accelerometer spinning at 1.9Hz (counter-clockwise) is shown in figure 5.8. 

 
Figure 5.8: The  relative displacements of the test cylinders in  the horizontal (non-rotating)  x-y  plane of  the 
laboratory (polar plot e

nrX  vs. e
nrY ) with accelerometer spinning at 1.9Hz  (counter-clockwise). The black circle 

represents the starting point. The cylinders perform essentially a backward whirl motion (clockwise).  
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The black circle represents the starting point. During the first 150 seconds of the run lasting 
2600 seconds, the cylinders perform essentially a backward whirl motion (clockwise, as 
indicated by the arrow), showing the possibility of backward whirling to be excited by 
unbalances in presence of a non-isotropic rotor  accelerating from 0 Hz to the supercritical 
range  (on  the same argument see section 1.10). 
It is useful to stress that the backward whirl is stable and its amplitude decreases in time, 
while the forward one is unstable, with increasing amplitude. As a consequence, at first they 
combine in a way that the resulting motion is backward, then the forward motion becomes 
dominant. There is an intermediate interval of time during which the resulting motion is 
linear6. In figure 5.9 the linear motion is depicted in red. After this intermediate interval, the 
dominant motion is a forward whirl with increasing amplitude (see figure 5.10) while the 
backward whirl tends to vanish. In the end, the motion is almost circular. 

 
Figure 5.9: Polar plot (in the non-rotating frame) of the relative displacements between the two test cylinders. 
The intermediate interval of time during which the resulting motion is linear is shown (red). 
 

5.5: BEST FIT OF THE WHIRL MOTION. 
 
The first aim of our analysis amounts to find the time constant of the free forward whirling. 
The signal Wf(k) (obtained from σ+) has been fitted to the theoretical signal: 

2t /
2 2 2 2fit _ Wf (t) A cos( t )e kτ= ω +ϕ +  (5.16) 

We evaluate the parameters A2, ϕ2, τ2, k2 by minimizing [ ]24N
i 1 Wf (t(i)) fit _ Wf (t(i))= −∑ . In 

figure 5.11 the forward whirl obtained from the experimental data Wf(t) (blue curve) is 
compared with the fitting curve (5.16) (red curve). 
                                                 
6 Linear means that there is an harmonic vibration along one direction. 
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Figure 5.10: Polar plot (non-rotating frame) of the displacements  between  the 2  test cylinders. At the end, the 
bodies perform a forward whirling motion (almost circular). 

 

 
Figure 5.11: Forward whirl  Wf(t) (blue) compared with the fitting curve (red). 
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Figure 5.12:  Enlargement of figure 5.11 showing in detail a small interval of time. Blue: Experimental data in 
the non-rotating frame. Red: Fitting curve. 

Figure 5.12 is an enlargement of figure 5.11 and shows in detail a small interval of time. In  
figure  5.13  the discrete  Fourier transform  σ+(k)  (5.14)  of   Wf(t) (blue) is  compared with 
the FFT of the theoretical signal fit_Wf(t) (red). 

 
Figure 5.13:  Blue curve: σ+  as a function of frequency. Red curve: FFT of (5.37). 
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Then, in figure 5.14, the residue is plotted as a function of  time. 

 
Figure 5.14: The residue Wf(t) - fit_WF(t) is plotted as a function of  time.  

The backward  whirling motion  Wb(t) has been fitted in a similar manner. Outputs of the data 
analysis are the time constants of the forward (τ2 = 1703.4s) and backward (τ1 = 1861.9 s) 
whirling motion. The time constant scales as the quality factor of the system, namely: 

w w w / 2= −ω τQ  (5.17) 

where ωw is the whirling frequency (i.e. ωw=ω1 or ωw=ω2). By inserting the whirling 
frequencies ω1, ω2 and the outputs of our analysis τ1 and τ2 in (5.38), the Qw values are easily 
obtained, i.e  Q1=-501 and  Q2=-499.  
 

5.6: GENERAL CONSIDERATIONS ON THE QUALITY FACTOR OF  THE GGG 
SYSTEM. 

 
The results represented in section 5.6 (i.e. Q1=-501 and  Q2=-499) refer to the apparatus which 
has been operated in May 2002. These values are lower than we had expected indicating that 
big losses take place in the system once in supercritical rotation.  
In the following sections we will show some results obtained from measurements performed 
during the last three years (2001-2003) which are related to this problem, showing the 
dependence of the quality factor Q from the pressure inside the vacuum chamber and from the 
oscillation amplitude and frequency. 
By these Q measurements at different pressures (for free oscillations at zero spin rate) it was 
possible to establish that residual air in between the test cylinders gives rise to dissipation 
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only above 10-4mbar. Hence, if the system is operated at sufficiently low pressure, the losses 
depend on the laminar suspensions only.   
We have also checked  that the value of Q increases with decreasing oscillation amplitude of 
the non-spinning rotor. In the same way, the quality factor at the natural frequencies has been 
measured at zero spin rate, by exciting oscillations at these frequencies and measuring the 
decay in the free oscillation amplitude. We have thus checked that the value of Q increases 
with the frequency (losses are smaller at higher frequency) reaching very high values (about 
93000) at 1.4Hz. 
Though the measurements for the non-spinning rotor clearly show that it is possible to 
manufacture high quality cardanic suspensions of rather complex shape, the measurements 
performed with the spinning rotor have identified an important issue which requires attention. 
In spite of the high Q values measured at zero rate and low pressure (due to the suspensions 
only), the growth rate of whirl once in supercritical rotation is indeed much faster than 
expected by high Q, indicating that, during rotation, much bigger losses take place in the 
system beside the ones in the suspensions.  
A source of rotating damping (the kind of damping which is known to produce whirl 
instability) may be due to the rubber O-ring (OR in figure 2.1) used to transmit rotation from 
the motor (in its offset location) to the rotating suspension tube ST (the O-ring is the unique 
part of the apparatus which undergoes deformations only when the system rotates and does 
not contribute to the energy dissipation at zero spin rate). We have performed some tests 
which confirm our prediction. This problem can be solved by eliminating the O-ring 
altogether, i.e. by locating the motor on the spin axis. Other possible causes of spurious losses 
are under investigation in order to obtain the values measured in absence of rotation. 
 

5.7: Q MEASUREMENTS AT ZERO SPIN RATE. 
 
In section 5.3, we have described the procedure developed to extract whirling parameters (in 
particular the quality factor) from experimental data. This section, instead, is devoted to the 
description of the procedure for measuring the quality factors at natural frequencies for the 
system at zero spin rate (free oscillations7): 
 

- Pressure inside the vacuum chamber lower than 5⋅10-5 mbar 
- At first, the oscillation amplitude is actively damped. 
- Oscillations at the natural frequencies are, then, excited by an external electrical force 

generated by the plates used for the active control of whirling motions (see section 2.6 
and chapter 6). For example, in the case described below, this exciting force was 
applied along the x direction. 

- After having switched off the exciting force, the amplitude decay is measured as a 
function of time. For these measurements we use the capacitance sensors placed near 
the outside surface of the outer mass (typically devoted to the active control of 
whirling motion). In fact, the electronics of the main sensors, which provides best 
sensitivity to differential oscillations, is essentially insensitive to common mode 

                                                 
7 From now on, �free oscillations� and  �free system� mean �at zero spin rate� , i.e. they refer to the system 
operated at zero spin rate (νS=0Hz). 
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oscillation. These data are acquired by National Instrument card, mounted onboard a  
computer.  

 
The quality factors are obtained from the raw data of the capacitance bridges by the procedure 
described below (for demonstration purposes, we will describe this procedure by applying it 
to the signal acquired on 9 April 2003 at 16:45). The FFT of the raw signal (displacements 
along x direction in the non-rotating reference frame) is shown in figure 5.16. The system was 
operated in a configuration slightly different from the one described in chapters 3 and 4 (with 
natural frequencies νd=0.09 Hz, νc1=0.91Hz and νc2=1.26Hz), which was operated during 
2002. In particular the length L1 had been increased in order to obtain an higher common 
mode frequency νc2, i.e. 1.4160 Hz and ∆L had been regulated to obtain 20 seconds of 
differential period. As a consequence, the three natural modes in figure 5.16 have frequencies 
νd=0.0553 Hz, νc1=0.891Hz and νc2=1.4160 Hz.  

 
Figure 5.15: FFT of the signal acquired on 9 April 2003 at 16:45. Free oscillations.  

We can perform a peak detection on the signal by fitting it to the function (5.18) in the time 
domain: 

i i i i
i=d,1,2

X(t)= A exp(-t/τ )cos(ω t+ )ϕ∑  (5.18) 

Outputs are the parameters to be used for the fit, i.e. the amplitudes, the time constants and the 
phases. By inserting the time constants in equation (5.17), the resulting quality factors of the 
GGG accelerometer at the natural frequencies (at zero spin rate) are obtained. The  FFT of the 

ννννc1
ννννc2

ννννd 
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original signal (red), the FFT of the fitting function (blue) and the FFT of the residue (original 
signal minus the function in (5.18)) are shown in figure 5.16. 

 
Figure 5.16: The FFT of the original signal (red), the FFT of the fitting function (blue) and the FFT of the 
residue (original signal minus function (5.18) in black).  

 
Figure 5.17: Enlargement of figure 5.16. Q measurement at the natural frequency ν2=1.416Hz. 
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We have to evaluate the background level of the noise: in figure 5.17 an enlargement of  
figure 5.16 is plotted; it is possible to see that the value of the residue at the frequency 
νc2=1.416Hz is about 10-4 Volt/√Hz which is the level of the noise fluctuations in the card 
used for data acquisition (figure 5.18). Obviously, the Q values obtained by fitting 
experimental data to the function (5.18) are in agreement with the values evaluated by 
considering the standard definition of the quality factor, i.e. Q=ω/∆ω. 

 
Figure 5.18: Background level of noise in the card used for data acquisition.  

The growth rate of whirls is determined by losses in the system (see equation (1.80) in section 
1.9), essentially in the mechanical suspensions. We have stressed the fact (see sections 1.5 
and 1.7) that in supercritical rotation mechanical suspensions are known to undergo 
deformation (and therefore to dissipate energy) at the high spin frequency and not at the lower 
whirling frequency. This fact is confirmed by figure 5.2, where the FFT of the ξ component of 
the relative displacement between the two test cylinders in the rotating frame is shown as a 
function of the frequency; 3 high peaks are recognized: the peak at the spin frequency νs= 1.9 
Hz, the peak corresponding to the forward whirling at about 1.8Hz, and the peak 
corresponding to the backward whirl at about 2Hz. This means that, in the rotating frame and 
in highly supercritical rotation, whirling motions grow at the frequencies νs±νw, hence, energy 
dissipations occur at these high frequencies. As a consequence, in figure 5.16  the relevant Q 
is that measured at the high frequency νc2=1.4Hz (93000) and not that measured at the low 
frequency νd=0.05Hz (580).  
By performing Q measurements at different pressures it was possible to prove that residual air 
in between the cylinders gives rise to dissipation. Losses due to air friction decrease with 
pressure until they remain constant and no longer depend on it below 10-4 mbar. Figure 5.19 
shows the Log10-Log10 plot of the 1/Q value of the natural differential oscillations (almost 8 s 
period during 2001), at zero spin rate, as function of the residual air pressure in the chamber 
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with linear best fits to the two sets of data, above and below 10-4mbar. Each point refers to a 
separate run. For pressures greater than about 10-4mbar the value of Q decreases as pressure 
increases. For lower pressures the value of Q reaches about 1590 and is then independent by 
pressure since it is the maximum value allowed by losses in the laminar suspensions. Figure 
5.19 indicates that, as long as the system is operated at sufficiently low pressure, losses 
depend on the laminar suspension only. 

 
Figure 5.19: Log10 plot of 1/Q of the natural differential oscillations (8s period), at zero spin rate, as function of 
the pressure in the vacuum chamber with linear best fits to the two sets of data, above and below 10-4mbar. Each 
point refers to a separate run.  

Figure 5.20 shows, then, the value of Q, at νS=0Hz, as a function of the oscillation amplitude.  

 
Figure 5.20: Plot of Q as a function of the oscillations amplitude (measured at the start of the run). Each point 
refers to a separate run. These data have been acquired in September 2002.  
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For amplitudes greater than about 100µm the value of Q is almost constant. For lower 
amplitudes the value of Q increases as initial amplitude decreases. 
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CHAPTER 6:  

ACTIVE LINEAR CONTROL OF THE WHIRL MOTIONS. 

6.1: INTRODUCTION. 
 
In supercritical rotors losses  at the spin frequency are relevant for the growth of whirl 
motions that such rotors develop in the non-rotating system ([1 �3], [7 � 8]). For instance, the 
centres of mass of the GGG test cylinders develop an orbital motion in the horizontal plane 
(i.e. x-y plane) of the laboratory around their position of relative equilibrium (see (1.65)). 
Whirl motion grows in amplitude at a rate which depends on the quality factor Q of the 
system at the spin frequency (the time constant scales as Q, i.e. w s1/ 1/ ( )τ ∝ νQ ) .  
The rotating part of the dissipative force RotR

!
 is to be ascribed to the deformations of the 

laminar suspension and, in supercritical rotation, it may act to destabilize the system. Rotating 
damping RotR

!
 has been introduced by means of equations (3.21), (3.22) and (3.23) as a 

generalized force. It can be expressed as: 

Rot Ra a a R a a
1,2

� � � � � �� �R (Q,Q) (L (L z )z ) (L (L r (Q))r (Q))λ λ λ
λ=

′ ′= −Γ − ⋅ − Γ − ⋅∑" " " ""  (6.1) 

where the velocities a
� �L ,Lλ
" " coincide with (3.7), (3.8) and (3.9). The non-rotating damping has 

instead the function of stabilizing the system in supercritical rotations. In our accelerometer, 
non-rotating damping is introduced in two different ways. A passive damper is used  when the 
rotor is accelerated to pass the resonance frequencies and acts only on the inner mass as 
discussed in section 2.6. It can be written as 

NR NR i s iR (Q,Q) (v (Q,Q) r (Q))= −Γ + ω ×! !!" "  (6.2) 

When the rotor spins at its nominal frequency, whirls are controlled actively by means of 
capacitance  sensors/actuators (see figures 2.10 and 6.1; see appendix G for the schemes of 
the electronics). Control forces act only on the outer test mass and are included in the 
mathematical model as depicted by equation (4.1).  
In sections 6.2 and 6.3, simulations have been performed to study the capabilities of the 
controller to reduce the whirl motions. The electronics needed for the active control of whirl 
motions have been partially constructed and tested: experimental results are shown in section 
6.4 and have been reported in [34] too (this article is available in Appendix_Articles).  
 

6.2 THE B MATRIX. 
 
This section is devoted to the implementation of the active damping in the mathematical 
model developed in chapters 3 and 4. We want to write the equations of motion in the state 
form (4.1). 



Chapter 6: GGG - Active Linear Control of Whirl Motions. 

 116

 
Figure 6.1: Section through the spin axis of the outer test cylinder (blue). 8 capacitance plates are placed near the 
outside surface of the outer cylinder (only four plates are shown in the picture). They are fixed with the vacuum 
chamber (i.e. fixed in the non-rotating frame). One half of them is used as sensors: measurements of the 
displacement of the outer test mass are used to build a damping command proportional to its velocity. The other 
half is used as actuators: a voltage (in the range 0Volt-360Volt) is applied to produce an active force which 
simulates the non-rotating damping. The x (y) component of the active force is proportional to the x (y) 
component of the whirling velocity. 

While matrix A is not changed in comparison with chapter 4, matrix B changes according to 
the different definition of the vector u! . Now, inputs are the components of the control force 
in the ξ−η plane of the rotating reference frame, i.e. 

Rot
C,
Rot
C,

Fu
u= =

u F
ξ1

2 η

  
  
    

!
 (6.3) 

Matrix Bg (6×2-components; see equation (4.20)) transforms the 2-components input vector 
u!  into its 6-components counterpart gF

!
(the label �g� means generalized force), i.e. 

gg BF [ ]u=
! ! . Its components a re given by equation (6.4). 

2, j
i j

ij ,
g

r
F u

q=ξ η

∂
= ⋅

∂∑
!

!
 (6.4) 

Starting from equation (6.4) matrix Bg is easily obtained and it results: 
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2, 2,

a a

2, 2,

2 2

g
2, 2,

a a

2, 2,

2 2

r r

r r

0 0
B

r r

r r

0 0

ξ η

ξ η

ξ η

ξ η

∂ ∂ 
 ∂ϑ ∂ϑ 
 ∂ ∂
 ∂ϑ ∂ϑ 
 

=  
∂ ∂ 
 ∂φ ∂φ 
∂ ∂ 
 ∂φ ∂φ 
  

 (6.5) 

The B matrix is numerically evaluated from matrix Bg by means of equations (4.22.a), 
(4.22.b) and (4.22.c). The C matrix is changed according to the different definition of the 
vector y! : 

Rot
2,1
Rot

2 2,

∆ry
y= =

y ∆r
ξ

η

  
  
    

!
 (6.6) 

where Rot
2r (t)∆! is defined in equation (4.14). Combining equations (4.2), (4.14) and (6.6), we 

obtain the coefficients of the new C matrix: 

( ) 0 0
1,1 1 7C L L cos(x )cos(x )= − + ∆   (6.7.a)  

0 0
1,3 2 3 9C L cos(x )cos(x )=  (6.7.b) 

( ) 0 0
1,7 7 1 7C L L x sin(x )sin(x )= + ∆  (6.7.c) 

0 0
1,9 2 9 3 9C L x sin(x )sin(x )= −  (6.7.d) 

( ) 0 0
2,1 1 7C L L cos(x )sin(x )= − + ∆  (6.7.e) 

0 0
2,3 2 3 9C L cos(x )sin(x )=  (6.7.f) 

( ) 0 0
2,7 7 1 7C L L x sin(x )cos(x )= − + ∆  (6.7.g) 

0 0
2,9 2 9 3 9C L x sin(x )cos(x )=  (6.7.h) 

while all the coefficients not listed above are equal to zero ( 0x! indicates the equilibrium 
position (4.7)). 
 

6.3 WHIRL DAMPING AND SIMULATION OF THE CONTROL SCHEME. 
 
The State-Space block in figure 6.2 implements a system whose behaviour is defined by 
equations (4.1), where x!  is the state vector, u!  the input vector, and y!  the output vector. The 
matrix coefficients must have the characteristics illustrated in section 4.1. The block accepts 
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one input and generates one output. The input vector has 2 components, determined by the 
number of columns in the B and D matrices. The output vector has 2 components too, 
representing the displacement of the outer cylinder from the equilibrium position in the ξ−η 
plane in the rotating reference system. 

 
Figure 6.2: The State � Space Block in Simulink. 

The stabilization of whirl motion can be implemented by building in a non-rotating frame a 
damping command proportional to the velocities between the two test bodies.  The total block 
diagram of the damping command is illustrated in figure 6.3.  

 
Figure 6.3: Total block diagram of the damping command. 

The output vector y!  of the State-Space Block is the input of the Block �From Rotating to 
Non-Rotating Reference�. This block is illustrated in figure 6.4. It transforms the vector y!   
into  the  vector  NRy!  whose  components  are the  displacements  of  the outer cylinder in the 
laboratory frame. The rotation matrix R is given by equation: 

s s

s s

cos( t) sin( t)
R

sin( t) cos( t)
ω − ω 

=  ω ω 
 (6.8)  

 
Figure 6.4: �From Rotating to Non-Rotating Reference� block. The output vector NRy!  is a 2 dimensions vector. 
It represents the displacement of the outer cylinder in the x-y plane in the non-rotating reference system.  

In the model we assume using non-perfect sensors, so we introduce reasonable errors in the 
block �Noise� (see figure 6.5) as follows:  
-) RMS of the readout capacitors 10-2µm 
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-) bias of the readout capacitors 10µm 
We have introduced 2 other kinds of �errors� too: 
-) constant offset in the rotating frame ε=20µm 
-) initial amplitude of the whirl motion >100µm. 

 
Figure 6.5: �Noise� block. The �Noise Generator� block generates normally distributed random numbers. The 
sequence produced has a mean of 0 and a variance of 1. Any �Noise Generator� block uses different seed and 
parameters to produce a different sequence of numbers (in this way, noise n1 affecting the signal of channel x is 
uncorrelated to the one (n2) of channel y). These numbers are then multiplied by the factor �RMS�.  

The heart of this block is represented by the �Noise Generator� block. This block generates 
normally distributed random numbers. The sequence produced has a mean of 0 and a variance 
of 1. Then, these numbers are multiplied by the factor �RMS� and are added to a fixed bias. 
Any �noise Generator� block uses different seed and parameters to produce different 
sequence of numbers. In this way noise n1 affecting the signal xNR is uncorrelated with noise 
n2 affecting the signal yNR. Noise n1 is added to the first component of vector yNR and 
generates the signal y1NR which simulates the output of the sensors in the non-rotating frame. 
In the same way n2 is added to the second component of vector yNR to produce the signal 
y2NR. y1NR is the input of  �Channel 1� block which is illustrated in figure 6.6. The 
displacement is converted in a voltage signal  by the �Volt/m� block. A 2-nd order 
Butterworth band-pass filter pre-forms the signal in order to cut DC components (i.e. 
frequencies lower than 10-2Hz)  and high frequencies (i.e. frequencies higher than 3Hz). 3 
different Digital Pass-band Filters select the spectral components of the signal at frequencies 
νd,νc1, and  νc2. 

 
Figure 6.6: �Channel 1� block. The displacement is converted in a voltage signal  by the �Volt/m� block; this is 
the signal measured by the capacitance sensors (red dot). An Analog Pass-band Filter pre-forms the signal in 
order to cut DC components (i.e. frequencies lower than 10-2Hz)  and high frequencies (i.e. frequencies higher 
than 3Hz). 3 different Digital Pass-band Filters select the spectral components of the signal at frequencies νd,νc1, 
and  νc2. Then the whirl velocity is calculated and a control force proportional to it is generated.  
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Figure 6.7 shows the content of �Pass Band Filter: Differential Mode� block1. The �Zero-
Order Hold� block implements a sample-and-hold function operating at the specified 
sampling rate (10 Hz). The block accepts one input and generates one output, both of which 
are scalar. This block provides a mechanism for discretizing the input signal. Its  output  is  a  
discrete  sample  time  data  sequence  which  is  filtered  by  the �Digital Filter Differential 
Mode� block. 

 
Figure 6.7: �Pass Band Filter: Differential Mode� block. The �Zero-Order Hold� block provides a mechanism 
for discretizing the input signal. The � Digital Filter Differential Mode� block filters a discrete sample time data 
sequence.  

The �Digital Filter Differential Mode� block returns a band-pass  filter  with  pass-band  0.05 
Hz < ν < 0.15 Hz. The  �Velocity  �  Diff. Mode� block is introduced to compute the whirl 
velocity.  Whirl motion can be described  by the vector: 

( )wt /
w w w wr r e cos( t),sin( t)τ= ω ω!

 (6.9) 

If the quality factor Q is very high (i.e. Q>>1), the time constant τw is very long when 
compared with the whirl period Tw, namely τw>> Tw. Whirl velocity is obtained by means of 
analytical evaluation of the derivative of (6.9): 

( )wt /
w w w w w w w w w wr r e cos( t) sin( t),sin( t) cos( t)τ= ω τ − ω ω ω τ + ω ω!"  (6.10) 

Since τw>> Tw, 1/τw << ωw and the first term in (6.10) can be neglected: 

( )wt /
w w w w wr r e sin( t),cos( t)τω − ω ω!" ∼  (6.11) 

By observing that w w wsin( (t T / 4)) cos( t)ω − = − ω  and  w w wcos( (t T / 4)) sin( t)ω − = ω , (6.11) 
can be written as: 

w w w wr r (t T / 4)−ω −! !" ∼  (6.12) 

Hence, whirl velocity is obtained by delaying the relative displacement (6.9) by Tw/4. This 
technique is implemented in  �Velocity � Diff. Mode� block. Figure 6.8 shows the content of 
this block. 

 
Figure 6.8: �Velocity � Diff. Mode� block. The Transport Delay block delays the input by a specified amount of 
time. It can be used to simulate a time delay. 

The Transport Delay block delays the input by Tw/4 and it is used to reconstruct the whirl 
velocity. Two pairs of capacitance plates faced on the outer test cylinder are used as actuators. 
If vx is the x component of whirl velocity (converted in an voltage signal) in the non-rotating 
reference frame, a voltage V+=V0 + αvx (α<0 is a pure gain; V0=180Volt is a constant voltage 

                                                 
1 �Pass Band Filter: Common Mode 1�  and �Pass Band Filter: Common Mode 2�  blocks are equivalent. 
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applied to the 4 plates) is applied to the plate placed along the x axis in the direction of 
positive x while a voltage V-=180Volt-αvx is applied to the plate in the direction of negative 
x. The resulting force is: 

2 2
0

Cx 0 0 0 x2 2 2
1 V 1 V 2 SF S S V v
2 2d d d

+ − ε= ε − ε = α  (6.13) 

where S is the plate�s surface, d the clearance between the plates and the outer surface of the 
test cylinder and ε0 the permittivity of vacuum. Equation (6.13) shows that the active control 
force is proportional to the whirl velocity (but with opposite sign). This control command is 
implemented in �Control Force� block which is illustrated in figure 6.9. The Saturation block 
imposes upper and lower bounds on the signal. When the input voltage (V+ or V-) is within 
the range specified by the Lower  limit  (0 Volt) and Upper limit (+360  Volt) parameters, it 
passes through unchanged. 

 
Figure 6.9: �Control Force� block. The output is a force proportional to the whirl velocity (with opposite sign). 
The Saturation block imposes upper and lower bounds on the voltage. When the input voltage is within the range 
specified by the Lower limit (0 Volt) and Upper limit (+360 Volt) parameters, it passes through unchanged. 
When the input voltage is outside these bounds, it is clipped to the upper or lower bound. 

When the input voltage is outside these bounds, the voltage is clipped to the upper or lower 
bound. The �From Non-Rotating to Rotating Reference� block in figure 6.3 is introduced in 
order to perform a transformation from the non-rotating to the rotating reference frame.  In 
this way, the control force cF

!
 (in the laboratory frame) is converted into the vector u! (equation 

(6.3)) in the ξ−η plane of the rotating reference frame.  This is the feedback control force used 
as input of the �State � Space� block. 
Figures 6.9  and  6.10  show  the  results  of  the  simulations.  Time  evolution  of  the relative 
distance  between  the two test bodies is reported in figure 6.9 showing that the amplitude of 
the oscillation at whirl frequency can be reduced in a few minutes.  
Figure 6.11 shows a polar plot of the relative motion of the test cylinders with respect to the 
equilibrium position. The orbit depicted is a logarithmic spiral with a decreasing radius and 
indicates that the scheme proposed is effective even in presence of a big initial whirl radius 
(note that, even if the control forces are proportional to the velocity of the centre of mass of 
the outer cylinder, the relative displacement between the two test cylinders is also reduced). 
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Figure 6.10: Time evolution of the relative distance between the two test bodies. 

 

 
Figure 6.11: Polar plot of the relative distance between the test cylinders. Red cross: starting point. 
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6.4 EXPERIMENTAL RESULTS. 
 
In this section we report the results obtained during laboratory tests of operation of the 
rotating differential accelerometer GGG. Pressure in the chamber was low enough to rule out 
any dissipation due to residual air (see figure 5.21). We have performed runs with the 
accelerometer spinning at a few Hz and only active damper applied. The control scheme is the 
one described in section 6.3, with two important differences: since  the Digital Filters (see 
figure 6.7) were not constructed yet, only the analog band-pass filter has been used. It has 
been regulated in order to cut frequencies lower than 10-2Hz and higher than 0.3Hz. Hence, 
only differential modes have been actively controlled. Figure 6.12 shows the rapid decay 
(over a few hundred seconds) of the whirl oscillations� amplitude in the non-rotating frame. 

 
Figure 6.12: The decay of the whirl oscillations� amplitude. Red line refers to the x component of the relative 
displacement. Blue line to the y component. 

A polar plot of this signal is illustrated in figure 6.13. The circle is the starting point, hence 
the motion is forward, i.e. it occurs in the same direction (anticlockwise) as the spin speed. 
Thanks to the control applied, oscillation�s amplitude rapidly decreases  and the rotor is stable 
in supercritical rotation. The whirl radius has been reduced from a few hundred µm (see 
figure 6.12) to about 0.1µm (see FFT plot of figures 6.14 and 6.15). Since only differential 
modes have been actively controlled, small peaks at frequencies corresponding to common 
modes are still present. Note that the level of 0.1µm of residual forward whirling at 0.08 Hz is 
connected to the presence of this peaks at higher frequencies. In fact, the upper edge 
frequency of the analog pass-band filter is 0.3Hz. As a consequence, the attenuation factor of 
signals at frequency 0

c1ν =0.9Hz is about 1/10 and the attenuation factor at frequency 
0
c2ν =1.4Hz is about 1/20. If the whirling motions amplitude (at the differential frequency) is 

higher than about 1µm, the output of the analog pass-band filter can be represented as the 
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superimposition of a forward whirl (with radius higher than 1µm) plus small perturbations at 
higher frequencies (for example, the amplitude of the natural mode at frequency  0

c1ν  is 
reduced by the filter from 2µm to 0.2µm); hence the control force has the right �shape� to 
reduce forward whirls. When the amplitude (at the differential frequency) becomes small 
enough (about 0.1µm), the output of the pass-band filter is the superimposition of many terms 
with almost the same amplitude, and the actuators are not able to reduce the whirling radius 
further on.   

 
Figure 6.13: Polar plot of forward  whirl motion. The circle is the starting point.  

 
Figure 6.14: FFT of the relative displacement of the test cylinders in x direction of the horizontal plane in the 
non-rotating system. The relevant whirl at the natural frequency of 0.08Hz has been reduced to about 0.1µm. 
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Figure 6.15: FFT of the relative displacement of the test cylinders in y direction of the horizontal plane in the 
non-rotating reference system. The relevant whirl at the natural frequency of 0.08 Hz has been reduced to about 
0.1µm.  

Another example of controlled signal is shown in figure 6.16. In this case the starting radius 
was very big (about 1mm), but the controller was able to reduce it  in less than 5 minutes. 

 
Figure 6.16: Polar plot of forward  whirl motion.  The circle is the starting point. The whirl motion has been 
damped even though the initial radius was very large. 
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In summary, theoretical analyses demonstrate that the whirl control problem of the complete 
GGG system can be solved. Measurements of the relative displacements of the test cylinders 
confirm, after coordinate transformation to the non-rotating reference system, a controlled 
whirl motion at a differential frequency of 0.08Hz at the level of 0.1µm. In order to detect the 
effect of  a low frequency differential force (such as in the case of a 24hr EP violation signal 
in the field of the Sun), the corresponding displacement between the centers of mass should 
be separated out from the whirl and also emerge from the residual low frequency noise, 
mostly seismic noise.  
An example of recover of an applied signal at frequency below whirl frequency is shown in 
figure 6.17, where a signal applied at 0.01Hz in the y direction of the non-rotating reference 
frame is recovered from the output data though about 100 times smaller than the whirl  at 
about 0.1Hz. This example indicates that recovery is possible even though the applied force 
produces a displacement much smaller than the whirl radius (not damped), hence, in order to 
measure an EP violation signal at the level of  10-13m it is not necessary to reduce the whirling 
radius  with the same accuracy. 

 
Figure 6.17: A signal applied at 0.01Hz in the Y direction of the non-rotating reference system is recovered from 
the output data though about 100 times smaller than the whirl at about 0.1 Hz (system spinning at 2Hz). 
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CHAPTER 7: 

ACTIVE REDUCTION OF SEISMIC NOISE. 
 

7.1: MEASURED ENVIRONMENTAL DISTURBANCES. 
 
After a brief overview of the daily tilts measurements performed during about two years, we 
devote this chapter to the study of an active linear control able to increase the tilt rejection of 
the accelerometer in the measurement bandwidth. Sections 7.2 is devoted to the study of the 
open-loop scheme, with no feedback control. The frequency response of the accelerometer is 
evaluated (numerically and analytically).  
Then we consider a common type of feedback which in the process industries is called 
proportional integral control [44 – 49], which improves steady-state properties. Figure 7.1 
shows the variation of the horizontal plane (in direction East – West) in the laboratory 
measured with an ISA accelerometer (see section 2.8) [41 – 42] during the period February 
2001- June 2002.  

 
Figure 7.1: Variation of the horizontal plane measured in the laboratory. 

Figure 7.2 shows the correspondent temperature variation in the laboratory. The frequency 
components of the measured tilts is shown in figure 7.3. We have plotted the absolute value of 
the FFT of the signal in figure 7.1 (divided by the product T⋅νC/2; T is the integration time, νC 
the sampling frequency) to stress the fact that the peak at frequency 1.16⋅10-5Hz can not be 
treated as noise and can not be reduced by increasing the integration time.  



Chapter 7: Active Reduction of Seismic Noise. 

 128

Above 10-8 Hz, the magnitude decreases at the rate of 20 dB/decade, i.e. ϑd can be 
approximated as a function of frequency in the form: 

 d ( ) rad Hzαϑ ν = µ
ν

 (7.1) 

where α=5⋅10-3. An example of asymptotic behaviour is depicted in figure 7.3. Two peaks are 
present at frequencies ν24h=1.16⋅10-5Hz and ν12h=2.31⋅10-5Hz. The first peak (at the lower 
frequency) is due to the daily tidal/thermal effects and represents a signal which competes 
directly with the EP violation signal. The second peak corresponds to 12hr period effects.  
We have to construct a control command in order to reduce tilts at low frequencies. The goal 
is to reduce daily seismic disturbances below the sensitivity of the tiltmeter used as sensor. 

 
Figure 7.2: Variation of the temperature measured in the laboratory. 

The angular variation of the horizontal plane shown in figure 7.1 will be introduced as 
disturbance; the capabilities of the command will be checked at the end by combining its 
transfer function with this seismic disturbance.   
 

7.2: OPEN LOOP SCHEME OF THE SYSTEM. 
 
At the start, constant reference angle ϑ ref can be regulated by means of three high resolution 
DC actuators through vertical displacements (see figure 7.4). These actuators are operated 
only at the start. ϑ1 is the angular deviation (tilt) of the horizontal plane from the initial 

                                                 
1 The procedure described in this chapter can be applied to control tilts acting in one direction (x or y). Hence, 
we need two independent control circuits (see Appendix 8.A) to control tilt in both directions.  
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position ϑ ref and it is due to seismic disturbances ϑd acting on the vacuum chamber. Low 
frequency tilts ϑ can be monitored with a tiltmeter placed inside the vacuum chamber on the 
horizontal plane on the top of the apparatus. The tiltmeter installed can detect tilts less than  
2⋅10-10 rad in  one day of integration time2. Active reduction at this level of accuracy will be 
done using as actuators three PZTs (see section 2.8). 

 
Figure 7.3: Frequency components of the measured tilt angle. Two strong peaks are present at frequencies 
ν24h=1.16⋅10-5Hz and ν12h=2.31⋅10-5Hz. The first peak (at the lower frequency) is due to the daily tidal/thermal 
effects. The second peak corresponds to 12hr period effects. The slope of the asymptotic line  is 20 dB/decade. 

Instead, in case of the open-loop scheme (no active control) the angular deviation ϑ follows 
the disturbances ϑd (ϑd is shown in figure 7.1) and the transfer function of the open-loop 
system is simply H=1.  Figure 7.5 shows open-loop block diagram.  
We are interested in evaluating the relative distance between the test bodies due to the angular 
deviation ϑ in the case of open-loop scheme: seismic disturbance ϑd shown in figures 7.1 and 
7.3 is the input, the subsequent relative distance between the test cylinders is the output. The 
DC gain of the system has been measured to be about: 

1
0K 1.2 10 m / rad−

ω= = ⋅ µ µ  (7.2) 
and the maximum relative displacement at the frequency of the EP signal is: 

2
24hx 6 10 m @ 2 /86400 rad / sec−∆ = ⋅ µ ω = π  (7.3) 

The frequency response of the accelerometer to seismic disturbances can also be numerically 
evaluated by introducing the measured noise (figures 7.1 and 7.3) as an input in the 
mathematical model developed in Matlab/Simulink. 

                                                 
2 For example, daily tides produce tilts of  10-8rad. 
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Figure 7.4: Constant reference angle ϑ ref  with respect to the frame (in blue) can be regulated by means of three 
high resolution DC actuators (“motorized screw” in violet) through vertical displacements. These actuators are 
operated only at the start. ϑ is the angular deviation of the” horizontal plane” (in grey) from the initial position 
ϑ ref and it is due to seismic disturbances ϑd acting on the vacuum chamber (blue). Low frequency tilts ϑ can be 
monitored with a tiltmeter (in red) placed on the horizontal plane on the top of the apparatus. It is aligned with 
the horizontal plane by means of micrometric screws (green). Low frequency tilts ϑ can be actively controlled by 
means of 3 PZTs (in brown). In figure the new design of the rotor with the motor located on the spin axis is 
shown.   

 

H=1 ϑ ϑref 
   + 
+ 

ϑd

 
Figure7.5: Open-loop block diagram. 
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An analytical expression for the steady state value of the output (7.2) can also be carried out 
for the non-spinning rotor. We have to evaluate the relative displacement between the two 
cylinders due to a constant angle ϑ . This result can be obtained from equations (7.4) in the 
limit of small angles and null spin frequency; U is the sum of the elastic and gravitational 
potential energy (see (3.13), (3.14) and (3.15)).  

i a 1 2
i

U 0 ; q , ,
q

∂ = = ϑ ϑ ϑ
∂

 (7.4) 

(labels a, 1 and 2 refer to the coupling arm, inner and outer test cylinder; the three generalized 
coordinates are defined as in chapter 3). This procedure leads to the equations: 

( ) ( )
2

1
a 2 22 2

2
2 2

1 2

k 3 10
k k

3k mg L
k mgL k mgL

−ϑϑ ≅ = ⋅ ϑ

− ∆ − −
+ +

!

! !
!

! !

  (7.5) 

( )2 2
1 1k k mgL /160ϑ = ϑ + ≅ ϑ! !  (7.6) 

( )2 2
2 2k k mgL /1600ϑ = ϑ + ≅ ϑ! !  (7.7) 

ϑ1 and ϑ2 are about 2-3 orders of magnitude smaller than ϑa and can be neglected, i.e. we can 
assume ϑ1=ϑ2=0. In essence, the symmetry axis of the two test cylinders remain 
approximately aligned with the vertical z. The relative displacement between the two test 
bodies is determined only by the equilibrium angle ϑa, namely ax (2L L) 12cm∆ = + ∆ ϑ ≅ ⋅ϑ . 
Starting from this result, equation (7.2) is readily obtained. Note that the angles (7.5), (7.6) 
and (7.7) do not depend on the mechanical balancing of the apparatus, hence steady state 
values of these angles do not depend on the differential natural period (2.2). 
 

7.3: PROPORTIONAL-INTEGRAL CONTROL OF SEISMIC NOISE. 
 
Feedback can be used to stabilize systems and provide disturbances rejection. Integral control, 
when combined with proportional control, improves the system behaviour at low frequencies. 
The feedback diagram studied to control seismic disturbances is depicted in figure 7.6. Low 
frequency tilts ϑ are monitored with a tiltmeter T(s). The output of the tiltmeter is combined 
with the reference angle ϑ ref and amplified by the integrators I(s), then the resulting signal is 
applied as input to the PZTs.  

ϑ ref +   _ refk  

tilt

t

k
s 1τ +

I1(s)
   + 
+ 

ϑd

ϑpzt

p

G / K
s 1τ +

P(s)

 T(s) 

1* 2*

* 1*

R (s 1)
R (s 1)

τ +
τ +

I2(s)

1 2

1

R (s 1)
R(s 1)

τ +
τ +

 
Figure 7.6: Closed-loop control block diagram. Low frequency tilts ϑ can be monitored with a tiltmeter. Its 
output is amplified by the integrators I(s), then the resulting signal is applied as input to the PZTs.   
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A typical example of integrator is shown in figure 7.7.  

 
Figure 7.7: Sketch of the Integrator. 

The first integrator unit has the transfer function ( ) ( )1 1 2 1I (s) (R / R) s 1 / s 1= τ + τ +  with τ1=R1C and 
τ2=R2C (R1=200MΩ, R2=150kΩ, R=200kΩ and C=1600nF). The gain below the break point 
ν1=1/(2πτ1) is G1=R1/R  while the gain above the second break point ν2=1/(2πτ2) is G2=R2/R. 
The slope of the curve I1(jω) in the region between the two frequencies ν1 and ν2 is –
20dB/decade. The second integrator unit has the transfer function 

( ) ( )2 1* * 2* 1*I (s) (R / R ) s 1 / s 1= τ + τ +  with τ1*=R1*C* and τ2*=R2*C* (R1*=200MΩ, R2*=221kΩ, 
R*=221kΩ and C*=20µF). The frequency response ( I(jω) = I1(jω)⋅I2(jω) )  of the two 
integrators used for the active control is shown in figure 7.8.  

 
Figure 7.8: Frequency Response of the integrator  I(jω) . Solid line: theoretical response. Circles: measurement 
data. 

The nominal transfer function  T(s) of the sensor (tiltmeter) has a first order pole 1/τt and gain 
ktilt. The pole is related to the presence of a low-pass filter inside the tiltmeter (nominal time 
constant τt =0.05seconds). Electronics converts angles into a voltage signal  in the range from 
–10V to +10 V. The DC gain has been experimentally  checked  and it results: 

4
tiltK 4 10 V / rad= ⋅  (7.8) 
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Low voltage PZTs are used as actuators. PZTs may be represented by the P(s) block.  Input 
voltage is multiplied by the gain factor G=10 by an amplifier module. The frequency response 
of the PZTs may be schematised by introducing the term 1/(τps+1). Below the break point 
1/τp≈2π⋅103Hz the magnitude curve is expected approximately constant (=1), while above the 
break point the curve’s slope is expected -20 dB per decade. 1/Kpzt converts the input voltage 
signal into an angle: 

( ) 1 7
pztK 8 10 rad / V

− −= ⋅  (7.9) 

Note that the maximum angular variation which can be compensated is ±4⋅10-5rad3. The block 
kref=5⋅104V/rad is introduced to convert the reference DC angle ϑ ref into a voltage.  
After some manipulations, the block diagram in figure 7.6 may be converted into a system 
without a component in the feedback path, usually referred to as a unity feedback system (see 
figure 7.9). 

ϑ ref +   _ 
   + 
+ 

ϑd 

ϑT(s) I(s) P(s)

 
Figure 7.9: Unity feedback system. 

We define TP(s)=T(s)⋅P(s) the total transfer function of the system piezo + tiltmeter. It is 
expected to be: 

theoretical tilt

pzt t

K 1TP (s) G
K 1 s

=
+ τ

 (7.10) 

We have experimentally checked the frequency response of the system piezo+tiltmeter and 
compared the results with the theoretical function (7.10). These results are shown in figure 
7.10: measurements data are represented by dots; the red curve is obtained from equation 
(7.10). Figure 7.10 clearly shows that the frequency response of the system is not well 
approximated by the nominal function (7.10). Instead, the blue curve is obtained from the 
fitting function (7.11): 

( )
exp TP

TP 2
TP

1 sTP (s) K
1 s

− τ=
+ τ

 (7.11) 

where KTP=0.1 and τTP=0.2 seconds. 

7.3.A: THE TRANSFER FUNCTIONS. 
 
In figure 7.3 we have shown the FFT of the seismic disturbances measured in the laboratory 
during the period February 2001- June 2002. The peak at frequency ν24h =1.16⋅10-5Hz has 
amplitude: 

24h 7
pk 5 10 rad−ϑ ⋅∼  (7.12) 

                                                 
3 Each amplifier output voltage can be set in the range 0V to 100V. A DC-offset potentiometer adds a DC bias 
+50V to the input.  
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Figure 7.10: Frequency response of the system piezo+tiltmeter. 

In 10 days of integration time, seismic noise at frequency ν24h =1.16⋅10-5Hz can be evaluated 
from equation (7.1) and turns out to be: 

24h 7
noise 6 10 rad−ϑ ⋅∼  (7.13) 

Seismic disturbances at frequency ν24h are then: 

( ) ( )2 224h 24h 24h 7
d pk noise 8 10 rad−ϑ = ϑ + ϑ ⋅∼  (7.14) 

The electrical noise affecting the sensor (tiltmeter) has been measured to be smaller than: 

3
noise _ tilt

VV 3 10
Hz

−≤ ⋅ 4 (7.15) 

or, equivalently: 

7
noise _ tilt tilt noise _ tilt

radK V 1.5 10
Hz

−ϑ = ⋅ ≤ ⋅  (7.16) 

In 10 days of integration time, the equivalent angle 24h
nϑ  at frequency ν24h due to the 

electrical noise can be easily obtained from (7.16): 
24h 10
n 2 10 rad−ϑ ⋅∼  (7.17) 

                                                 
4 3⋅10-3V/√Hz is the result from the superimposition of the electrical noise of the tiltmeter and the electrical noise 
of the data acquisition card. This measurement was largely dominated by the second noise source. 
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The transfer function from the input disturbance ϑd and the output signal ϑ is given by the 
following equation: 

exp
(s) 1H (s)
(s) 1 I(s) TP (s)ϑ

ϑ= =
ϑ + ⋅

 (7.18) 

The noise reduction factor at low frequency may be easily obtained by substituting s=0 in 
(7.18): 

5
*

TP 1 21 1
TP *

1 1H ( 0) 10
K G GR R1 K

R R

−
ϑ ω → =

⋅ ⋅
+ ⋅ ⋅

∼ ∼  (7.19) 

As a consequence low frequency disturbances can be reduced by a factor of 105.  The 
feedback control performances are conditioned by the presence of the electrical noise. The 
transfer function from the electrical noise Vnoise_tilt and the output ϑ is given by equation 
(7.20): 

TP
Vn

noise _ tilt

(s) TP(s) I(s) / KH (s)
V (s) 1 TP(s) I(s)

ϑ ⋅= =
+ ⋅

 (7.20) 

It can be readily evaluated by observing the block diagram in figure 7.11.  

ϑ ref +   _ 
    + 
+    

Vnoise_tilt

ϑd 

ϑI(s) P(s)  ( )
TP

2
TP

1
1

− τ
+ τ

   + 
+ TPK  

 
Figure 7.11: Block diagram +  electrical noise of the tiltmeter. 

Since the electrical noise Vnoise_tilt can be converted into an equivalent angle ϑn=Ktilt⋅ Vnoise_tilt, 
the transfer function from ϑn and the output ϑ is readily obtained: 

tilt
n

n TP

(s) K TP(s) I(s)H (s)
(s) K 1 TP(s) I(s)

ϑ ⋅= =
ϑ + ⋅

 (7.21) 

Even in presence of very large capacitances and resistances (for example R1=1GΩ, C=10µF), 
the break-point  frequency ν1=1/(2πτ1) is higher than ν24h; having in mind to evaluate the 
daily effect of the electrical noise, we are particularly interested in the DC gain of the closed-
loop system, i.e.: 

n tilt TPH ( 0) K K 1ω → = ∼  (7.22) 

From (7.22), it follows that low frequency electrical noise can not be attenuated by the 
feedback control; as a consequence the minimal goal of the active control is to reduce daily 
seismic disturbances 24h

dϑ  at the level of  24h 10
n 1.5 10 rad−ϑ = ⋅  (10 days of integration time).   

 

7.3.B: PRELIMINARY  EXPERIMENTAL RESULTS. 

 
A preliminary prototype of the two integrators in figure 7.6 have been realised and tested.  
Their frequency response has been shown in figure 7.8 (dots). The overall circuit is shown in 
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Appendix 8.A. The output of the tiltmeter can be acquired on a card on the PC. It is 
previously filtered and amplified in order to obtain a better signal to noise ratio (see the box 
“ACQUISITION” in the scheme in Appendix 8.A). The mean value of the output of the 
tiltmeter can be adjusted (see the box “ADJ. OFFSET”) by adding a constant voltage offset. 
This is equivalent to change the reference angle ϑ ref. Since the voltage offset can be regulated 
with great accuracy, this control permits finer adjustments of the horizontality than the 
motorized screws.  The PSD of the results is plotted (blue coloured) in figure 7.12. 
Measurement data have been collected for a total time of 85 hours.  The peak-value5 of the 
residual signal is also plotted in the same figure. 

 
Figure 7.12: PSD of the residual signal after tilt active control. Measurement data have been collected for a total 
time of 85 hours. 

 
 

                                                 
5 For the convertion between the  PSD amplitude and peak value, the following simple formulae can be used: 
 pk noise int( )[rad] ( ) 2 T [rad / Hz]ϑ ν = ϑ ν ⋅  where Tint is the integration time. 
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CHAPTER 8: 

 THE GGG EXPERIMENT- CONCLUDING REMARKS AND  

PERSPECTIVES. 

 
Experimental tests of the Equivalence Principle are of seminal relevance as probes of General 
Relativity and have been aimed at obtaining increasing levels of accuracy ever since the  
landmark experiment by Eötvös [16], which has verified the EP with an accuracy η≈10-9 with 
a torsion balance. This result has been improved to about 10-12 by Dicke et al. [17] and by 
Braginsky and Panov [18]. After more than 30 years, current ground experiments have 
improved the Braginsky results by less than one order of magnitude, as obtained by 
Adelberger and co-workers [19], comparing the accelerations towards the Sun of two samples 
with an average composition similar to those respectively of the Earth and the Moon 
( 13/ 9.3 10−∆ ×! ! "a a ).  
In a recent work by Damour, Piazza and Veneziano [23], a violation have been predicted near 
the 10-13 level.  This work is based on string theory and the existence of the dilaton  φ,  the 
scalar partner of the spin 2 graviton. A version of the cosmological dilaton-fixing and 
decoupling mechanism is studied in their work. In particular, they investigate the φ 
dependence of the various coupling functions in the effective low-energy action. If a special 
value φm (which extremizes all the coupling functions) of φ exists, the dilaton φ naturally runs 
towards φm and approximately decouples from matter. The residual dilaton couplings lead to 
equivalence-principle violations.  
The goal of ηηηη=10-13  is in principle accessible in the Galileo Galilei on the Ground experiment 
([33 – 37], [40]) and requires to detect relative displacements (24hr period) of the test 
cylinders of 10-13m. In the previous chapters we have described the general aspects of the 
GGG experiment developing a mathematical model of the apparatus and showing the more 
relevant experimental results obtained so far. 
We have  developed a mathematical model of the GGG accelerometer that embodies all the 
relevant physics (chapters 3 and 4) and we have demonstrated that the normal modes of the 
instrument can be predicted with great accuracy in good agreement with experimental results 
[36]. In figure 3.3 normal modes of the GGG rotor (both theoretical predictions and 
experimental results) are shown as a function of the spin speed.  
Three natural frequencies play a relevant role in the  dynamics of the system: the frequencies 

0
c1ν (typical value 0.91Hz)  and 0

c2ν  (typically =1.25/1.4 Hz) correspond to common modes 
(see section 3.9.c), in which the centres of mass of the two cylinders oscillate in phase.   
The frequency 0

dν  corresponds to the differential mode, where the centres of mass of the two 
test bodies oscillate in opposition of phase, one with respect to the other. Tuning of the natural 
frequency 0

dν (i.e. of the differential period Td=1/ 0
dν ) is made possible in the experiment after 

changing the mass distribution of the beam balance. The apparatus has been operated with 
natural period Td in the range from 5s to 20s. The longer is the differential period the more 
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sensitive is the accelerometer to effects acting in a different manner on the two test bodies 
(see (2.3)). Hence, we have planned to increase this period to reach the value of 80s.  
In chapter 4 we have also evaluated the rotor’s mechanical ability to reject common forces as 
compared to  those acting in a differential manner on the test bodies and we have shown how 
the features of the real instrument can be tailored for best performance in rejecting external 
disturbances such as tidal forces [37]. The static rejection function is characterized by two 
distinct behaviours, depending on the regime of spin frequencies at which the rotor is 
operated. For low and high values of νs, the dependence of the rejection function is 
quantitatively condensed in equation (4.43). In the case of intermediate values of  νs (i.e. for 
values of the spin frequency higher than the differential frequency of the rotor and lower than 
its second common mode frequency), peaks emerge in S01 νχ  (see figures 4.7 and 4.8), 
whose positions are affected by the parameters of the system (L, L1, k, k1,2, m, # ) and by the 
offsets. We can then tune  νs (i.e. s zero / 2ν ν∼ ) to place the system in correspondence to one 
of the peaks of S01 νχ obtaining values as high as 106. It is also possible to regulate the 
inclination (see figure 4.17) of the plane on which the motor is mounted to obtain a level of 
self-centring as good as it is required by the target of an EP test at the level of η=10-13.  
Hence, figures (4.7), (4.8) and (4.17) suggest to operate at intermediate frequencies where 
extremely good performances of the apparatus can be obtained. Note that intermediate 
frequencies are sufficiently high in order to obtain good frequency modulation of the signal, 
reduction of 1/f noise (at the present time this noise is lower than the resolution of the 16-bit 
electronics) and high Q values (see below about the Q measurements).  
In chapter 5 we have shown some experimental results concerning whirling motions and Q 
measurements. Whirling motions have been compared with a theoretical model showing that 
in highly supercritical rotation mechanical suspensions undergo deformations at the spin 
frequency (see figure 5.2), hence the time constant of the growth is proportional to the quality 
factor at this frequency ([10], [12 – 13]).  
After some coordinates transformation, we have separated backward and forward whirling 
motions (see figures 5.6 and 5.7) showing that backward whirls are stable, with amplitude 
decreasing in time with exponential law, while forward whirls are unstable with increasing 
amplitude. 
In chapter 5, we have also shown that it is possible to manufacture high quality cardanic 
suspensions of rather complex shape (Q=33000 @ 0.9Hz, Q=93000 @ 1.4Hz; see section 5.8) 
but we have also shown that, in spite of the high Q values measured at zero spin speed (due to 
the suspension only), the growth rate of whirl in supercritical rotation is much faster than  
expected, indicating that, during rotation, much bigger losses take place in the system beside 
the ones in the suspensions.  
The cause of these spurious losses is under investigation in order to obtain very long time 
constants and a whirl growth so slow that data taking can be performed between successive 
damping, thus avoiding any disturbance at all from active damping forces. 
A source of rotating damping may be due to the O-ring (OR in figure 2.1) used to transmit 
rotation from the motor (in its offset location) to the rotating suspension tube ST (see figure 
2.1). In the new generation of the rotor (which is under construction) we will eliminate the O-
ring altogether by locating the motor on the spin axis. 
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Our theoretical understanding of  the experimental apparatus has been applied in order to 
actively reduce whirling growth in supercritical rotation (chapter 6). The whirl radius at a 
differential frequency of 0.08Hz has been reduced from about 1mm to about 0.1 µm (see 
figure from 6.13 to 6.17). The next goal is to obtain a better active stabilization of whirl 
motions at all the natural frequencies by improving the electronics needed for the whirling 
motion control. In particular we are constructing new digital filters and the electronics for 
controlling whirling motions acting at common mode frequencies 0

c1ν  and 0
c2ν . In fact, as 

argued in section 6.4, the level of 0.1µm of residual forward whirling at 0.08 Hz is connected 
to the presence of this peaks at higher frequencies. 
We have reasons to think that the residual low frequency noise (below 10-2Hz) is connected to 
the vacuum chamber closing system, to its pump and to the 16-bit electronics used for data 
acquisition. We have substituted the old closing system of the chamber and found a new 
accommodation for the pump; we have also applied movable feet to the chamber to regulate 
its horizontality.  
By comparison with the target of the GGG experiment in testing the equivalence principle, the 
observed residual 0.1 µm separation between the centres of mass of the test cylinders 
corresponds to a violation at the level of ηηηη<10-7. This means that the GGG rotating 
differential accelerometer can be used to test the equivalence principle in the gravitational 
field of the Sun to 1 part in 1013  only if its sensitivity will be improved by a factor 106 (with 
the introduction of new electronics for data acquisition and operating with an high differential 
period of oscillation) and if daily seismic disturbances will be reduced by seven orders of 
magnitude with respect to daily tilts measured so far (see figures 7.1 and 7.3).  
The short-term goal of the experiment is to obtain an active reduction (3/4 orders of 
magnitude) of low frequency seismic noise (see section 2.8 and chapter 7) [40]. We have 
performed measurements of the seismic disturbances during two years and we have studied 
the problem in order to define the control laws required for the active compensation of the 
tilts. We are now evaluating the characteristics of the electronics needed to perform this active 
control. Preliminary experimental results have shown that it is possible to correct tilts at the 
level of 7·10-10rad. 
The next long-term goal requires the introduction of a passive cardanic suspension to suspend 
the whole apparatus (as discussed in section 2.8; the advantage of working in a suspended 
laboratory in order to reduce vibrational disturbances is outlined in chapter 10 where the PGB 
laboratory is illustrated [53]) and the construction of new 24-bit electronics.  
A space version of the fast rotating GGG differential accelerometer presented here, to be used 
within the GG mission ([10 - 11], [26 – 27]), will be described in the following chapter. The 
GGG accelerometer has been constructed to have the same features as the one proposed for 
flight, essentially weak coupling, high frequency supercritical rotation and differential 
capacitance read-out. It is a full-scale prototype devoted to testing the main features of the 
proposed space instrument, in spite of the fact that the local acceleration of gravity is about 
eight orders of magnitude bigger than the largest disturbances the accelerometer would be 
subject to in space.   
The space version would take advantage of the stronger driving signal (8.4 m/s2 from the 
Earth at 520km altitude in GG, instead of 0.006 m/s2 from the Sun in GGG). It would also 
allow much weaker suspensions due to the absence of weight, and consequent higher 
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sensitivity (which depends on the differential period squared) by a factor of about 450. It can 
be argued that another factor of about 200 can be gained due to the absence of motor and 
motor/bearings noise, and thanks to the much higher symmetry of the space accelerometer (no 
1-g preferential direction, hence much better rejection of common mode forces and 
consequent higher sensitivity to differential forces). Overall this amounts to about 8 orders of 
magnitude gain, thus making a 10-17 test in space a goal worth pursuing. In point of fact, the 
error budget of the space experiment, as developed within mission studies so far, has turned 
out to be compatible with this goal. The improvement over current best ground results would 
be of 5 orders of magnitude. 
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CHAPTER 9: 

THE GG SPACE EXPERIMENT. 

9.1: INTRODUCTION. 

 
�Galileo Galilei � GG� is a proposed experiment in low orbit around the Earth aiming to test 
the Equivalence Principle (EP) to the level of 1 part in 1017 at room temperature from its most 
direct consequence, the Universality of Free Fall (UFF), whereby all bodies fall with the same 
acceleration regardless of their mass and composition ([10 - 11], [26 - 29]).  
A space mission can reach a sensitivity many orders of magnitude higher than within a ground 
experiment: test bodies in low Earth orbit are subject to a driving signal by about 3 orders of 
magnitude stronger than on torsion balances on the ground. Another main advantage of space 
is weightlessness: the gravitational attraction of the Earth is largely compensated by the 
centrifugal force due to the orbital motion of the spacecraft so the main 1g local acceleration 
of gravity is absent.  
Three space experiments, aiming to test the equivalence principle, are under investigation by 
space agencies: µSCOPE ([24 - 25]) with the goal ηηηη =10-15, �GALILEO GALILEI� (GG) ([10 
- 11], [26 - 29]) with the goal ηηηη =10-17 and STEP ([30 - 31]), with the goal ηηηη =10-18. In all 
these experiments, the test bodies are weakly coupled, concentric, co-axial, hollow cylinders 
of different composition.  
A unique feature of GG, which is pivotal to achieve high accuracy at room temperature, is fast 
rotation in supercritical regime around the symmetry axis of the test cylinders, with very weak 
coupling in the plane perpendicular to it. Another unique feature of GG is the possibility to fly 
2 concentric pairs of test cylinders, the outer pair being made of the same material for 
detection of spurious effects. GG was originally designed for an equatorial orbit, but the much 
lower launching cost for higher inclinations has made it worth redesigning the experiment for 
a sun-synchronous orbit.  
The GG accelerometer is designed to have the same features as the ground experiment GGG, 
essentially: weak coupling, high frequency supercritical rotation and differential read-out. It 
has been extensively described in [11].  
We devote this chapter to describe the general aspects of the GG experiment (sections 9.2, 9.3 
and 9.4). A mathematical model of the apparatus has been developed in [11] and it will be 
described in sections 9.5-9.11. In [11] the complete GG system has been simulated using 
DCAP (Dynamics and Control Analysis Package) software developed by ALENIA SPAZIO 
under ESA contract. Here the dynamic model has been set up with Simulink software. Thanks 
to some simplifications with respect [11], equations of motion become more manageable and 
full analytical solutions have been obtained in sections 9.5 and 9.6. The harmonic analysis 
described in sections 9.9 is a little different from the analysis in [11]: a smaller number of 
calculations is sufficient to reconstruct the whirl velocity starting from the measurement data 
of the rotating capacitance bridges.  
The following sections 9.1, 9.2 and 9.4 are parts of the article [28] available in 
Appendix_Articles. 
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9.2: THE GG EXPERIMENT CONCEPT. 
 
In GG two test masses of different composition are arranged to form a differential 
accelerometer. The test bodies are concentric, co-axial, hollow cylinders1 weakly coupled like 
in a beam balance, with the beam directed along the symmetry axis, so as to be sensitive to 
differential accelerations acting between the bodies in the x,y plane perpendicular to it (the 
weaker the coupling, the higher the sensitivity).  Coupling and balancing allow common 
mode effects to be rejected. Two capacitance bridges in between the test cylinders  read their 
relative displacements (caused by differential accelerations) in the plane of sensitivity. The 
better the mechanical balance of the bridge capacitance plates halfway in between the test 
cylinders, the more insensitive is the read-out to common mode effects. Thus, the differential 
nature of the accelerometer is ensured both by the suspension and by the read-out.  
High frequency modulation of the expected signal � for the reduction of 1/f electronic and 
mechanical noise � is obtained by spinning the accelerometer around the symmetry axis; a 
cylindrical spacecraft encloses, in a nested configuration, a cylindrical cage with the test 
cylinders inside, and is stabilized by rotation around the symmetry axis.  

 
Figure 9.1: Section across the spin/symmetry axis of the GG outer and inner test cylinders (of different 
composition) as they orbit around the Earth. The centres of mass of the test cylinders are shown to be displaced 

                                                 
1 From now on, simply cylinder. 
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towards the centre of the Earth as in the case of a violation of the equivalence principle in the field of the Earth 
(indicated by the arrows). The signal is at the orbital frequency. 

Once the spacecraft has been given the required rate of rotation at the beginning of the 
mission (2Hz with respect to the centre of the Earth), no motor is needed in space. Hence, the 
space experiment is not affected by noise from the motor, contrary to what happens with 
rotating apparata in ground based laboratories where the motor and its noise are a serious 
matter of concern.  
As shown in figure 9.1, an EP violation in the field of the Earth would generate a signal of 
constant amplitude (for zero orbital eccentricity) whose direction always points to the centre 
of the Earth, hence changing orientation with the orbital period of the satellite. The read-out, 
also rotating with the system, will therefore modulate an EP violation signal at its spin 
frequency with respect to the Earth. The expected signal benefits from the spacecraft orbiting 
the Earth at low altitude. Having selected 520 km for GG, an orbit inclination of 97.5° ensures 
that the spacecraft follows the annual motion of the Sun (sun-synchronous orbit) and makes it 
possible to use a high altitude, low cost launcher for orbit injection. By maintaining the 
spin/symmetry axis of the spacecraft within  about  ten  degrees  from  the  orbit normal, there 
is almost no degradation of the signal in the sensitivity plane of the accelerometer. 
Figure 9.2 shows a section through the spin/symmetry axis of the system. There are four test 
cylinders (weighing 10 kg each), one inside the other, all centred at the same point 
(nominally, the centre of mass of the spacecraft) forming two differential accelerometers: the 
inner one for EP testing (cylinders made of different materials; they are shown in green and 
blue, respectively) and the outer one for zero check (cylinders of the same composition; both 
shown in brown).  In each accelerometer the two test cylinders are coupled to form a beam 
balance by being suspended at their top and bottom from the two ends of a coupling arm 
made of two concentric tubes (each tube suspends one test cylinder at each end, which makes 
it asymmetric top/down; however, the two of them together form a symmetric coupling). All 
four tubes are suspended at their midpoints from the same suspension shaft (the longest 
vertical tube in the figure). In all cases the suspensions are ∪ -shape thin strips (shown in red), 
to be curved out of a solid piece of CuBe. At each connection there are three of them, at 120° 
from one another. They are sensitive to differential acceleration in a plane perpendicular to 
the symmetry axis which is also the axis of rotation (see figure 9.3), so as to provide 
frequency modulation of the expected signal. There are capacitance plates (connected to the 
suspension shaft; shown as yellow lines in figure 9.2) for the read-out of differential 
displacements in between each pair of test cylinders (shown as yellow lines in section). 
In order to provide an intermediate stage of isolation between the spacecraft and the test 
cylinders the accelerometers of figure 9.2 are not suspended directly from the spacecraft, but 
instead from the so called PGB-�Pico Gravity Box� laboratory (see appendix 9.A for details): 
a cylindrical structure which is mechanically suspended from the spacecraft along its 
symmetry axis (see figure 9.4) so as to provide weak coupling in the plane perpendicular to 
the axis while being stiffer along it (a prototype of the PGB laboratory has been studied to 
reduce vibrational noise on board the International Space Station �see appendix 9.B for 
details).  
In GG the four cylinders are suspended mechanically and centred at the centre of mass of the 
spacecraft in order to reduce common mode tidal effects and improve the reliability of the 
zero check. However, whatever the nature of the suspensions, there will always be a non-zero 



Chapter 9: The Space Experiment GG. 

 144

offset vector ε!  from the spin axis (in the reference frame fixed with the system) due to 
construction and mounting errors. 

 
 

 
Figure 9.2: Section through the symmetry axis of the system. There are four test cylinders (green, blue and 
brown), one inside the other, all centred at the same point forming two differential accelerometers. In each 
accelerometer the two test cylinders are coupled to form a beam balance by being suspended at their top and 
bottom from the two ends of a coupling arm made of two concentric tubes (each tube suspends one test cylinder 
at each end, which makes it asymmetric top/down; however, the two of them together form a symmetric 
coupling). All four tubes are suspended at their midpoints from the same suspension shaft (the longest vertical 
black tube in the figure). In all cases the suspensions are ∪ -shape thin strips (shown in red). At each connection 
there are three of them, at 120° from one another.  
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Figure 9.3: Relative displacement due to a force acting in a differential manner on two couplet test masses. 

 
Figure 9.4: The GG spacecraft as it has been designed for flight in high inclination, sun-synchronous orbit. This 
figure shows a section along the spin/symmetry axis. It is possible to see the PGB laboratory and the 
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accelerometers inside the spacecraft. The section and the legend give details on the main parts of the spacecraft 
and the experimental apparatus. The total mass is 280 kg, the orbit is almost circular, has an altitude of 520km 
and an inclination of 97.5°. 

The equilibrium position vector of the centre of mass of the suspended body, for given 
angular spin frequency ωS, is given by the equation: 

( )eq 2
s n

1r
1 /

= ε
− ω ω

! !
 (9.1) 

where ωn is the natural frequency of the suspended mass. In space, thanks to the absence of 
weight, the suspension can be extremely weak, so that the condition  ωS>>ωn can be easily 
satisfied. From (9.1), it follows that in this case equilibrium will take place closer than ε!  to 
the spin axis, namely: 

2

eq 2
s

r ω− ε
ω

! !"  (9.2) 

Equation (9.2) shows that extremely good auto-centring will be achieved (the equilibrium 
position vector, like the original offset vector, is fixed with the rotor).  
The only disadvantage of rotation at frequencies above the natural one is the onset of whirl 
motions, at the natural frequencies of the system, around the equilibrium position. Whirl is 
due to losses in the suspensions (the smaller the losses, the slower the growth rate of whirl) 
and needs to be damped to prevent instability (see chapter 9), but it can be separated to 
recover the equilibrium position thanks to the fact that the whirl frequencies of the system are 
known.  
The read-out consists of two pairs of capacitance plates located halfway in between the test 
cylinders and forming two capacitance bridges in two orthogonal direction in the plane 
perpendicular to the spin/symmetry axis (for more details, see section 2.5 where the read-out 
in the GGG experiment is described). 
The GG accelerometer is designed to have the same features as the ground experiment GGG, 
essentially: weak coupling, high frequency supercritical rotation and differential read-out. It 
has been extensively described in [11].  
 

9.3: THE SPACECRAFT AND THE ORBIT. 
 
The GG spacecraft is designed around the accelerometers and it is meant to provide the 
rotation of the system around its symmetry axis (see figure 9.4). It is therefore an axis-
symmetric spacecraft passively stabilized by rotation around its axis of maximum moment of 
inertia. At 520 km altitude, a sun�synchronous orbit requires an inclination of 97.5° over the 
equator. The orbit is almost circular. The sensitive plane of the accelerometers should lie in 
the plane of the expected signal, that is in the orbital plane. The spin/symmetry axis should 
therefore be normal to the orbit plane. However, while the spin axis is almost unaffected by 
external torques and therefore remains fixed in space, regression of the nodes of an inclined 
orbit due to the flattening of the Earth makes the orbit normal precess around the axis 
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perpendicular to the equator (with a 1 year period in the case of a sun-synchronous orbit). As 
a result, a spin axis originally aligned with the orbit normal would no longer be so as time 
goes by. However, it can be shown [54] that if the spin axis stays within about ±10° from the 
orbit normal, the expected signal is only very slightly diminished (along only one component) 
with respect to its maximum value. Therefore, the GG spacecraft is equipped with cold gas 
thrusters to be used to realign its spin axis along the orbit normal every about 20 days of data 
taking. For the spacecraft to maintain its cylindrical symmetry and its centre of mass not to be 
affected by attitude manoeuvres, two tanks have been designed, both of toroidal shape, to be 
located one above and one below the centre of mass. During attitude manoeuvres all the 
masses suspended inside the spacecraft are locked using inch-worms placed around their 
central coupling arm. 
Since the spin/symmetry axis of the spacecraft is maintained near the axis perpendicular to the 
sun-synchronous orbit, solar cells for power generation are located on the surface of a dish 
facing the sun. This dish serves also the purpose of shielding the spacecraft body (a compact, 
1m size structure in the shape of a spinning top enclosing the accelerometers) from sunlight, 
so as to reduce the effects of thermal disturbances on the experiment. The largest disturbing 
acceleration experienced by the accelerometers is due to the effect of residual air drag acting 
on the spacecraft and not on test masses suspended inside it, thus resulting in an inertial 
acceleration opposite to the acceleration by air drag on the spacecraft. Moreover, the largest 
and most dangerous air drag effect is due to its along track component, which has the same 
orbital frequency as the signal and differs from it only in phase (the signal is in the radial 
satellite-centre of the Earth direction). 
The inertial acceleration resulting from air drag � and in general from non gravitational forces 
acting on the spacecraft � are in principle the same on the test bodies in each accelerometer. 
They are known as common mode effects and should not produce any differential signal to 
compete with the target differential signal of an equivalence principle violation. However, this 
would be so only in the ideal case that the suspensions of the test cylinders in the 
accelerometers were perfectly identical and the capacitance bridges of the read-out were 
perfectly balanced, i.e. under condition of perfect common mode rejection.  In the GG space 
experiment the strategy chosen is for air drag to be partially compensated by the spacecraft 
drag free control system, and partially rejected by the accelerometers themselves. In this way, 
the burden of reducing to an acceptable level this very large effect is shared between the 
spacecraft and the experimental apparatus, each of them being given a reasonable task. 
Common mode rejection relies on the coupled suspension of the test cylinders and the 
capacitance differential read-out in between them, and on well established in-flight balancing 
procedures. Drag compensation requires the spacecraft to be equipped with thrusters and an 
appropriate control system to force the spacecraft itself to follow the motion of an undisturbed 
test mass inside it. Since drag compensation must be active during data taking, the are severe 
limitation on the disturbances it produces which make ordinary impulsive thrusters not 
suitable. Finely tuneable proportional thrusters based on field emission electric propulsion 
(FEEP) appear to be the best choice, also because of their high specific impulse and 
consequent need of only a negligible mass of propellant. The test mass which drives the drag-
free control system is the PGB, whose motion relative to the spacecraft in the plane 
perpendicular to the symmetry axis is read by two capacitance bridges. In terms of frequency, 
drag must be compensated in a narrow frequency range around the orbital one, in order reduce 
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its component along track. For this purpose, a control based on a notch filter has been tested 
in numerical simulations of the GG system and found to be effective [11]. The PGB can 
provide the required driving signal to the drag control system because the orbital frequency 
around which drag must be compensated is below its natural frequency above which 
disturbances acting on the spacecraft are attenuated.  
The transfer function of the PGB (see figure 9.5 � it is derived in appendix 9.A)  shows that 
effects at the orbital frequency are unaffected by the PGB suspension. They are sensed by the 
capacitance read-out in between the PGB and the spacecraft through the relative 
displacements they produce between the two, and these measurements serve as input to the 
drag free control. Note that the expected signal too is at the orbital frequency (see figure 9.1), 
hence, it is not attenuated.  Instead, the figure shows that disturbances at the spin frequency of 
the spacecraft (in the non rotating frame) are significantly reduced. Such disturbances are due 
primarily to the FEEP thrusters used for drag compensation, because in order to compensate 
for the effect of drag  at the orbital frequency of the spacecraft around the Earth while 
spinning with the spacecraft itself, they must fire at the spin frequency relative to the centre of 
the Earth (2Hz). Since this is also the modulation frequency of the expected signal, its 
attenuation by the PGB by about 5 orders of magnitude (40dB per decade at frequencies 
above the natural one) is a considerable advantage for the experiment. 

 
Figure 9.5: Transfer function of the PGB laboratory (enclosing the accelerometers), suspended inside the 
spacecraft. The frequency of the natural oscillations in the plane perpendicular to spin /symmetry axis is 
1/360Hz. The transfer function is shown in the non rotating reference frame: any effect at frequencies below the 
natural one (the threshold frequency) is essentially unaffected, while above the threshold, disturbances are 
attenuated (the higher the frequency, the better the attenuation). In this case the value of the quality factor is 90.  
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9.4: REQUIREMENTS AND ERROR BUDGET. 
 
In order to be sensitive to differential effects in the plane perpendicular to the spin/symmetry 
axis, the test cylinders of each accelerometer (see figure 9.2) are weakly coupled to one 
another. With the suspensions as designed, the natural differential period is 540 seconds. 
Instead, all suspensions are stiff along the axis as well as in response to force acting on both 
masses in the accelerometer (common mode effects). These mechanical features have been 
chosen for best sensitivity to differential forces in the plane, while minimizing the effects of 
common mode forces in the same plane as well as those of all disturbances along the axes. In 
particular, the goal of testing the EP to 1 part in 1017 in the gravitational field of the Earth 
requires to detect the effect of a differential acceleration of  aEP≈8.4×10-17ms-2 (pointing to the 
centre of the Earth), which amounts to a relative displacement between the test cylinders of 
the inner accelerometer of 0.6 pm. The main requirements which need to be fulfilled in order 
to reach the mission goal are concerned with: mechanical balance of the test cylinders; drag 
compensation; mechanical balance of the capacitance bridges; temperature variations (in 
space and time); damping of whirl motions and quality factor at the spin frequency.  
Each accelerometer is conceptually a beam balance with the beam along the symmetry axis. 
Ideally, it should be insensitive to common mode forces in the plane of sensitivity 
perpendicular to it. Perfect rejection is obviously impossible, and we require that all common 
mode forces in the plane are rejected by a factor χCMR=1/105. Much better rejection than this 
is achieved with ordinary balances on the ground where the common mode force (local 
gravity) is many orders of magnitude stronger than the largest common mode force (due to 
residual air drag) acting on the GG test cylinders. The balancing procedure relies on the 
capacitance bridges in between the test cylinders  as sensors and the inch-worms on the 
accelerometer�s coupling arms (see figure 9.2) as actuators. Once balancing is completed, the 
inch-worms can be switched off so as not to disturb the measurements. For the residual effect 
of air drag at the orbital frequency and in the plane of sensitivity we require a compensation 
factor of 1/104, using the capacitance bridges between PGB and spacecraft as sensors and 
FEEP thrusters as actuators. As a result of both compensation and rejection, the residual 
differential effect of air drag on the test masses of the accelerometers is 109 times smaller than 
its original value, which for the GG spacecraft and orbit is 7 2

drag 2 10 ms− −≤ ×a  (worst case). 
This means that the disturbance due to air drag is larger than the signal by a factor 2.4 at most, 
and can anyway be distinguished from it because of the large phase difference between the 
two. The amount of drag effect remaining after compensation by FEEP thrusters gives a 
common mode effect on the test masses of the accelerometers, which � if the capacitance 
plates of the read-out are not perfectly balanced in between the test cylinders (i.e., the gaps on 
the two sides are not equal) � results in a spurious differential signal. For it to be a few times 
smaller than the target signal the unbalance must be (with a 5 mm gap) of a few µm, which is 
not a stringent requirement. We also require drag compensation by a factor 1/400 along the 
spin/symmetry axis (at the orbital frequency) in order to reduce the separation between the 
centres of mass of the test cylinders along this axis.  
All mechanical balancing will be affected by temperature variations. Since there are about 20 
days available for data taking between two successive attitude manoeuvres, we require that 
temperature variations be small enough not to destroy the balancing of the system for that 
span of time. Temperature time variations must be such that T 0.1K / day<# , the requirement 



Chapter 9: The Space Experiment GG. 

 150

being set by the mechanical balance of the capacitance bridges, which are affected by the 
differential thermal expansion of the test masses and bridge frame. Variations of the 
suspensions stiffness with the temperature are not relevant. Along the z′ spin/symmetry axis it 
must be ∆T<∆z′<4K/m, and the requirement is set by the mechanical balance of the test 
cylinders since it is affected by the expansion/contraction of  the coupling arms. Passive 
thermal isolation is sufficient to avoid temperature variations larger than these, and no active 
thermal control is needed.  Temperature constraints are not very demanding in GG because its 
rapid rotation averages out azimuthal temperature variations and makes the radiometer effect 
negligible; much more demanding constraints need to be satisfied in case of slow rotation of 
the test cylinders [55 - 56]. During eclipses, when the satellite happens to go in and out of the 
Earth�s shadow, different heating of the outer shell of the spacecraft as compared to the 
internal apparatus (which is thermally isolated) would produce a differential rotation rate due 
to changes in the moment of inertia and conservation of angular momentum. This is avoided 
by means of a small mass compensation system based on a photo-diode sensor to detect the 
phase lag between the outer and the inner part of the spacecraft, and inch-worms actuators to 
displace little masses and compensate moment of inertia changes; the masses required are of a 
few grams because changes of moment of inertia caused by temperature variations are very 
small. Whirl motions of all suspended bodies are damped by means of capacitance 
sensors/actuators. In the non rotating frame whirls have the frequencies of natural oscillations 
(slow), while the sensors/actuators spin fast with the whole system (2Hz). The spacecraft is 
equipped with Earth elevation sensors to measure its state of rotation in order to perform the 
coordinate transformation between the rotating and non rotating frame which is needed for an 
accurate reconstruction and damping of the whirl motion [11]. The growth rate of whirls is 
determined by losses in the system, essentially in the mechanical suspensions as they undergo 
deformations at the frequency of spin. The time constant of the growth is TwQS/π, where QS is 
the quality factor at the frequency of spin and Tw the natural period of the whirl. The force 
required to damp the whirl is a fraction QS of the mechanical coupling force (see section 1.8). 
In GG the requirement is QS=20000 at 2Hz, which laboratory test have shown to be 
achievable (see chapter 5). With a Q of at least 20000, whirl growth is so slow that data taking 
can be performed between successive damping, thus avoiding any disturbance at all from  
damping forces. In order to reconstruct the position of relative equilibrium of the test 
cylinders in the non rotating reference frame, as affected by a low frequency differential force 
(like an EP violation at the orbital frequency around the Earth) whirl motion at the natural 
frequency of oscillation can be separated out. Tests with the laboratory prototype demonstrate 
that a low frequency differential effect can be detected even in the presence of a much larger 
whirl (see section 6.4).  
The error budget of the space experiment is performed keeping in mind that both the 
frequency and phase of the expected signal are well known: once the high frequency signal 
modulation due to the spin rate of the spacecraft has been eliminated by coordinate 
transformation to the non rotating system, the signal must appear as a differential 
displacement at the orbital frequency, and always pointing to the Earth.  
The most dangerous perturbing effects are therefore those which are close to the signal both 
in frequency and phase. There are two such effects: the Earth monopole coupling to higher 
mass moments of the test bodies and the radiometer effect. The first is due to the fact that the 
test bodies are not monopoles; they have non zero higher mass moments, and the monopole 
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mass moment of the Earth will couple differently to them giving rise to a differential force. 
Being due to the Earth, which is also the source mass of a possible violation of equivalence, 
this effect cannot in any way be distinguished from the signal. For a given spacecraft altitude 
and a given target in EP testing, the dominant mass moment of the test cylinders (quadrupole) 
must be small enough for this effect to be below the signal. The values required (about 0.01) 
are realistic to obtain by test mass machining. The radiometer effect is caused by the residual 
gas pressure in the presence of temperature gradients across the test masses generated by the 
infrared radiation from the Earth. In GG temperature gradients are averaged out by the fast 
rotation and the radiometer effect is negligible even at room temperature [55-56].  
At the same frequency as the signal but, with a phase difference of about 90 degrees, we have 
the inertial force caused by residual air drag acting on the outer surface of the spacecraft along 
its orbit. With the requirements given above for drag compensation and common mode 
rejection, the residual differential acceleration due to air drag is 2-3 times larger than the 
signal (worst case) and can be separated from it thanks to the large phase difference. At twice 
the orbital frequency there is the tidal effect due to a non zero separation between the centres 
of mass of the test cylinders along the spin/symmetry axis whenever it is not exactly aligned 
with the orbit normal [11]. With a compensation of non gravitational forces (mostly solar 
radiation pressure) along the spin axis by 1/400, and with a common mode rejection in that 
direction of 1/50  (by suspensions machining only) this tidal effect is almost one order of 
magnitude smaller than the signal. At the natural frequency of differential oscillation of the 
test masses (1/540s) there is a residual whirl motion of their centres of mass which gives rise 
to a tidal effect from the Earth at the whirl frequency. However, it can be proven that it does 
not affect the position of relative equilibrium around which whirl motion takes place [54]. it 
causes a small deformation of the whirl orbit which circulates with the motion of the 
spacecraft around the Earth, does not accumulate in time and does not prevent recovery of the 
equilibrium position by separation of the whirl motion. Similarly, the whirl orbit is also 
affected by resonant drag effects due to air granularities along the spacecraft orbit around the 
Earth. In this case too the equilibrium position is not affected, the deformation of the whirl 
orbit circulates with the orbital period, it does not accumulate with time and can be separated 
out. There is a modest drag compensation requirement along the spin axis because a centre of 
mass separation along it will generate (in the presence of a tilt angle with respect to the orbit 
normal) a tidal effect in the sensitive plane whose frequency is close to that of the signal. 
Mechanical suspensions allow the test masses to be electrically grounded, thus avoiding the 
need to measure the amount of accumulated charge and to discharge the masses, which 
inevitably disturbs the measurements. Residual so-called patch effects are known to be small 
and slowly moving. Moreover, their presence can be checked by changing sign to an applied 
known electric potential corresponding to the resolution achieved: since the force is 
proportional to the square of the potential, the resulting effect must be the same to rule out 
patch effect potential at that level. Requirements on magnetic impurities and magnetic 
susceptibility for the test masses can be met. Rotation of the whole system together makes 
many effects coming from local (fixed) disturbances, (such as local mass anomalies or 
parasitic capacitances) to become DC signals, and therefore not an issue. Finally, thermal 
noise, is compatible with the goal of the experiment thanks to the high frequency of spin, to 
the high Q of the system and the large mass of the test cylinders (10kg test bodies compensate 
for working at 300K rather than at a few K but with masses of 100g). 
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9.5: THE MATHEMATICAL MODEL. 
 
This section describes the four-body dynamic model set up with Simulink software for the 
complete GG experiment, including the spacecraft, the PGB laboratory and the two test 
masses. Both the mathematical model describing the behaviour of the system and the 
controller scheme implementing the whirling stabilisation loops are outlined in detail. 
Whirling motions need to be damped both on the ground and in space, but in space they can 
only be actively damped with capacitance sensors/actuators which are fixed in the rotating 
frame of the whole system. In GGG, instead, active damping has been performed in the non 
rotating frame. A full 3D simulation including conical and cylindrical modes is reported in 
[11]: from numerical evaluations emerges that conical motions are very slow and are stable 
once the test bodies are stabilized by the active control of their whirl motions; hence, for 
simplicity reasons, we assume for the present that the rotations are perfectly controlled.  
Thanks to this simplification, equations of motion become more manageable (the rotational 
variables vanish from them) and full analytical solutions may be obtained hollowing us an 
understanding of the most important phenomena typical of coupled rotors. Let us now 
introduce the rotating reference frame SR(O;ξ,η,z) with the origin O and the z axis coinciding 
with that of the inertial frame SI(O;x,y,z). Axes ξ and η rotate in the x-y plane with angular 
velocity ωs. The origin O coincides, at the initial time, with the centre of mass of the whole 
system spacecraft/PGB/test masses. The system is composed of 4 hollow bodies one inside 
the other, connected by means of  weak springs. The spacecraft bus is represented by the label 
s and has mass ms (in blue in figure 9.6); the position vector sr

!  points to the spacecraft centre 
of mass CMS. The spacecraft is connected to the PGB by means of a coupling spring with 
elastic constant k.  ε!  is the vector locating the suspension point  of  the  spring  with  respect  
to  CMS. The spacecraft is rotating around the z axis, which is perpendicular to the x-y plane. 
The rotation is counter-clockwise. The PGB laboratory is represented by the label p (with 
mass mp). pr

!  is the PGB centre of mass position vector with respect to the origin O. The PGB 
is connected to the test masses (with mass mi) by means of isotropic  springs with elastic 
constant ki (i=1 for the inner mass, i=2 for the outer one; we assume k1=k2). The restoring 
force of the suspensions ki is not applied to the centre of mass CMi of the i-th test body; iε

!  is 
the vector locating the suspension point of the spring with respect CMi. ir

!  is the position 
vector of the i-th test body. We consider dissipative mechanical suspensions; cR and cRi are the 
coefficients of rotating damping for the suspensions k and ki respectively.  In the inertial 
reference frame SI(O;x,y,z), the equations of motions are: 
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a) 

b) 
Figure 9.6: Mathematical model of the GG system. Blue: spacecraft. Green: PGB. Red: Outer mass 2. Yellow: 
Inner mass 1. 
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By introducing the mean vector ( )t 1 2r r r 2= +! ! !  and the mean eccentricity ( )t 1 2 2ε = ε + ε! ! ! , and  
adding  the  fourth  equation  to  the  third  one,  the  new  equation  (9.4)  is readily  
obtained: 

( ) ( )t t t t p t Rt t p s t pm r k r r c r r r r = − − + ε − − −ω × − 
! ! ! ! ! ! ! ! !## # #   (9.4)     

with mt=m1+m2, kt=k1+k2 and cRt=cr1+cR2. In a similar manner, the second equation changes 
into: 
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 (9.5) 

From now on, we consider the new system composed by the spacecraft, the PGB and the 
equivalent test mass mt (obtained by the two masses m1 and m2), suspended to the PGB by 
means of a spring of elastic constant kt and damping coefficient cRt. In the non rotating frame 
the new 3-body mathematical model (obtained by combining equations (9.4), (9.5) and the 
first one of the system (9.3)) is full equivalent from the standpoint of the translational modes 
of the system (9.3): 
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  (9.6) 

Let us now define the relative positions p sr r r∆ = −! ! !  and t t pr r r∆ = −! ! !  and the reduced mass 
mr=msmp/(ms+mp) (for the system spacecraft/PGB) and mrt=mtmp/(mt+mp) (for the system 
PGB/test mass mt). We can also define the new quantities mr1=ms(mt+mp)/Mtot, 
mr2=mt(ms+mp)/Mtot and the total mass  Mtot=ms+mp+mt. Starting from (9.6), after some 
algebraic manipulation, we can write the equations for the relative motions of the 3 bodies: 
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In the following section, the general solution of the system (9.7) can be obtained by 
combining the solution of the homogeneous system with the particular integral evaluated in 
presence of an external force and in presence of the unbalances ε! and tε

! . 
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9.6: GENERAL SOLUTION OF THE EQUATIONS OF MOTION. 
 
We can now complete the mathematical model specializing here to the introduction of an  
external force extF

!
  (constant  or  slowly variable) acting on the spacecraft2. By introducing the 

quality factors R sk /(C )= ωQ , t t Rt sk /(C )= ωQ  and the frequencies 2
n1 r1k / mω = , 

2
n2 r2k / mω = , the equilibrium position in presence of the force extF

!
 is: 
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 (9.8) 

Note that, even though the external force is applied along the x direction, finite differential 
displacements occurs along the y direction, due to the rotation and to the dissipative nature of 

                                                 
2 By imposing t tr 0, r 0, r 0, r 0∆ = ∆ = ∆ = ∆ =! ! ! !## ## # # in (9.7), the equilibrium position in presence of a constant force 

extF
!

 is the solution of the following system: 
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Using complex notation ∆z′=∆rx +j∆ry, ∆zt′=∆rtx +j∆rty and F′ext=Fext,x+jFext,y the dynamics in the inertial 
reference frame can be written as: 
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Then, the equilibrium position is easily obtained: 
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In terms of the vectors tr, r∆ ∆! ! , the equilibrium position can be written as: 
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Note that the vector tr∆
!  describing the displacement of the equilibrium position for the system test mass/PGB 

depends  only on the spring coupling between these two bodies (i.e. it depends on kt and CRt). In a similar 
manner the vector r∆!  depends on k and CR.  
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the suspensions (the quality factor Q is finite. Compare equations (9.8) and (1.68)). However, 
the magnitude of the displacement along the y direction (�orthogonal�) is depressed by a 
factor  1/Q<<1 with respect to that along x. Hence, the two degrees of freedom are coupled 
from the energy dissipation only if Q has a finite value. We have assumed the presence of two 
static (in the rotating frame) unbalances ε!  and tε

! .  
Starting from the equations (9.7) and introducing the natural frequencies of oscillation  

2
n rk / mω =  and 2

nt t rtk / mω = , we can now write the particular integrals  due to the 
unbalances for the systems spacecraft/PGB and PGB/ test mass, respectively:3 

                                                 
3 Using complex notation, the system (9.7) becomes :  

t Rt RtR R
s t t s t

r r r p p p

t Rt Rt R R
t t t s s t

rt rt rt p p p

k c cc ckz z z j z z z j z u
m m m m m m

k c c c ckz z z j z z z j z u
m m m m m m

 ′ ′ ′ ′ ′ ′ ′∆ = − ∆ − ∆ + ω ∆ + ∆ + ∆ − ω ∆ +


 ′ ′ ′ ′ ′ ′ ′∆ = − ∆ − ∆ + ω ∆ + ∆ + ∆ − ω ∆ +


## # #

## # #
 

where  

t t
x tx y ty

r p r p

k kk ku(t) j
m m m m
   

= ε + ε + ε + ε      
   

, t t
t x tx y ty

p rt p rt

k kk ku (t) j
m m m m

   
= − ε − ε + − ε − ε      
   

. 

In the frequency domain (after introducing the Laplace variable s), the previous system turns into: 

2 t Rt RtR R
s s t

r r r p p p

2 t Rt Rt R R
s t s t

rt rt rt p p p

k c cc cks s j z s j z u
m m m m m m

k c c c cks s j z s j z u
m m m m m m

    ′ ′+ + − ω ∆ = + − ω ∆ +   
     


   ′ ′+ + − ω ∆ = + − ω ∆ +  
    

 

This system can be simplified in the following manner: 

t t

t t t

(s) z b (s) z u(s)
(s) z b(s) z u (s)

a
a

′ ′∆ = ∆ +
 ′ ′∆ = ∆ +

 

where a(s), b(s), at(s) and bt(s) are obtained by comparing the 2 systems of equations. We have: 

2t t Rt Rt t Rt Rt
s s

p p p rt rt rtt

b (s) k c c k c cs j s s j
m m m m m m(s)
   

= + − ω + + − ω       a
 

Then, z′∆  can be written in terms of the inputs u and ut: 

( ) ( )t t t t tz (s)u(s) b (s)u (s) (s) (s) b(s)b (s)′∆ = + −a a a  

By imposing s=jωs and noticing that  

2
2t s rt ntt

t s p 2 2
rtt s p nt s

b ( j ) mkk m 1
m( j ) m

 ω ω
= −ω + = ω ω −ω 

$
a

 

we finally obtain: 

( )
( )( )

2
t rt st s

s s s2 2 2
s t s s t s t rt s r s t p

k m( j )z ( j ) u( j ) u( j )
( j ) ( j ) b( j )b ( j ) k m k m kk m

−ωω′∆ ω ω = ω
ω ω − ω ω −ω −ω −

" a
a a

 

In the limit  ωs>>ωn , ωnt  the previous relation can be simplified as: 

( )2 2
s s n sz ( j ) u( j )′∆ ω ω ω −ω"  
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( ) ( )
( ) ( )

2 2 2 2
p n rt nt t p n s

2 2 2 2
t r n p nt t p nt s (9.9)

r (t) m (t) m (t) m

r (t) m (t) m (t) m

ε

ε

  ∆ = ω ε + ω ε ω −ω  


 ∆ = − ω ε + ω ε ω −ω 

! ! !

! ! !   

Before evaluating the solution of the homogeneous system, it is better to write equations (9.7) 
in a matrix form:  

NR NR NR,t t NR,t t

t NR,t t NR,t t NR NR

r C r K r C r K r 0

r C r K r C r K r 0

 ′ ′∆ + ∆ + ∆ + ∆ + ∆ =


′ ′∆ + ∆ + ∆ + ∆ + ∆ =

! ! ! ! !## # #
! ! ! ! !## # #  (9.10) 

where we have introduced the matrices: 

R r
NR

R r

c m 0
C

0 c m
 

=  
 

 (9.11.a) 

r R s r
NR

R s r r

k m c m
K

c m k m
ω 

=  − ω 
 (9. 11.b) 

Rt p
NR,t

Rt p

c m 0
C

0 c m
− 

′ =  − 
 (9. 11.c) 

t p Rt s p
NR,t

Rt s p t p

k m c m
K

c m k m
− − ω 

′ =  ω − 
 (9. 11.d) 

R pr
NR NR

R pp

c m 0mC C
0 c mm

− 
′ = − =  − 

 (9. 11.e) 

p R s pr
NR NR

R s p pp

k m c mmK K
c m k mm
− − ω 

′ = − =  ω − 
 (9. 11.f) 

p Rt rt
NR,t NR,t

Rt rtrt

m c m 0
C C

0 c mm
 ′= − =  
 

 (9. 11.g) 

p t rt Rt s rt
NR,t NR,t

Rt s rt t rtrt

m k m c m
K K

c m k mm
ω ′= − =  − ω 

 (9. 11.h) 

The λ and λ t  eigenvalues of the problem are obtained (see appendix 9.C) by solving the 
characteristic equation associated to the homogeneous system: 

                                                                                                                                                         
The expression for tz′∆  as a function of the spin frequency  is obtained in a similar manner: 

( )2 2
t s t s nt sz ( j ) u ( j )′∆ ω ω ω −ω"  

By performing the inverse Laplace transform, the last two equations can be written in the time domain. The 
solutions (9.9) and (9.10) are easily obtained. 
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2
NR NR NR,t t NR,t

2
NR NR t NR,t t NR,t

I C K C K
det 0

C K I C K

  ′ ′λ + λ + λ +
  = 
 ′ ′λ + λ + λ +   

 (9.12) 

It is clear that when the time history is written in the form  

i i

ti ti

e( j )t j m( j )tW 0
ii

e( j )t j m( j )tW 0
t tii

r (t) r

r (t) r

ℜ λ ℑ λ

ℜ λ ℑ λ

∆ = ∆

∆ = ∆

∑
∑

! !

! !
e e

e e
 (9.13) 

the system is stable if the real parts of all complex eigenvalues s=jλ and st=jλ t are negative. In 
appendix 9.C we show that the system has four eigenvalues with positive real parts, hence the 
system is unstable. By combining the solutions (9.8), (9.9) and (9.13) the general integral of 
the system (9.7) is readily obtained: 

F W

F W
t t t t

r(t) r (t) r (t) r (t)

r (t) r (t) r (t) r (t)

ε

ε

∆ = ∆ + ∆ + ∆

∆ = ∆ + ∆ + ∆

! ! ! !

! ! ! !  (9.14) 

 

9.7: DYNAMICAL EVOLUTION IN THE ROTATING FRAME. 
 
The relative displacement between the spacecraft and the PGB in the rotating frame 
SR(O;ξ,η,z) is  [ ]∆ρ = ξ η!  while the relative displacement between the PGB and the test mass 
(TM) is [ ]t t t∆ρ = ξ η! . Vectors R R

t,ε ε! ! and R
extF
!

 are the eccentricities and the external force4, 
respectively. In the space experiment everything is co-rotating with the spacecraft, so we need 
to recast equations (9.7) and (9.10) in the rotating frame5: 

( ) ( )

( ) ( )

R
2 R RR ext t Rt
s s t t t

r r s p p

2 Rt Rt R
t s t s t t t t

rt rt p p

k c F k c2
m m m m m

k c k c2
m m m m


∆ρ−ω ∆ρ+ ω ×∆ρ = − ∆ρ− ε − ∆ρ− + ∆ρ + ε + ∆ρ


∆ρ −ω ∆ρ + ω ×∆ρ = − ∆ρ + ε − ∆ρ + ∆ρ− ε + ∆ρ

!
! ! ! ! ! ! ! ! ! !## # # #

! ! ! ! ! ! ! ! ! !## # # #
 (9.15) 

or in a more compact form: 

R R Rt t Rt t

t R R Rt t Rt t t

C K C K F

C K C K F

 ′ ′∆ρ + ∆ρ + ∆ρ + ∆ρ + ∆ρ =


′ ′∆ρ + ∆ρ+ ∆ρ+ ∆ρ + ∆ρ =

!! ! ! ! !## # #
!! ! ! ! !## # #

 (9.16) 

where the matrices are defined as: 

R r s
R

s R r

c m 2
C

2 c m
− ω 

=  ω 
 (9.17.a) 

                                                 
4 For the purposes of the present analysis the orbital motion of the satellite can be neglected; the orbiting 
reference system is therefore approximated by an inertial reference frame. 
5 Equations (9.15) are obtained from (9.7) by replacing the vectors r∆ → ∆ρ! ! , sr∆ → ∆ρ+ω ×∆ρ! ! ! !# #  and 

2
s s sr 2∆ → ∆ρ−ω ∆ρ+ ω ×∆ρ + ω ×∆ρ! ! ! ! ! ! !## ## # # .   
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2
r s

R 2
r s

k m 0
K

0 k m

 −ω
=  

−ω  
 (9.17.b) 

Rt p
R,t

Rt p

c m 0
C

0 c m
− 

′ =  − 
 (9. 17.c) 

t p
R,t

t p

k m 0
K

0 k m
− 

′ =  − 
 (9. 17.d) 

R p
R

R p

c m 0
C

0 c m
− 

′ =  − 
 (9. 17.e) 

p
R

p

k m 0
K

0 k m
− 

′ =  − 
 (9. 17.f) 

Rt rt s
R,t

s Rt rt

c m 2
C

2 c m
− ω 

=  ω 
 (9. 17.g) 

2
t rt s

R,t 2
t rt s

k m 0
K

0 k m

 −ω
=  

−ω  
 (9. 17.h) 

R R R
ext s r t p tF F m k / m k m= − + ε + ε

! ! ! !
 (9. 17.i) 

R R
t p t rt tF k m k / m= − / ε − ε
! ! !

 (9. 17.l) 

In appendix 9.C, section 9.C.2, we give a detailed description of the state-space block diagram 
whose behaviour is defined by equations (9.16). Samples from a 24000 seconds simulation of 
the system are shown in the following figures. Figure 9.7 shows a polar plot in the x-y plane 
(non rotating frame) of the relative motion of the PGB with respect to the spacecraft ( r(t)∆! in 
blue) and the relative motion of the test mass TM with respect to the PGB ( tr (t)∆! in red). Due 
to the losses, the whirl instability ( Wr (t)∆!  and W

tr (t)∆! ) builds up in either case around the 
ideal equilibrium circle caused by the residual air drag force extF

!
 ( Fr (t)∆!  and F

tr (t)∆! ). The 
constant displacement along the x direction is caused by the DC term of air drag. r (t)ε∆!  and 

tr (t)∆!ε  are to small to be displaced in figure 9.7.  In figure 9.8, the whirl radiuses are shown 
as a function of time. They grow in time because the system is unstable. Note that we have 
used a value QPGB/TM=500 for the quality factor of the suspension connecting the TM to the 
PGB to save CPU time. 
 

9.8: NON ROTATING DAMPING AND WHIRLING STABILISATION. 
 
The simplest way to stabilize the system it is adding some non rotating damping (i.e. damping 
between non rotating parts of the system), which is mathematically expressed by the terms 
containing the coefficient cNR (see equation (1.13)). 
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Figure 9.7: Polar plot in the x-y plane of the non rotating frame showing the relative motion of the PGB with 
respect to the spacecraft ( r(t)∆!  in blue) and the relative motion of the test mass TM with respect to the PGB 
( tr (t)∆! in red). Due to the losses the whirl instability builds up in either case around the ideal equilibrium circle 
caused by the residual air drag force. The constant displacement along the x direction is caused by the DC term 
of air drag.  

The damping force is proportional to the relative velocity between the bodies in the inertial 
reference frame. In the rotating frame, the damping forces can be written as 

NR NR sc c− ∆ρ− ω ×∆ρ! ! !#  (9.18) 

and 

NRt t NRt s tc c− ∆ρ − ω ×∆ρ! ! !#  (9.19) 
By inserting (9.18) and (9.19) in (9.16), the matrices (9.17) change as follows: 

( )
( )

R NR r s
R

s R NR r

c c m 2
C

2 c c m
 + − ω 

=  ω + 
 (9.20.a) 

2
r s NR s r

R 2
NR s r r s

k m c m
K

c m k m

 −ω − ω
=  

ω −ω  
 (9.20.b) 

( )
( )

Rt NRt p
R,t

Rt NRt p

c c m 0
C

0 c c m
− + 

′ =  − + 
 (9.20.c) 
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Figure 9.8: Whirl radius as a function of time. 

t p NRt s p
R,t

NRt s p t p

k m c m
K

c m k m
− ω 

′ =  − ω − 
 (9.20.d) 

( )
( )

R NR p
R

R NR p

c c m 0
C

0 c c m
− + 

′ =  − + 
 (9.20.e) 

p nr s p
R

nr s p p

k m c m
K

c m k m
− ω 

′ =  − ω − 
 (9.20.f) 

( )
( )

Rt NRt rt s
R,t

s Rt NRt rt

c c m 2
C

2 c c m
 + − ω 

=  ω + 
 (9.20.g) 

2
t rt s NRt s rt

R,t 2
NRt s rt t rt s

k m c m
K

c m k m

 −ω − ω
=  

ω −ω  
 (9.20.h) 

The system behaviour in presence of non rotating damping has been simulated in appendix 
9.C, section 9.C.3. Results are shown in the following figures. The system was not in 
equilibrium at the start of the simulation. Figure 9.9 shows a polar plot in the x-y plane (non 
rotating frame) of the relative motion of the PGB with respect to the spacecraft ( r(t)∆! in blue) 
and the relative motion of the test mass TM with respect to the PGB ( tr (t)∆! in red). The whirl 
motions start to be damped, but still need some time. After the first orbit, the whirl motions 
are damped and the bodies are already very close their zero whirl orbits (corresponding to the 
ideal equilibrium circles caused by the residual air drag force extF

!
).  
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Figure 9.9: Polar plot in the x-y plane of the non rotating frame showing the relative motion of the PGB with 
respect to the spacecraft ( r(t)∆!  in blue) and the relative motion of the test mass TM with respect to the PGB 
( tr (t)∆! in red). 

In figure 9.10, the values of the whirl radiuses are shown for the same time interval as in 
figure 9.9. They decrease in time and reduce to a few Angstrom after 7000-8000 seconds 
only. In the two figures there are three types of oscillations: one is at the orbital period, due to 
the component of the drag at this frequency, another is at the whirl period of the 
spacecraft/PGB system (controlled), and the one with the shortest oscillation period is the 
controlled whirl motion of the TM with respect to the PGB. Note that we have used a value 
for the non rotating damping coefficient about 10 times lager than the minimum value 
required for stability (see equation (1.23)). This allows us to damp the system more rapidly, 
hence saving CPU time. 
 

9.9: RECONSTRUCTION OF THE WHIRL MOTION. 
 
Since in the GG experiment all the apparatus rotates around the spin axis of the satellite, there 
is not any source of non rotating damping; hence it is necessary to build in the rotating frame 
a damping command proportional to the relative velocity between the bodies in the inertial 
reference frame to damp whirling motions and prevent the occurrence of instability.    
If ∆ρ!  ( t∆ρ! ) is the relative displacement between the spacecraft and the PGB (between the 
PGB and the TM) in the rotating frame SR(O;ξ,η,z), the damping force is given by equation 
(9.18) and (9.19).  The main drawback of a continuous approach is that the whirl motion 
builds up with long time constants, hence the rate of change of the relative amplitude is 
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dominated by the measurement noise. Furthermore, the relative velocity must be built from 
the difference of two relative displacements of the bodies measured at different times. A 
modified approach based on signal filtering has therefore been introduced. In the following 
sections we will describe this approach and apply the control law to damp whirl motions in 
the four-body GG system. 

 
Figure 9.10: Whirl radiuses as a function of time. They reduce to a few Angstrom after 7000 � 8000 seconds 
only. 

The read-out of GG consists of two pairs of capacitance plates located halfway in between the 
PGB and the TM and other two pairs  located halfway in between the spacecraft and the PGB. 
These plates form bridges in two orthogonal directions in the plane perpendicular to the 
spin/symmetry axis (for more details, see section 2.5 where the read-out in the GGG 
experiment is described). The bridges are sensitive to relative displacements in that plane.  
We assume using non perfect sensors and then we introduce realist errors as follows: a bias of 
the read-out capacitors and white noise, generated as normally distributed random numbers 
with mean of 0 and a standard deviation of σ. Furthermore, the spin rate is measured by the 
ESS  (Sun Elevation Sensor). These sensors can provide a measurement accuracy of 
∆ωs/ωs=10-4 [11]. The nominal value of the spin frequency is 2Hz. Let us see the solution of 
the equation of motion (relative displacement of the bodies) in the rotating reference frame; in 
absence of non rotating damping the relative displacement of the PGB with respect to the 
spacecraft is ∆ρ!  ( t∆ρ! the relative displacement of the TM with respect to the PGB).∆ρ! ( t∆ρ! ) 
can be seen as the superimposition of three vectors: the first term is a fixed vector in the 
rotating reference frame which depends on the initial  offset  of the mounting point of the 
spring (see equation (9.9) showing the same vector as seen in the inertial reference frame); the 
second term is a vector co-rotating with the drag force (see equation (9.8) in the inertial 
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frame). In the simulation, we assume a drag defined by a DC component plus a term at orbital 
frequency in the inertial reference frame (see appendix 9.C for details, see also [11]), so the 
corresponding term of the relative displacement (in the rotating frame) has ωs and ωs−ωorb 
angular frequencies6. The third term, describing the growing spiral of the whirl motion, has 
ωs−ωw angular frequencies with ωw the natural frequencies of the system corresponding to 
unstable modes.  
 

9.9.A RECONSTRUCTION  OF THE RELATIVE DISPLACEMENT.  

 
The first step of our analysis is to obtain the relative displacements r∆!  and tr∆

!  starting from 
their counterparts in the rotating frame. e∆ρ!  ( te∆ρ! ) is the total measurement error of the 
sensors while e∆ρ = ∆ρ+ ∆ρ! !%  ( t t te∆ρ = ∆ρ + ∆ρ! !% ) is the measured signal. From now on, we 
consider only e∆ρ = ∆ρ+ ∆ρ! !% , having in mind the fact that the same approach is suitable for 

t t te∆ρ = ∆ρ + ∆ρ! !% . If e 0∆ρ =! , ∆ρ = ∆ρ!%  and the relative displacement in the inertial frame is 
easily obtained: 

s s1

s s

cos( t) sin( t)
r R

sin( t) cos( t)
− ω − ω 

∆ = ∆ρ = ∆ρ ω ω 

! ! !
 (9.21) 

Since e 0∆ρ ≠! , this approach is not applicable because the relative displacement r∆!  in the 
inertial frame will be dominated by the sensor noise. The idea is of analysing the harmonic 
component at Ts of the measured signal ∆ρ% in order to reconstruct the modulating signal 
amplitude and phase. Note that in this way any bias is removed (it is a constant additional 
term to ∆ρ! ) and the random noise is attenuated.  The relative displacement signal ∆ρ%  is 
sampled within every spin period Ts with N points; the sampling period is then Tc=Ts/N. The 
fundamental harmonic at 2Hz can be obtained from Fourier integral (first Fourier filter) as: 

2Hz
s s sB cos( t) C sin( t) A cos( t )ξ ξ ξ ξ ξ∆ρ = ω + ω = ω +ϕ%  (9.22.a) 

2Hz
s s sB cos( t) C sin( t) A cos( t )η η η η η∆ρ = ω + ω = ω +ϕ%  (9.22.b) 

Let us assume that at t=0s the x and y axis coincide with the ξ and η axis, respectively. By 
starting from the harmonic components (9.22.a) and (9.22.b) in the rotating frame, it is 
possible to extract the signal at low frequency in the inertial frame, namely: 

xr A cos( ) Bξ ξ ξ∆ = ϕ =%  (9.23.a) 

yr A sin( ) Bη η η∆ = ϕ =%   (9.23.b) 

as it can be argued from figure 9.11. Given N points in the i-th spin period, they are sampled 
at time: 

i,k s st kT / N iT k 0,1,..., N 1= + = −  (9.24) 

with ti,N=ti+1,0.  

                                                 
6 ωorb is the orbital angular frequency. 
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If  ∆ρ%  is a continuous time process, the coefficients in equations (9.22) and (9.23) may be 
obtained by evaluating the following integrals:  

t

s
s 0

2B (t) (t)cos( t)dt
Tγ γ= ∆ρ ω∫ %  (9.25) 

t

s
s 0

2C (t) (t)sin( t)dt
Tγ γ= ∆ρ ω∫ %  (9.26) 

(the label γ refers to the ξ,η components). In particular, the coefficients Bξ,i(t) and Cξ,i(t) 
corresponding with the i-th spin period are: 

s

s

s s

iT

,i s
s (i 1)T

iT (i 1)T

s s s s
s 0 0

(9.27)
2B (t)cos( t)dt
T

2 (t)cos( t)dt (t)cos( t)dt B (iT ) B ((i 1)T )
T

−

ξ ξ
−

ξ ξ ξ ξ− − −

= ∆ρ ω

 
= ∆ρ ω ∆ρ ω = 

  

∫

∫ ∫

%

% %

,i s sC C (iT ) C ((i 1)T )ξ ξ ξ= − −  (9.28) 

 

η 

ξ

x 

y 

ϕξ 

ϕη 

 
Figure 9.11: Phases of the signal. 

Since we work only with discrete data, numerical computation of the Fourier coefficients 
(9.27) and (9.28) can be performed in the following manner: 

N 1
,i i,k s i,kk 0

s

2B (t )cos( t )
T

−
ξ ξ== ∆ρ ω∑ %  (9.29) 

Having evaluated the coefficients Bξi and Bηi in the i-th spin period, by using the relations 
(9.23.a) and (9.23.b) we are able to write the relative displacement vector in the inertial 
reference frame r∆% . Note that this vector  can also be obtained by evaluating the coefficients 
Cξ,i and Cη,i (from ∆ρ%  with a delay of Ts/4): 

x sr C (t t T / 4)η∆ = − → +%  (9.30.a) 
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y sr C (t t T / 4)ξ∆ = → +%  (9.30.b) 

We have two independent measurements ((9.23) and (9.30)) of the components of the relative 
displacement in the inertial frame obtained from the measurements performed by the bridges 
sensitive along the ξ and η directions. Since sensor errors are not correlated, a better 
evaluation of the relative displacement r∆%  is obtained by combining the relations (9.23) and 
(9.24), namely:  

x sr B C (t t T / 4) / 2ξ η ∆ = − → + %  (9.31.a) 

y sr B C (t t T / 4) / 2η ξ ∆ = + → + %  (9.31.b) 

For details about the simulation of the Fourier filter see appendix 9.C, section 9.C.4. Figure 
9.12 shows results of the simulation.  

 
Figure 9.12: Actual relative displacement spacecraft/PGB in the inertial reference frame (along x direction)  as 
predicted with Simulink is drawn in black. It is compared with the relative displacement (9.21) drawn in blue and 
with the relative displacement reconstructed by the first Fourier filter (9.31) from measurements of the rotating 
sensors. The improvement due to the filter is apparent. 

Actual relative displacement spacecraft/PGB in the inertial reference frame as predicted with 
Simulink is drawn in black. It is compared with the relative displacement (9.21) drawn in blue 
and with the relative displacement reconstructed by the first Fourier filter from measurements 
of the rotating sensors. The improvement due to the filter is apparent. Note that the relative 
displacement will be delayed by one spin period, since one Ts is needed to sample the starting 
data.  
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9.9.B: RECONSTRUCTION OF THE RELATIVE VELOCITY. 

 
From the difference between the corresponding values of the relative displacement in two spin 
periods7, the velocity of the modulating signal in the inertial frame is then reconstructed:  

( )i i i 1 sv r r T−∆ = ∆ − ∆% %%  (9.32) 

The reconstructed velocity is driven by the noise. The solution is to perform a second Fourier 
harmonic analysis at the whirl period Tw

8. The formulas for the second Fourier filter are the 
same of the first Fourier filter (9.22), after substituting Ts with Tw and ∆ρ% with v∆% , namely: 

w
x x w x wv (t) B cos( t) C sin( t)∆ = ω + ω  (9.33.a) 
w
y y w y wv (t) B cos( t) C sin( t)∆ = ω + ω  (9.33.b) 

An example of this double-filter approach is shown in figure 9.13 (details about the 
simulation are available in appendix 9.C, section 9.C.4). 
 

9.10: THE CONTROL FORCE. 
 
The velocity (9.33) has been reconstructed after the double Fourier filter. Let us introduce its 
phase ϕv in the inertial reference frame (see figure 9.14), i.e. x vv v cos( )∆ = ∆ ϕ% %  and 

y vv v sin( )∆ = ∆ ϕ% % . The continuous compensation requires a stabilization force in the form of a 
sinusoidal signal and proportional to the relative velocity in the inertial frame: 

c
x nr vF c v cos( )= − ∆ ϕ%  (9.34.a) 
c
y nr vF c v sin( )= − ∆ ϕ%  (9.34.b) 

Since the active plates are fixed in the rotating frame, the force (9.34) has to be written in this 
frame: 

c
nr s vF c v cos( t )ξ = − ∆ ω −ϕ%  (9.35.a) 

c
nr s vF c v sin( t )η = ∆ ω −ϕ%  (9.35.b) 

The attracting force can be applied in the form of a step pulse.  See table 9.1 for the 
waveform�s parameters. In [11] a non rotating damping in pulsed mode has been developed. 

                                                 
7 ir∆%  can be used with i nr −∆%  at the step ti-nTs to determine the velocity, i.e. ( )i i i n sv r r nT−∆ = ∆ − ∆% %% .  Using an 
interval of n spin periods, the noise is well attenuated, but the phase shift is encreased.  
8 Let us consider an unstable forward whirling mode at frequency ωw. The time constant is then 2Q/ωw (see 
equations (5.4), (1.65)), i.e. it is Q/π times larger than the whirl period. By using a Q=90 for the spacecraft/PGB 
system and its natural period 296s, the signal doubles in 28.6 Tw . Hence, there is enough time to measure the 
relative displacement and perform the second Fourier harmonic analysis at the whirl period. Note that Q=90 is 
the lowest quality factor of the GG system; hence this is the fastest growing instability and therefore the most 
dangerous and difficult to control.  
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The attracting force is applied in the form of sinusoidal  pulses, with two pulses in one turn, 
one for each actuator. 

 
Figure 9.13: Actual relative velocity spacecraft/PGB in the inertial reference frame (along x direction)  as 
predicted with Simulink is drawn in black. It is compared with the relative velocity (9.32) drawn in blue and with 
the relative displacement reconstructed by the second Fourier filter (9.33) from measurements of the rotating 
sensors. The improvement due to the filter is apparent. 
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Figure 9.14: Relative velocity in the inertial and rotating frames. 
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Pulse Width Force�s Components 

s v3 / 4 t / 4− π ≤ω −ϕ ≤ −π  c c
nrF 0 ; F c vξ η= = − ∆%  

s v/ 4 t / 4−π ≤ω −ϕ ≤ π  c c
nrF c v ; F 0ξ η= − ∆ =%  

s v/ 4 t 3 / 4π ≤ω −ϕ ≤ π  c c
nrF 0 ; F c vξ η= = ∆%  

s v3 / 4 t 5 / 4π ≤ω −ϕ ≤ π  c c
nrF c v ; F 0ξ η= ∆ =%  

Table 9.1: Step pulsed force. 

The pulses must be sized NR2c v∆%  in order to provide the equivalent stabilization of the 
continuous command. See table 9.2 for the waveform�s parameters of this damping force. In 
figure 9.15, the continuous compensation force (9.35.a) is shown compared with the pulsed 
force (both step pulse and sinusoidal pulse).  

Pulse Width Force�s Components 

s v3 / 4 t / 4− π ≤ω −ϕ ≤ −π  ( )c c
nr s vF 0 ; F 2c v cos 2 tξ η= = ∆ ω −ϕ  %  

s v/ 4 t / 4−π ≤ω −ϕ ≤ π  ( )c c
nr s vF 2c v cos 2 t ; F 0ξ η= − ∆ ω −ϕ =  %  

s v/ 4 t 3 / 4π ≤ω −ϕ ≤ π  ( )c c
nr s vF 0 ; F 2c v cos 2 tξ η= = − ∆ ω −ϕ  %  

s v3 / 4 t 5 / 4π ≤ω −ϕ ≤ π  ( )c c
nr s vF 2c v cos 2 t ; F 0ξ η= ∆ ω −ϕ =  %  

Table 9.2: Sinusoidal pulsed force. 

 
Figure 9.15: Comparison between continuous and pulsed stabilization commands. 
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9.11: RESULTS OF THE NUMERICAL SIMULATIONS  AND CONCLUSIONS. 
 
In this section we apply the control laws in order to damp whirl motions. The total block 
diagram implemented in Simulink is shown in figure 9.17; it is described in appendix 9.C. 
The values for the coefficients of non rotating damping (cNR and cNRt) are 15 times larger than 
the minimum value required for stability; this allows us to save CPU time. The sampling 
period is  fixed  to 0.025 seconds, i.e.  N=20 samples per spin period. The relative velocity 

( )i i i n sv r r nT−∆ = ∆ − ∆% %%  (9.32) has been evaluated by assuming n=10.  
The errors included were: errors on sensors, RMS=10-2µm, bias=10µm, angular bias=1°,  
RMS of the ESS= 10-4ωs. The main drag component has been set to 5⋅10-9N (after drag free 
control). It converts to a signal at frequency ωs in the rotating reference frame. A second 
component of the drag acts at frequency ωs-ωorb in the rotating frame and has amplitude   
2⋅10-9N. Results are summarized in the following figures. All plots are shown in the non 
rotating frame.   
Figure 9.16 shows the components of the whirling motion along x direction in the inertial 
reference frame. The pulsed command described in section 9.9 (see table 9.2) reduce the whirl 
radius to about one Angstrom after 5000 seconds and stabilize the system.  The inset shows 
the residual signal after whirling compensation. 

 
Figure 9.16:Components along x axis of the whirling motions. The whirl radius reduces to about one Angstrom 
after 5000 seconds. 

In figure 9.18 we plot the active force of control along ξ direction as a function of time. This 
chapter demonstrates that the whirl control problem of the GG system can be solved in 
realistic conditions. 
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Figure 9.17: Block diagram implemented in Simulink. 
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Figure 9.18: Active force of the control along the ξ direction in the rotating reference frame. 

 

9.12: TIDAL EFFECTS ON THE GG TEST MASSES. 
 
Experiments to test the equivalence principle (EP) in low Earth orbit require to detect 
the effects of an extremely small non-classical differential acceleration between test 
masses of different composition. In all proposed experiments the test masses are 
concentric coaxial cylinders, so as to reduce classical tidal effects which are differential 
too. Perfect centring being impossible, tidal effects need to be carefully investigated as 
they impose severe constraints on the basic features of the experiment design. The 
analysis in [54] shows that with free flying (uncoupled) test masses an EP violation 
signal could be detected if the initial conditions of the masses were finely adjusted for 
them to remain at a fixed distance relative to each other while orbiting around the Earth. 
However, such an experiment is severely limited by non-gravitational effects. If the test 
cylinders are weakly coupled in 2D in the plane perpendicular to their symmetry axis 
(close to the orbit plane), while rapidly spinning around it, a position of relative 
equilibrium is provided by physical laws which makes tidal effects widely separated 
from the signal. Weak coupling in 1D along the symmetry axis (to lie and slowly rotate 
in the orbit plane) is viable but less advantageous.  
The following sections 9.12.a, 9.12.b, 9.12.c and 9.12.d are parts of the article [54] 
available in Appendix_Article. In section 9.12.a we demonstrate that one way to 
separate the EP violation signal from the tide is to couple the test masses in the orbit 
plane, e.g., with a mechanical spring, thus introducing a natural frequency of differential 
oscillation of the test masses with respect to one another. In this case, while the EP 
signal is still detected at the orbital frequency, tides are at the natural differential 
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frequency, and at this frequency plus or minus twice the orbital frequency. This is the 
case of the proposed �Galileo Galilei-GG� space experiment, where the natural 
differential frequency is about a factor 10 away from the orbital frequency, which 
makes it easy to separate tidal effects from the signal. The need for all EP experiments 
in space to spin the spacecraft in order to provide a frequency modulation of the signal 
is discussed in section 9.12.b. In section 9.12.c the GG experiment is analysed under 
realistic conditions, including the rotation of the system in super-critical regime, to 
demonstrate that indeed an EP violation signal would not be masked by tidal effects.  
 

9.12.A: EP VIOLATION SIGNAL AND TIDAL EFFECTS FOR TEST MASSES COUPLED IN 
THE ORBIT PLANE. 

 
We now show that if two test bodies are coupled in the orbit plane, tidal effects and EP 
violation signal appear at different frequencies, which makes it possible to separate 
them out. Let us consider a spacecraft orbiting the Earth with radius r and Keplerian 
angular velocity 3

orb GM / rω = .  
Let the test masses m1 and m2 be separated by ∆r (∆r<<r)  in their initial orbital 
distance, and be coupled to each other with a positive stiffness k (the coupling may be 
of different nature, e.g., mechanical, electrostatic or magnetic) in the orbit plane. The 
suspension is assumed to be rigid (in reality it is only much stiffer) along the orbit 
normal. We investigate their motion in the reference frame of the orbiting satellite. The 
frame is centred on the centre of mass of the Earth, with the x′ axis in the Earth-to-
satellite direction, the z axis perpendicular to the orbit plane and the y′ axis to complete 
the Cartesian system.  
In this frame we call 1r

!
 and 2r

!
the test masses position vectors with respect to the centre 

of mass of the spacecraft, and 1 1r rρ = +! ! ! , 2 2r rρ = +! ! !  their position vectors with respect to 
the centre of mass of the Earth. The bodies have the same inertial mass but different 
composition. In addition it is assumed that there is a violation of the equivalence 
principle to the level η, namely: i i

1 2m m m= = , g
1m m=  and ( )g

2m m 1= +ηηηη . The Lagrange 
function is: 

( ) ( )

( ) ( )

2 2 2 2 2 2 2
1x 1y 2x 2y orb 1x 2x orb 1x 1y 1y 1x 2x 2y 2y 2x

2 2 2 2 2 2 2 2
1x 1y 2x 2y 1x 2x 1y 2y 0rb 2x 0rb 2x 2y

1 m r r r r 3 r r r r r r r r r r
2

1 1k r r r r 2r r 2r r m R r m 2r r
2 2

 = + + + + ω + +ω − + − 

− + + + − − − ω + ω −

# # # # # # # #

η ηη ηη ηη η

L

 (9.36) 
Tidal effects can be singled out by putting ηηηη =0 in (9.36) (i.e., no EP violation), and 
then deriving the equations of motion of the test masses in their relative coordinates   
X= r2x-r1x and Y=r2y-r2x:  

( )2 2
orb n orb

2
orb n

X-2ω Y+ ω -3ω X=0

Y+2ω X+ω Y=0





## #

## #
 (9.37) 

The angular frequency n 2k / mω =  appearing in (9.37) is the natural frequency of 
oscillation of the test masses relative to one another in the orbit plane due to the 
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coupling stiffness k: the weaker the coupling stiffness, the more sensitive the test bodies 
are to differential forces, such as those due to tides or EP violation. In space, thanks to 
weightlessness, the coupling can be very weak, much weaker than on the ground where 
suspensions must be stiff enough to withstand local gravity. Hence, the natural 
differential frequency can be much lower in space than in the laboratory. Yet, it is 
always much larger than the orbital frequency, which in all proposed space experiments 
is about  1.7⋅10-4 Hz (typical orbital periods in low Earth orbit are 6000s). By combining 
equation (9.37) into one single equation of higher order, we obtain 

( ) ( )2 2 2 2 2
orb n n n orbX+ ω +2ω X+ω ω -3ω X=0#### ##  (9.38) 

whose eigenvalues are: 

2 2 2 2
1,2,3,4 n orb orb n orb nΛ =±i ω +ω /2 2ω ω 1+ω /(16ω )∓  (9.40) 

These eigenvalues give the angular frequencies of tidal effects in the reference frame of 
the satellite which orbits around the Earth at  ωorb. For the EP experiments in space it is 
ωn>>ωorb , and these frequencies become: 

( )1,2,3,4 n orbΛ =±i ω ±ω  (9.41) 

If seen in the inertial reference frame (centred on the centre of mass of the Earth and 
fixed in space), tidal effect would therefore appear at frequencies: 

n n orb, 2ν ν ± ν  (9.42) 

(ν=ω/2π). Hence, the effect of coupling the test masses in the orbit plane is to shift the 
tidal signal from the orbital frequency νorb to the (typically much larger) natural 
differential frequency νn introduced by the coupling. What about the effect of coupling 
on an EP violation signal?  
In order to answer this question we consider ηηηη ≠0 in the Lagrange function (9.36) and 
find that in this case there exists a position of relative equilibrium of the test masses in 
the Earth-to-satellite direction (the x axis of the orbiting reference frame). The 
coordinates of the test masses at equilibrium are: 

( ) ( )
2

0 n
1x 2 2 2 2

n orb n orb

2
0 0 orb
2x 1x 2

n

2
0 0 0 n

1y 2y 1x 2 2
n orb

ω Rr =
6 ω -3ω +2 ω -6ω

ωr =r 1-6
ω

ωr =r =r
ω +2 ω






 
 
 

      

ηηηη

ηηηη

η

 (9.43) 

Since the equilibrium position (18) due to an EP violation ηηηη  is fixed in the orbit plane 
of the reference frame of the orbiting satellite, it is apparent that in the inertial reference 
system the EP violation signal has the main component at the orbital frequency (as in 
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the case of uncoupled test masses), while tides are now close to the natural differential 
frequency due to coupling. Since the orbital frequency is several times lower than the 
natural one, we conclude that�thanks to coupling in the orbit plane�an EP violation 
signal can be well separated from classical tidal effects.  
 

9.12.B: TIDAL EFFECTS IN SUPERCRITICAL ROTATION. 

 
For high accuracy EP tests in space the spacecraft should also rotate, so as to modulate 
the signal at its rotation frequency relative to the Earth (the synodic frequency). EP tests 
require weak suspensions and large rotation rates: weak suspensions increase the 
sensitivity of the test masses to applied forces; fast rotation provides high frequency 
modulation and reduced �1/f� noise. Conceptually, the problem is that of a rotating 
oscillator made of a body of mass m whose centre of mass is suspended with stiffness k 
from a point located a vector ε!  away from the rotation axis. ε!  is the inevitable offset 
due to construction and mounting errors, and is fixed with the rotor. Two frequencies 
are relevant for equilibrium: the spin frequency ωs and the natural frequency ωn. 
Equilibrium is achieved at a position eqr! where the centrifugal force is balanced by the 
restoring force of the suspension; for highly supercritical rotation the  self-centring (see 
equation (9.2)) occurs since the original offset is reduced by the large factor 2 2

n sω ω .  
The same line of reasoning holds for two rotating coupled masses, whose relative 
position at equilibrium is as in (9.1), ωn now being the frequency of differential 
oscillations. This is the case of the GG experiment design, for which tidal effects and EP 
violation signal are analysed in detail in sections 9.11.c and 9.11.d. Note that, since the 
offset vector ε!  is fixed with the rotor, the position vector of relative equilibrium is also 
fixed with the rotor, and therefore the corresponding tidal effect is (in the rotating 
reference frame) at twice the spin frequency, just as lunisolar tides on the surface of the 
Earth have periodicities of 12 h (solar tide) and 12 h 25 min (lunar tide).  
 

9.12.C: THE GG EXPERIMENT: EP VIOLATION SIGNAL, WHIRL MOTION  AND TIDAL 
EFFECTS IN THE SENSITIVE  PLANE. 

 
We have numerically integrated equations of motion for the GG satellite in presence of 
an EP violation signal.  Note that: νs=2.000175 Hz is the spin frequency of the satellite 
around its symmetry axis with respect to a star fixed reference frame; νorb=1.75⋅10-4 Hz 
is the orbital frequency around the Earth and νprec=Ωprec/2π=3.17⋅10-8 Hz is the 
frequency of precession of the normal to the orbit around the normal to the equator (too 
small to be detected in 20 days of integration time).  For demonstration purposes the 
numerical integration is carried out with a very large whirl radius rw=2.5⋅10-4m and 
assuming a very high level of violation  ηηηη =10-11. Instead, the natural differential period 
of the coupling (also the whirl period) is Tw =540 s as in GG, the quality factor is 
Q=20000 as originally assumed in GG (though better values have been measured), and 
ε=10-6 m. Since at this point we are interested only in frequencies much faster than the 
precession frequency, the numerical integration time span is short and precession is not 
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included.  The resulting FFT of the relative acceleration between the test  bodies is 
shown in figure 9.19 where all four expected peaks are visible: whirl motion appears at 
νw=0.00185 Hz, tidal effect at νw, νw-2νorb=0.0015 Hz and νw+2νorb=0.0022 Hz  and EP 
signal at νorb=1.75⋅10-4 Hz (EP signal has a peak at νs too due to the offset).  

 
Figure 9.19: FFT of the differential acceleration where all 4 expected peaks are visible. 

We now derive the same results by analytical methods, taking into account also 
precession. We use a simplified model and write the equations of motion in the inertial 
reference frame (x,y,z) centred on the centre of the Earth, the x-axis along the nodal line 
of the satellite�s orbit at initial time, the y-axis perpendicular to it in the orbit plane at 
initial time and the z-axis along the spin axis, coinciding with the orbit normal at initial 
time.  
Let (s1,s2,s3) be a reference frame fixed with the satellite, where s3 is in the direction of 
the spin axis (coinciding with the orbit normal z at initial time), s1 is along the nodal line 
at initial time (same as x-axis) and  (s1,s2) is therefore the sensitive plane of the 
instrument. In the reference system identified by the equatorial plane of the Earth and by 
its rotation axis it is: s3=(0,-sinI,cosI), s1=(1,0,0) and s2=(0,sinI,cosI) where I=97.5° is 
the inclination of the orbit. The unit position vector of the satellite at time t is: 

( )
( )
( ) ( )

( ) ( )
( ) ( )

( )

prec prec

orb prec orb prec

cos Ω t -cos I sin Ω t

�r = cos ω t + sin Ω t +sin ω t + cos I cos Ω t

0 sin I

   
   
   
   
   
   

ϕ ϕ  (9.44) 

while whirl motion of the two test bodies is described by the vector: 
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( )
( ) ( )
( ) ( )

w
2

w w

w

cos ω t

p=r sin ω t cos I

sin ω t sin I

 
 
 
 
 

! w t
Qe

ω

 (9.45) 

Then, the tidal (differential) acceleration between the test bodies is: 

( ) ( ) ( )( ){ }
w t

2
w w 3 1 w 13

GM � � � � � � �3 r e sin t r s s r cos t r s r p
r

ω

= ω × ⋅ + ω ⋅ +  
!! Qa  (9.46) 

and its components in the sensitive plane are: 

( ) ( ) ( )( ) ( )
w

1

t
2

s 1 w w 3 1 w 1 1 13
GM� � � � � � � � �s 3r e sin t r s s cos t r s r s p s
r

ω    = ⋅ = ω × ⋅ + ω ⋅ ⋅ − ⋅   
  

!! Qa a

 (9.47.a) 

( ) ( ) ( )( ) ( )
w

2

t
2

s 2 w w 3 1 w 1 2 23
GM� � � � � � � � �s 3r e sin t r s s cos t r s r s p s
r

ω    = ⋅ = ω × ⋅ + ω ⋅ ⋅ − ⋅   
  

!! Qa a

 (9.47.b) 
Using (9.44) in (9.47.a) and (9.47.b) we can list all the frequencies at which the whirl-
related tides take place. Acceleration as1 can be seen as the sum of the nine signals listed 
in table 9.3. The same holds for as2. The table shows that tides between the test masses 
occur at angular frequencies νw,  νw±2νorb,  νw±2νprec,  νw±2νorb±2νprec,  νw±2νorb±νprec. 
In the case of GG, however, νprec is too tiny to be detected. Thus, the relevant 
frequencies of the tides in GG are νw,  νw±2νorb in agreement with the numerical 
simulation. We conclude this analysis by showing in figure 9.20 the time evolution of 
the EP violation signal component ( ) 2

s1 1�GM r s / r⊕= − ⋅!a ηηηη  as compared to the same 
component of the tidal effect, giving the corresponding FFT analysis in figure 9.21. It is 
apparent that the wide separation in frequency allows an EP violation signal to be 
recovered even if it is much smaller than tidal effects.  

 Component Frequency 
w t /(2Q) 2 2 3

w w orb precGM 3r e cos( t) cos ( t) cos ( t) / rω
⊕ ω ω Ω  ωw, ωw±2ωorb, ωw±2Ωp, 

ωw±2ωorb±2Ωp 

( ) ( )wt /(2Q) 2 3
w w orb precGM 3/ 2 r e sin I sin( t)sin(2 t) cos( t) / rω

⊕ ω ω Ω  ωw±2ωorb±Ωp 

w t /(2Q) 3
w wGM r e cos( t) / rω

⊕− ω  ωw 

( ) ( ) wt /(2Q)2 2 3
w w orb precGM 3r sin I cos I e sin( t)sin ( t)sin( t) / rω

⊕ ω ω Ω  ωw±Ωp, ωw±2ωorb±2Ωp 

( ) ( ) w t /(2Q) 2 3
w w orb precGM 3/ 2 r cos I e sin( t) cos ( t)sin(2 t) / rω

⊕ ω ω Ω  ωw±2Ωp, ωw±2ωorb±2Ωp

( ) ( ) w t /(2Q) 3
w w orb precGM 3/ 2 r cos I e cos( t)sin(2 t)sin(2 t) / rω

⊕− ω ω Ω  ωw±2ωorb±2Ωp 

( ) ( ) w t /(2Q)2 3
w w orb precGM 3/ 2 r cos I e sin( t)sin(2 t)cos(2 t) / rω

⊕ ω ω Ω  ωw, ωw±2ωorb, ωw±2Ωp, 
ωw±2ωorb±2Ωp 

( ) ( ) w t /(2Q)2 2 2 3
w w orb precGM 3/ 2 r cos I e cos( t)sin ( t)sin ( t) / rω

⊕ ω ω Ω  ωw±2ωorb±2Ωp 

( ) ( ) w t /(2Q)3 2 3
w w orb precGM 3/ 2 r cos I e sin( t)sin ( t)sin(2 t) / rω

⊕ ω ω Ω  ωw±2Ωp, ωw±2ωorb±2Ωp

Table 9.3: Tidal acceleration components in the sensitive plane of the GG system. 
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Figure 9.20: Time evolution of the EP violation signal (above) and of the tidal signal (below) along the s1 
direction in the sensitive plane. All signals are given in units of  2GM r 1⊕ =ηηηη . 

 
Figure 9.21: FFT analysis of the data shown in figure 9.20. The amplitudes of the tidal peaks are about 20 
times larger than the EP signal. Nevertheless, the differences between the orbital and the whirl frequency 
allows us to recover the EP signal from the analysis. All signals are given in units of  2GM r 1⊕ =ηηηη .  
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9.12.D: THE GG EXPERIMENT: TIDES DUE TO RELATIVE DISPLACEMENTS ALONG 
THE SPIN AXIS. 

 
Even if the GG system is stiff along the spin/symmetry axis z, perturbations acting 
along this direction are present (e.g., due to solar radiation pressure or to coupling of the 
Earth�s monopole with higher mass moments of the test bodies) which may produce a 
displacement between the centres of mass of the test cylinders. Unless the spin axis 
remains all time exactly perpendicular to the orbit plane (which is not the case in GG), a 
centre of mass separation along its direction will give a tidal signal also in the sensitive 
plane. We use the same analytical procedure as in section 9.11.d to describe the 
resulting tidal signal. The tidal acceleration !a  corresponding to the relative separation 
vector (0,0,∆z) with respect to the satellite centre-of-mass, can be written as 

( ) ( )
( )3 33 3

1 GM 3 GM� � � �zs z r r s
2 2R h R h

⊕ ⊕

⊕ ⊕

= − ∆ + ∆ ⋅
+ +

!a  (9.48) 

In the reference frame (s1 s2), we have 

( )
( )

( )
( )

1 3

2 2
2 3

3 sin( ) cos( )
2

3 1 sin(2 ) cos(2 )
2 2

⊕

⊕

⊕

⊕

= ∆ −
+

 = ∆ − −  +

s x y z

s y z y z

GMa z r r I r I
R h

GMa z r r I r r I
R h

 (9.49) 

The corresponding FFT analysis is reported in figure 9.22.  

 
Figure 9.22: FFT analysis for a centre of mass separation along the z axis; tidal effects appear in the 
sensitive plane at frequency orb2ν , while the EP signal is still at orbν . 
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In this case, tidal effects are detected at frequency orb2ν , while the EP signal is still at 

orbν . The peak at orb2ν  in figure 9.22 actually does not resolve the contributions at 

orb prec2ν ± ν  and orb prec2 2ν ± ν . We end this section noticing that, although the frequency 
analysis of tidal effects is useful in order to understand the physical nature of these 
subtle perturbations, in the actual GG experiment the measurement data provided by the 
capacitance bridges, rotating with the test cylinders and the whole spacecraft at a 
nominal frequency of 2 Hz, are transformed (using the reference signal provided by the 
Earth elevation sensor onboard the spacecraft) into an Earth pointing, non-rotating 
reference frame centred in the centre of mass of the spacecraft. In this frame an EP 
violation signal appears as a constant offset (for zero orbital eccentricity) in the satellite-
to-Earth direction while tidal disturbances appear at a frequency close to the natural 
differential frequency of the test cylinders, and therefore average out to zero. 
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APPENDIX 3.A:  

THE LAGRANGEAN OF A ROTOR. 

 
In an inertial reference frame S0, the Lagrangean L  of a rigid body is expressed by equation 
(A.1), where 0v! is the velocity of the mass element dm and U is the potential energy of the 
body. 

2
0 0

1 v dm U
2

= −∫
!L  (3.A.1) 

If we consider a reference frame S1 moving with respect to S0 with velocity V1(t), we have 
that:  

0 1 1v = v +V (t)
!! !

 (3.A.2) 

1v!  being the velocity of the body in the new reference frame S1. Combining equations (A.1) 
and (A.2) together, the Lagrange function can thus be written as: 

2 2 2
1 1 1 1 1 1 1

1 1 1(v +V (t)) dm-U= v dm+ v V (t)dm+ V dm
2 2 2

= ⋅∫ ∫
! ! !! ! !L -U∫ ∫  (3.A.3) 

After noticing that V1(t)2 is the total derivative of a time dependent function, we can neglect 
the corresponding term in the lagrangean  1L . For the same reason we can write 

1 11
1 1 1

d r V (t)dmdrv V (t)dm=V (t) dm=
dt dt

⋅
⋅ ⋅ ∫∫ ∫

!!!! !! 1
1

dV- r dm
dt

⋅∫
!

!
 (3.A.4) 

By defining the acceleration 

1dVW(t)
dt

=  (3.A.5) 

we finally obtain the Lagrange function in the reference frame S1: 

2 21
1 1 1 1 1

1 dV 1v dm- r dm-U= v dm- r W(t)dm-U
2 dt 2

= ⋅ ⋅∫ ∫ ∫ ∫
! !! !! !L  (3.A.6) 

We introduce another reference system S with the origin coinciding with that of the preceding 
frame,  which rotates in the horizontal plane with angular velocity sω

! . The velocity v!  in S is 
easily related to the velocity in S1

1: 

( )1 sv = v+ ω ×r! !! !
 (3.A.7) 

Combining equations (3.A.6) and (3.A.7) we derive the operational expression for the 
Lagrange function of a rigid body in a rotating reference frame: 

                                                 
1 r! is the position vector of the mass element dm  in S. 
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22
s s

1 1v dm+ v×(ω ×r)dm+ (ω ×r) dm- r W(t)dm-U
2 2

= ⋅∫ ∫ ∫ ∫
!! ! ! ! !! !L  (3.A.8) 

Since the rotor GGG does not perform translational motions, the lagrangean of interest 
follows from equation (3.A.8) by imposing W 0=

!
. 

Corioliskinetic Centrifugal

2 2
s s

VT U

1 1v dm+ v×(ω ×r)dm+ (ω ×r) dm-U
2 2

= ∫ ∫ ∫
! ! ! !! !

"##$##%"#$#% "##$##%
L 2 (3.A.9) 

Starting from equation (3.A.9) it is possible to derive equations of motion of a rigid body in a 
non-inertial reference frame rotating with angular velocity sω

! . As a matter of fact,  bodies can 
rotate around themselves, so equation (3.A.9) must be extended in order to take into account 
their rotational kinetic energy. We call R

!
the centre of mass G position vector with respect to 

the origin O of the rotating frame ( )ξ,η,z . In this frame, ρ!  is the position vector of the 
element dm with  respect to the centre of mass of the body. r=R+ρ

!! !  is the total vector pointing 
to dm. V

!
is the velocity of the centre of mass. 

 
Figure 3.A.1 : The location of one body with respect to the rotating reference frame ( )ξ,η,z . 

The coordinates (Ξ,Π,ϒ)  are defined with reference to the body-fixed frame with the origin in 
the centre of mass of the body and axes coincident with its principal axes of inertia as drawn 
in figure 3.A.2. We can conveniently write all the vectors in the frame (O,ξ,η,z) in terms of 
their components in the frame (G,Ξ,Π,ϒ) by means of a rotation3. In the body-fixed frame (G, 
Ξ,Π,ϒ), , ,ΩΞ Π ϒ

!
is the angular velocity along the principal axes of inertia. Ω

!
 is the same 

                                                 
2 Potential energy (named as U) contains only position vectors. Instead, the term  VCoriolis from the Coriolis Force 
contains also the velocities. 

3 The rotation matrix is: 
sin cos cos sin cos
cos cos sin sin sin
0 sin cos

φ ϑ φ − ϑ φ
− φ ϑ φ − ϑ φ

ϑ ϑ

 
 
 
 

.  
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angular velocity  written in the rotating frame (O,ξ,η,z). The velocity of the element dm in the 
rotating frame is given by the following equation: 

( )v=V+ Ω×ρ
!! !!

 (3.A.10) 

The angles ϑ and φ are the generalized coordinate; they are drawn in figure 3.A.3. In terms of 
those angles the angular velocity in the body-fixed frame becomes: 

, ,

s

Ω sin( )Ξ Π ϒ

 ϑ
 = φ ϑ 
 ω 

&
! &  (3.A.11) 

 
Figure  3.A.2: The reference system fixed with the body. The (Ξ,Π,ϒ) axes coincide with principal axes of 
inertia. 

Starting from the lagrangean in equation (3.A.9) the kinetic energy can be written as: 
2

kinetic
1T v dm
2

= ∫
!

 (3.A.12) 

Replacing equation (3.A.10) in the integral (3.A.12) we obtain: 

( ) ( ) ( )2 22
kinetic

1 1T V+ Ω×ρ dm V + Ω×ρ 2V Ω×ρ dm
2 2

  = = + ⋅    ∫ ∫
! ! !! ! !! ! !

 (3.A.13) 

It is convenient to evacuate the integrals appearing in equation (3.A.13). It is easy to find the 
following results: 

2 2 21 1 1V dm V dm MV
2 2 2

= =∫ ∫
! ! !

 (3.A.14.a) 

( ) ( ) ( )V Ω×ρ dm V Ω×ρ dm V×Ω ρ dm 0⋅ = ⋅ = ⋅ =∫ ∫ ∫
! ! !! ! !! ! ! 4 (3.A.14.b) 

                                                 
4 This result follows from the definition of centre of mass, i.e. ρ dm 0=∫

! . 
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( )2 2
β,β β

β

1 1Ω×ρ dm I Ω
2 2

= ∑∫
! ! 5 (3.A.14.c) 

Thanks to equations (3.A.14) the kinetic energy can be written as the sum  of a term related to 
the motion of the centre of mass and one related to the rotations around it: 

( )( )2 2 2 2 2 2
kinetic β,β β

β

1 1 1 1T MV I Ω MV I sin
2 2 2 2 Ξ= + = + φ ϑ + ϑ∑
! ! & &  (3.A.15) 

The term VCoriolis related to the Coriolis force is: 

( ) ( )Coriolis s sV v×(ω ×r)dm V+ Ω×ρ ω × R+ρ dm   = = ⋅  ∫ ∫
!! !! ! ! ! !!

 (3.A.16) 

 
Figure 3.A.3: Generalized coordinates ϑ and φ of the point P. 

Exploiting the properties of the scalar product equations (3.A.17) are found. 

( ) ( ) ( )s s sV ω ×R dm V ω ×R dm M V ω ×R⋅ = ⋅ = ⋅∫ ∫
! ! ! ! ! !! ! !

 (3.A.17.a) 

( ) ( )s sV ω ×ρ dm V ω ×ρ dm 0⋅ = ⋅ =∫ ∫
! !! ! ! ! 6 (3.A.17.b) 

( ) ( ) ( ) ( )s sΩ×ρ ω ×R dm ω ×R Ω×ρ dm 0⋅ = ⋅ =∫ ∫
! !! !! ! ! ! 7 (3.A.17.c) 

( ) ( ) 2 2
s s sΩ×ρ ω ×ρ dm I ω sin ( ) I ω cos( )Ξ ϒ⋅ = φ ϑ + ϑ∫

! ! ! ! &  (3.A.17.d) 

                                                 
5 Iβ,β is the tensor of inertia of the body. In particular, it is I1,1=I2,2=IΞ and I3,3=Iϒ for a cylindrical body. 
6 It follows from the definition of centre of mass: ρ dm ρ dm ρ dm 0ξ η ζ= = =∫ ∫ ∫  
7 See note 4. 
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Replacing  (3.A.17.a) and (3.A.17.d) in (3.A.16) we finally obtain: 

( )
CoriolisCoriolis

2 2
Coriolis s s s

UT

V M V ω ×R I ω sin ( )+I ω cos( )Ξ ϒ= ⋅ +
! !! &

"##$##%"#####$#####%
φ ϑ ϑ  (3.A.18) 

In (3.A.18) VCoriolis  has been split up into a potential energy containing only the angle ϑ 
2

Coriolis sU I ω cos( )ϒ= ϑ  (3.A.19) 

and a �kinetic� energy containing also the velocities: 

( ) 2
Coriolis s sT M V ω ×R I ω sin ( )Ξ= ⋅ +

! !! &φ ϑ  (3.A.20) 

The centrifugal part Ucentrifugal has been named as a potential energy: 

( ) 22
centrifugal s s

1 1U = (ω ×r) dm= ω × R+ρ dm
2 2

 
 ∫ ∫

!! ! ! !
 (3.A.21) 

The integral appearing in (3.A.21) can be conveniently written as the sum of the following 
terms: 

( ) ( )2 2
s sω ×R dm= M ω ×R∫
! !! !

 (3.A.22.a) 

( )2 2 2 2
s sω ×ρ dm= I sin ( ) I cos ( )Ξ ϒ ϑ + ϑ ω ∫
! !

 (3.A.22.b) 

( ) ( ) ( ) ( )s s s sω ×R ω ×ρ dm= ω ×R ω ×ρ dm 0⋅ ⋅ =∫ ∫
! !! ! ! ! ! ! 8 (3.A.22.c) 

Substituting (3.A.22.a) and (3.A.22.b) in equation (3.A.21) the final expression for the 
centrifugal energy is obtained: 

( )2 2 2 2
centrifugal s s

1 1U = M ω ×R + I sin ( ) I cos ( )
2 2 Ξ ϒ ϑ + ϑ ω 

!!
 (3.A.23) 

Collecting all these results, one ends up with the final form (3.A.24) for the Lagrange 
function: 

= total total-T UL  (3.A.24) 

where we have defined the total kinetic energy 

( ) ( )

( ) ( )( ) ( )( )

2
cinetical Coriolis

2 2 2 2
s s

(3.A.25)
1T T MV
2

1M V ω ×R I ω sin ( ) I sin
2Ξ ϒ

ϑ,ϑ,φ,φ ϑ,ϑ,φ,φ

ϑ,ϑ,φ,φ ϑ,φ

= + =

+ ⋅ + φ ϑ + φ ϑ + ϑ

& & & &

& &

!

! !! & & &

totalT
  

and the total potential energy 

                                                 
8 See note 4. 
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( ) ( ) ( )( )2
centrifugal Coriolis s

2 2 2 2
s s

U U U U M ω ×R

1 I sin ( ) I cos ( ) I ω cos( )
2 Ξ ϒ ϒ

ϑ,φ ϑ,φϑ,φ = − − = −

 − ϑ + ϑ ω − ϑ 

!!
totalU

 (3.A.26) 
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APPENDIX 4.A:  

TRANSFER FUNCTION IN THE NON-ROTATING FRAME. 

 
In this section the label NR refers to the vectors in the non rotating frame while Rot to the 
same quantities in the rotating reference frame. y!  is the outputs vector (see equation (4.2)) 
and u!  the inputs one. Let us introduce the complex variables 

Rot Rot Rot
1 2Z (t) y (t) jy (t)= +  (4.A.1) 

NR NR NR
1 2F (t) F (t) jF (t)= +  (4.A.2) 

Combining equation (B.1) with (4.23.a) and equation (4.A2) with (4.23.b), we obtain: 

( )s sj t j tNR NR NR Rot Rot Rot
1 2 1 2Z (t) y (t) jy (t) e y (t) jy (t) e Z (t)ω ω= + = + =  (4.A3) 

( )s sj t j tRot Rot Rot NR NR NR
1 2 1 2W (t) u (t) ju (t) e F (t) jF (t) e F (t)− ω − ω= + = + =  (4.A4) 

In the frequency domain, equations (4.A3) and (4.A4) can be written in the form: 
NR Rot Rot Rot

1 s 2 s sZ (s) y (s j ) jy (s j ) Z (s j )= − ω + − ω = − ω  (4.A.5) 

or else 
NR NR NR

1 2Z (s) y (s) jy (s)= +  (4.A.6) 

Combining equations (4.A.5) and (4.A.6) we have: 
NR Rot
1 sy (s) e Z (s j ) = ℜ − ω   (4.A.7) 

NR Rot
2 sy (s) m Z (s j ) = ℑ − ω 

1 (4.A.8) 

In a similar manner, we also have 
Rot Rot NR NR NR
1 2 1 s 2 s sw(s) u (s) ju (s) F (s j ) jF (s j ) F (s j )= + = + ω + + ω = + ω

 (4.A.9) 

with: 
Rot NR
1 su (s) e F (s j ) = ℜ + ω   (4.A.10) 

Rot NR
2 su (s) m F (s j ) = ℑ + ω   (4.A.11) 

In  section  4.2  we have evaluated the expression  (4.5)  for  yi
Rot(s)  in the rotating reference 

                                                 
1 Let us introduce the complex function K(s) A(s) / B(s) jC(s) / D(s)= + , where A(s), B(s), C(s) and D(s) 
are polynomials with real and constant coefficients. We define e(K(s)) A(s) / B(s)ℜ =  and 

m(K(s)) C(s) / D(s)ℑ = .               
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frame as function of the s variable. We now evaluate them in s-jωs; from (4.5), we have: 
Rot Rot Rot
1 s 11 s 1 s 12 s 2 s

Rot NR Rot NR
11 s 12 s
Rot NR Rot NR
11 s 1 12 s 2

y (s j ) H (s j )u (s j ) H (s j )u (s j )

H (s j ) e(F (s)) H (s j ) m(F (s))

H (s j )F (s) H (s j )F (s)

− ω = − ω − ω + − ω − ω

= − ω ℜ + − ω ℑ

= − ω + − ω

 (4.A.12) 

It is important to underline that F1(s) and F2(s) are “real” function in the sense of note 1 at the 
bottom of the previous page.  In a similar manner, we have: 

Rot Rot Rot
2 s 21 s 1 s 22 s 2 s

Rot NR Rot NR
21 s 22 s
Rot NR Rot NR
21 s 1 22 s 2

y (s j ) H (s j )u (s j ) H (s j )u (s j )

H (s j ) e(F (s)) H (s j ) m(F (s))

H (s j )F (s) H (s j )F (s)

− ω = − ω − ω + − ω − ω

= − ω ℜ + − ω ℑ

= − ω + − ω

 (4.A.13) 

We collect the expressions (4.A.12) and  (4.A.13) in a single equation: 
Rot Rot Rot NR NR
1 s 11 s 12 s 1 1Rot

sRot Rot Rot NR NR
2 s 21 s 22 s 2 2

y (s j ) H (s j ) H (s j ) F (s) F (s)
H (s j )

y (s j ) H (s j ) H (s j ) F (s) F (s)

       − ω − ω − ω
= ⋅ = − ω ⋅       

− ω − ω − ω             
 (4.A.14) 

Inserting the expressions (4.A.12) and (4.A.13) for Rot
1 sy (s j )− ω  and Rot

2 sy (s j )− ω in (4.A.7) 
and (4.A.8), after some simple algebra, we obtain: 

( ) ( )
{ }

NR Rot Rot Rot
1 s 1 s 2 s

Rot NR Rot NR Rot NR Rot NR
11 s 1 12 s 2 21 s 1 22 s 2

y (s) e Z (s j ) e y (s j ) jy (s j )

e H (s j )F (s) H (s j )F (s) j H (s j )F (s) H (s j )F (s)

=ℜ − ω =ℜ − ω + − ω =

 ℜ − ω + − ω + − ω + − ω 
 (4.A.15) 

( ) ( )
{ }

NR Rot Rot Rot
s s s2 1 2

Rot NR Rot NR Rot NR Rot NR
s s s s11 1 12 2 21 1 22 2

y (s) m Z (s j ) m y (s j ) jy (s j )

m H (s j )F (s) H (s j )F (s) j H (s j )F (s) H (s j )F (s)

=

  

=ℑ − ω =ℑ − ω + − ω

ℑ − ω + − ω + − ω + − ω

 (4.A.16) 
We may write equations (4.A.15) and (4.A.16) in a more manageable manner: 

NR Rot Rot NR
1 11 s 21 s 1

Rot Rot NR
12 s 22 s 2

y (s) e H (s j ) jH (s j ) F (s)

e H (s j ) jH (s j ) F (s)

 = ℜ − ω + − ω 
 + ℜ − ω + − ω 

 (4.A.17) 

NR Rot Rot NR
2 11 s 21 s 1

Rot Rot NR
12 s 22 s 2

y (s) m H (s j ) jH (s j ) F (s)

m H (s j ) jH (s j ) F (s)

 = ℑ − ω + − ω 
 + ℑ − ω + − ω 

 (4.A.18) 

or, in a compact matrix form: 

{ } { }
{ } { }

Rot Rot Rot RotNR NR11 s 21 s 12 s 22 s1 1
NR NRRot Rot Rot Rot
2 211 s 21 s 12 s 22 s

e H (s j ) jH (s j ) e H (s j ) jH (s j )y (s) F (s)

y (s) F (s)m H (s j ) jH (s j ) m H (s j ) jH (s j )

 ℜ − ω + − ω ℜ − ω + − ω    = ⋅       ℑ − ω + − ω ℑ − ω + − ω     
 (4.A.19) 
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which is the transfer function for the non rotating outputs YNR(s) in response to the non 
rotating forces FNR(s).  
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APPENDIX 4.B: 

 SELF-CENTRING. 

 
We may study the dynamical behaviour of the simple rotor in figure 4.11 by following the 
steps in appendix 3.A.  Equations (3.A.24) in appendix 3.A, together with equations (3.A.25) 
and (3.A.26) yield the Lagrange function of a rigid body in a rotating reference frame 
(O,ξ,η,z). O is the origin of the rotating reference frame; the �z  axis coincides with that of the 
inertial frame. Axes �ξ  and �η  rotate in the x-y plane with angular velocity ωs. The position 
vector of the centre of mass is [ ]r= ξ,η,z! . We conveniently write all the vectors in the 
(O,ξ,η,z) reference frame in terms of their components in the (O,x,y,z) frame by means of the 
rotation: 

s s

s s

X= cos( t)- sin( t)
Y= sin( t)+ cos( t)
Z=z

ξ ω η ω
 ξ ω η ω



 (4.B.1) 

The problem can be studied using only two generalized coordinates1. We have chosen as 
generalized coordinates the two angles ϑ′  and φ′ shown in figure 4.11. ϑ′  is the angle between 
the KM arm and the vertical axis z and it runs in the interval [0, π].;  φ′ is the angle from the ξ 
axis to the projection of the arm KM on the ξ-η plane of the rotating reference frame (O, 
ξ,η,z) and runs in the interval [0, 2π]. The vector r!  starting from the origin O and pointing to 
the centre of mass M of the body has components:  

=ε+Lsin( ')cos( ')
=ε+Lsin( ')sin( ')

z=-Lcos( ')

ξ ϑ φ
η ϑ φ
 ϑ

 (4.B.2) 

It is possible to write the Lagrangean of the system following the procedure described in 
appendix 3.A. In particular equations (3.A.15), (3.A.18) and (3.A.23) become: 

( )( )2 2 2 21T( ', ', ', ')= mL I ' sin ( ') '
2 Ξϑ ϑ φ φ + φ ϑ + ϑ" " " "  (4.B.3) 

{ }2 2
cc sV ( ', ', ', ')=mω L 'sin ( ')+εL cos( ')sin( ') ' sin( ')cos( ') ' ϑ ϑ φ φ φ ϑ ϑ φ ϑ + ϑ φ φ 

" " " " "

2 2
s sI ω 'sin ( ') I ω cos( ')Ξ ϒ+ φ ϑ + ϑ"  (4.B.4) 

( )2 2 2 2
c s s

1 1V ( ', ', ', ')= mω L Lsin ( ')+2εsin( ')cos( ') I -I ω sin ( ')
2 2 Ξ ϒ ϑ ϑ φ φ ϑ ϑ φ + ϑ 

" "

 (4.B.5) 
                                                 
1 The motion of a rigid body is described by six degrees of freedom. The presence of the central suspension 
prevents the bodies from performing translational motions, thereby introducing v1=3 constraints. The presence 
of the motor, forces the body to rotate at a constant angular velocity, introducing v2=1 new constraints. At the 
end, the degrees of freedom for the model amounts to n=c-v1-v2=6-4=2. Hence the problem can be studied using 
only two generalized coordinates.  
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where IΞ and Iϒ are the moment of inertia along the principal axis of the body with cylindrical 
symmetry. Then, the sum of the elastic and gravitational energy is given by: 

( )2 2 2 21U( ', ', ', ')=-mgLcos( ')+ k sin ( ') cos ( ) sin ( )
2

′ ′ϑ ϑ φ φ ϑ ϑ φ + Λ φ" " #  (4.B.6) 

(we have considered non-isotropic suspensions with kη=Λkξ=Λk). The equilibrium position is 
determined from the equations: 

( )
( )

0 0

0 0

c ', '

c ', '

V V ' 0

V V ' 0
ϑ φ

ϑ φ

−∂ − ∂ϑ =

−∂ − ∂φ =

 (4.B.7) 

These equations may be written in terms of the generalized coordinates as it follows: 

( )

( )

( )

2 2 2
s

2 2 2 2
s s

2 2 2
s

1 1mω L Lsin(2 ) 2εcos( )cos( ') mgLsin( ) k sin(2 )cos ( ')
2 2

1 1k sin(2 )sin ( ') I I ω sin(2 ) I ω sin( ) 0
2 2
1 1mω L 2εsin( )sin( ') k(1- ) sin ( )sin(2 ') 0
2 2

Ξ ϒ ϒ

 ′ ′ ′ ′ϑ + ϑ φ − ϑ − ϑ φ

 ′ ′ ′− Λ ϑ φ + − ϑ − ϑ =

 ′ ′− ϑ φ + Λ ϑ φ =

#

#

#

 (4.B.8) 

In the limit of small angel ϑ′   is found : 

( )
2
s

0 2
2 2 2
s 2

mω Lε
g kω mL +I 2I mL
L mLΞ ϒ

′ϑ =
 

− − + 
 

∓
#

;  0 ' 0,φ = π (4.B.9) 

Let us now introduce the natural frequency for the non spinning point-like rotor (the system in 
figure 4.11 when M is a point-like mass): 

2

n 2
g kω
L mL

= + #
.   (4.B.10) 

The effective length ( )2 2L =L + I 2I /mΞ ϒ′ − takes into account the extended nature of  the 
suspended body (L′=L for a point-like mass)2. By introducing ωn and L′ in the expression for 
ϑ0′, equation (4.B.9) becomes: 

( )
2 2
s s

0 2 2 2 2 2 2 2 2
s n s n

ω Lε ε ω
Lω L L ω ω L / L ω

′ϑ = =
′ − ′ −

∓ ∓  (4.B.11) 

  
 
 
                                                 
2 Only if 2

L +I /m >2I /mΞ ϒ  (as in the case of GGG) L′ can be defined.  
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APPENDIX 5.A:  

DATA ANALYSIS IN THE ROTATING FRAME - FOURIER FILTER. 

 
Starting from the vector Φξ (5.3), we introduce the 8 vectors of data Φξ1, Φξ2,...; Φξ8 (i.e. Φξj 
with j=1,2,...,8) defined as follows:  

Φξ1=[Φξ (1), Φξ (1+8=9), Φξ (1+2⋅8=17),…, Φξ (1+n⋅8),...] (5.A.1.a) 

Φξ2=[Φξ (2), Φξ (2+8=10), Φξ (2+2⋅8=18),…, Φξ (2+n⋅8),...] (5.A.1.b) 

Φξ3=[Φξ (3), Φξ (3+8=11), Φξ (3+2⋅8=19),…, Φξ (3+n⋅8),...] (5.A.1.c) 

Φξ4=[Φξ (4), Φξ (4+8=12), Φξ (4+2⋅8=20),…, Φξ (4+n⋅8),...] (5.A.1.d) 

Φξ5=[Φξ (5), Φξ (5+8=13), Φξ (5+2⋅8=21),…, Φξ (5+n⋅8),...] (5.A.1.e) 

Φξ6=[Φξ (6), Φξ (6+8=14), Φξ (6+2⋅8=22),…, Φξ (6+n⋅8),...] (5.A.1.f) 

Φξ7=[Φξ (7), Φξ (7+8=15), Φξ (7+2⋅8=23),…, Φξ (7+n⋅8),...] (5.A.1.g) 

Φξ8=[Φξ (8), Φξ (8+8=16), Φξ (8+2⋅8=24),…, Φξ (8+n⋅8),...] (5.A.1.h) 

Φξj(n) equals the time sample of the continuous process Φξ (t), but the time constant is now  
8TC: 

Φξj=[Φξ (j), Φξ (j+8),…, Φξ (j+n⋅8),...] (5.A.1.i) 

If  Φξ (1) is sampled at the time t=t0, the k-th element of Φξ is sampled at the time: 

t(k) = t0+(k-1)TC (5.A.2) 

Instead, the k-th element of the vector Φξj is sampled at the time: 

tj(k) = t0+(j-1)TC+8(k-1)TC = t0+(j+8k-9)TC (5.A.3) 

If the measurements are performed for N>>1 spin periods, the total integration time is: 

Ttot=32NTC>>TC (5.A.4) 

while the total integration time  for the sampled signal Φξj is: 

Tjtot=t(32N-(8-j))-t0 (5.A.5) 

By combining equations (5.A.4) and (5.A.5), it follows: 

Tjtot=t(32N-(8-j))-t0= t0+Ttot-(8-j)TC-t0= Ttot-(8-j)TC ≈Ttot (5.A.6) 

Equation (5.A.6) shows that the temporal duration of Φξj is the same as that of Φξ, even 
though Φξj is a 4N components vector of sampled data while Φξ a 32N components vector. 
Let us now introduce the Fourier transform of the function f(t): 

j t
ff̂ ( ) ( ) f (t) dt− ωω = ℑ ω = ∫ e  (5.A.7) 

The Fourier transform, in essence, decomposes a function into sinusoids of different 
frequency which sum to the original waveform. It is often useful to think of functions and 
their transforms as occupying two domains. They are referred to as the time and frequency 



Appendix 5.A: Data Analysis in the Rotating Frame – Fourier Filter. 

 193

domains respectively. Operations performed in one domain have corresponding operations in 
the other. A band-limited signal is a signal, f(t), which has no spectral components beyond a 
frequency ωB Hz; that is, f̂ ( ) 0ω =  for |ω| > 2ωB. The sampling theorem states that this real 
signal can be reconstructed without error from samples taken uniformly at a rate higher than 
2ωB samples per second. This minimum sampling frequency, νN = 2ωB Hz, is called the 
Nyquist frequency.  
Because a computer works only with discrete data, numerical computation of the Fourier 
transform of  f(t) requires discrete sample values of it. In addition, a computer can compute 
the transform f̂ ( )ω  only at discrete values of ω, that is, it can only provide discrete samples of 
the transform. The Fast Fourier Transform (FFT) is a discrete  algorithm developed by Tukey 
and Cooley which can be used to compute transforms and inverse transforms of appropriately-
sampled data.  
Starting from the definition  (5.A.8), it is possible to define the FFT of a N-components 
vector. The element of the vector are the samples of the continuous time process f(t), taken 
uniformly at a rate of  νc samples per second (sampling period: tC=1/νc): 

( ) ( )C 0
N

j (m 1)t t
C 0

m 1
f̂ ( ) f (m 1)t t − ω − +

=
ω = − +∑ e  (5.A.9) 

Let us introduce the shifted function g(t), i.e. g(t)=f(t+TA). The time shifting property states 
that the Fourier transform of a shifted function is just the transform of the un-shifted function 
multiplied by an exponential factor having a linear phase:   

Aj t ˆĝ( ) f ( )ωω = ωe  (5.A.10) 

( ) ( )C 0A
N

j (m 1)t tj T
C 0

m 1
ĝ( ) f (m 1)t t − ω − +ω

=
ω = − +∑e e  (5.A.11) 

We can now apply the FFT algorithm to a deterministic signal S(t), not affected by any kind 
of noise. The discrete time signal S1 is obtained starting from S(t) in the same manner as Φξ1 
is obtained from Φξ (t) (see equation (5.A.1.a)); the signal S2 is obtained in the same manner 
as Φξ2 (5.A.2.b). Hence S2 is shifted by TA=TC (see (5.2)) with respect to S1 and they are 
sampled with sampling period tC=8TC. By considering equations (5.A.9) and (5.A.11), it 
follows: 

( ) ( )C 0j 8(m 1)T t
C 0

m
Ŝ1( ) S 8(m 1)T t − ω − +ω = − +∑ e  (5.A.12) 

Cj Tˆ ˆS2( ) S1( )ωω = ωe  (5.A.13) 

In a similar manner we can extract the sub-vector  Ss from S; Ss is shifted by TA=(s-1)TC with 
respect to S1 and sampled with sampling period  tC=8TC. Then, it follows: 

Cj (s 1)Tˆ ˆSs( ) S1( )ω −ω = ωe  (5.A.14) 

From equation (5.A.4) it follows that the smaller frequency component which can be 
identified in the frequency domain is: 

min
tot C

2 2
T 32NT

π πω = =  (5.A.15) 
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Then, transform Ŝs( )ω is computed only at discrete values of ω, namely: 

min(k) (k 1) k 1,2,...,ω = − ω = 2N (5.A.16) 

In particular, the k-th frequency components are: 

( )
( )C 0

C

2j (k 1) 8(m 1)T t
32NT

C 0
m

Ŝ1(k) S 8(m 1)T t
π− − − +

= − +∑ e      (5.A.17.a) 

and: 

( )2j (k 1) s 1
32Nˆ ˆSs(k) S1(k)

π − −
= e  (5.A.17.b) 

We can now apply these concepts to our problem. The real signal Φξ(t) acquired by the 
capacitance bridge is a noisy signal, i.e. it can be seen as the superimposition of an ideal 
deterministic signal S(t) and some random noise n(t). The vectors n1, n2,…,ns are obtained 
from the noise in the same manner as S1, S2,…,Ss are obtained from S(t), but they are not 
correlated. Equation (5.A.17.b) can be now written in a more general manner, namely: 

( )2j (k 1) s 1
32Nˆ ˆˆ ˆ ˆs(k) Ss(k) ns(k) S1(k) ns(k)

π − −
Φ = + = +e  (5.A.18) 

We can define the reconstructed signal as: 
28 j (k 1)(s 1)

32N

s 1

ˆ s(k)
R̂ (k)

8

π− − −

=
ξ

Φ
=
∑e

 (5.A.19) 

By combining equations (5.A.18) and (5.A.19), we obtain: 
28 j (k 1)(s 1)

32N

s 1
n̂s(k)ˆ8S1(k) ˆˆR̂ (k) S1(k) n(k)

8 8

π− − −

=
ξ = + = +

∑
!

e
 (5.A.20) 

Clearly, if S(n) is sampled at frequency 1/(8TC) it coincide with S1(n) ( ˆ ˆS( ) S1( )ω = ω ) and 
then: 

ˆ ˆˆ ˆR̂ (k) S1(k) n(k) S(k) n(k)ξ = + = +! !  (5.A.21) 

By performing the inverse Fourier transform, the reconstructed signal in the time domain is 
obtained, i.e Rξ. Rξ is a discrete time process sampled at frequency  1/(8TC); its k-th 
component can be written as Rξ(k)= S(k)+ n(k)!  (see equation (5.A.21)), i.e. it is the 
superimposition of the ideal deterministic signal S and the noise n! , sampled at  frequency 
νC/8. It is important to notice that the reconstructed signal Rξ(k) is closer to the ideal 
deterministic signal S than the original signal Φξ(k) was, since the noise has been partly 
reduced by the Fourier filter: 

n̂(k)
n̂(k)

8
! ∼  (5.A.22) 
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Rη(k) is the reconstructed signal obtained starting from the signal Φη acquired by the 
capacitance bridge sensitive along η direction. Note that it is not possible to extract more than 
m=8 sub-vectors from Φξ because the corresponding sampling frequency νC/m would not be 
in order to properly reconstruct the signal. 
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APPENDIX 5.B: 

 THE σσσσ+ AND σσσσ−−−− FUNCTIONS. 

 
In order to show that the Fourier Transform of the signal σ+ contains only the spectral line 
corresponding to the forward whirling (i.e. a peak at frequency ω2), while the Fourier 
transform of σ- contains only the line corresponding to the backward whirling at frequency 
ω1, we evaluate the values of their tails in correspondence of the whirling motion frequencies: 

( ) ( ) ( ){ } ( ) ( )nr nr1 X 1 Y 1 1 1 2 1
1 j
2+ + +σ ω = ω = ℑ ω = ω + ℑ ω = ω = σ ω = ω + σ ω = ω  (5.B.1) 

( ) ( ) ( ){ } ( ) ( )nr nr1 X 1 Y 1 1 1 2 1
1 j
2− − −σ ω = ω = ℑ ω = ω − ℑ ω = ω = σ ω = ω + σ ω = ω  (5.B.2) 

where: 

( ) ( ) ( ){ }nr1 nr11 1 X 1 Y 1
1 j
2+σ ω = ω = ℑ ω = ω + ℑ ω = ω  (5.B.3) 

( ) ( ) ( ){ }nr1 nr11 1 X 1 Y 1
1 j
2−σ ω = ω = ℑ ω = ω − ℑ ω = ω  (5.B.4) 

( ) ( ) ( ){ }nr2 nr22 1 X 1 Y 1
1 j
2+σ ω = ω = ℑ ω = ω + ℑ ω = ω  (5.B.5) 

( ) ( ) ( ){ }nr2 nr22 1 X 1 Y 1
1 j
2−σ ω = ω = ℑ ω = ω − ℑ ω = ω  (5.B.6) 

We may now write (5.B.3) expressly in terms of the whirling parameters (amplitudes, 
frequencies and time constants): 

( )1 1 1 1 2 2
1 1

1 1A
2 1 4

+

  σ ω = ω = τ 
+ ω τ  

 (5.B.7) 

Since 1 1 2Qω τ =  and Q>>1, the previous equality can be simplified in the form: 

( ) 1 1
1 1 1 1 2

1 1 1 AA
4Q2 21 16Q

+

  τ σ ω = ω = τ 
+  

∼  (5.B.8) 

In the same manner it follows: 

( )1 1 1 1
1 A
2−σ ω = ω = τ   (5.B.9) 
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( )
( )

2 2
1 2 2

2 1 2 2 22 2 2 2 2
2 2 1 1 2

1 ( )1 A
2

1 4
+

 
 + ω + ω τ σ ω = ω = τ 

   + τ ω − ω + ω τ     

 (5.B.10) 

Let us now introduce the non dimensional parameter 0.1α ∼ , so that 1 2 (1 )ω = ω − α  and 
2 2
1 2 (1 2 )ω = ω − α . By introducing it in (5.B.10), we have: 

( )
( )

2 2
2 2

2 1 2 2 22 2 2 2
2 2 2 2

2

2 2 2 4 2

1 41 A
2

1 2 4 (1 2 )

1 1 16QA
2 1 64 Q 16(1 )Q

+

 
 + ω τ σ ω = ω τ 

   + τ αω + ω − α τ     

+τ
 + α + − α 

∼

∼

 (5.B.11) 

In the limit Q>>1, we have 2 2(4 Q ) 1α >>  and then 2 4 2 2 2 264 Q 16(4 Q )Q 16Qα = α >> : 

( )
2

2 1 2 2 2 2 22 4

1 1 16Q 1 4QA A
8 Q2 21 64 Q

+
+σ ω = ω τ τ

α+ α
∼ ∼  (5.B.12) 

Finally, the magnitude of σ+2 is evaluated in correspondence of the frequency ω1: 

( )2 1 2 2
1 1A

2 Q2+σ ω = ω τ
α

∼  (5.B.13) 

Following the same procedure, the ω1-component of σ-2(ω) obtained: 

( )
( )

2 2
2 2

2 1 2 2 2 2 222 2 2 2 2
2 2 1 1 2

1 ( )1 1 2 QA A
8 Q2 2

1 4
−

 
 + αω τ α σ ω = ω τ τ 

α   + τ ω − ω + ω τ     

∼ ∼

 (5.B.14) 
and then: 

( )2 1 2 2
1 1A

4Q2−σ ω = ω τ∼  (5.B.15) 

We also evaluate the magnitude of σ+ and σ- at the frequency ω2 (whirl forward); the results 
are listed below: 

( )2 2 2 2
1 A
2+σ ω = ω τ∼  (5.B.16) 

( )2 2 2 2
1 1A

4Q2−σ ω = ω τ∼  (5.B.17) 
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( )1 2 1 1
1 1A

2 Q2+σ ω = ω τ
α

∼  (5.B.18) 

( )1 1 1 1
1 1A

4Q2−σ ω = ω τ∼  (5.B.19) 

The amplitudes of (5.B.9) and (5.B.16) are at least two orders of magnitude larger than the 
amplitudes of the other terms (depressed by a factor 1/Q). We thus have that only the peak at 
frequency ω2 (5.B.16) is present in σ+, while the spectral component at frequency ω1 is 
negligible. Instead, σ- has only a peak at frequency ω1 (5.B.9). 
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APPENDIX 8.A: 

 THE GGG ELECTRONIC CIRCUITS. 

 
Scheme A: Power Supply and Motor Driver. 
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Scheme  B: Passive damper driver. 
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Scheme  C: Active control of whirls. High Voltage Power Supply. 
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Scheme  D: Active control of whirls. Amplifiers. 

 
 



Appendix 8.A: The GGG Electronic Circuits. 

 203

 
 

 
Scheme  E: Active control of whirls. X→X+, X- 
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Scheme F: Active control of whirls. Digital Filter. 
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Scheme G: Rotating Electronics. Power supply, synchronism and IR transmission. 
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Scheme H: Rotating Electronics. Synchronism and     
reference signal. 

 
 
 
 

 
 

 
Scheme I: Rotating Electronics. Optical receiver and data transfer to the PC.  
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Scheme J: Rotating Electronics. Microprocessor.  
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Scheme K: Rotating Electronics. A/D Converter.  
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Scheme L: Rotating Electronics. Demodulators and analog amplifiers.  

 



Appendix 8.A: The GGG Electronic Circuits. 

 210

 
 

   
Scheme M: Rotating Electronics. Phase shifters.  
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Scheme N: Rotating Electronics. Sine wave generators. 
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Scheme O: Rotating Electronics. The capacitance bridge sensors and 3-stages preamplifiers 

with low noise. 
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Rotating electronics for data acquisition. Block diagram.   
Data (ξ and η components of the relative displacements between the test masses) are 

measured in the rotating frame. 
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Active control of whirls. Block diagram of the sensors. 
Data (x and y of the outer mass with respect to the vacuum chamber) are measured in the 

laboratory reference frame. 
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Scheme P:  Tilt Active Control.  
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APPENDIX 9.A: 

THE PGB PASSIVE NOISE ATTENUATOR IN THE GG SPACE 
EXPERIMENT. 

 
Consider a spacecraft of cylindrical symmetry whose symmetry axis is also the axis of 
maximum moment of inertia. The PGB is a cylindrical structure which is mechanically 
suspended from the spacecraft along its symmetry axis (see figure 9.4) so as to provide weak 
coupling in the plane perpendicular to the axis while being more stiff along it (as in the case 
of the test cylinders); its axis of maximum moment of inertia coincides (within manufacture 
and mounting errors) with the symmetry axis of the spacecraft. Since we refer here to the GG 
experiment we consider only the motion of the spacecraft/PGB system in the plane 
perpendicular to spin axis, which is  the plane of the expected signal (we know [11] that 
tilting torques and motions along the z-axis are negligible). In the inertial frame whose origin 
O coincides, at the initial time, with the centre of mass of the whole system spacecraft/PGB 
the equations of motion are:  

( ) ( ) ( )
( ) ( ) ( )

s s s p R s p s s p NR s p ext

p p s p R s p s s p NR s p

m r k r r c r r r r c r r F

m r k r r c r r r r c r r

  = − − − − − ω × − − − +  


 = − + − − ω × − + −  

!! ! ! ! ! ! ! ! ! !"" " " " "

! ! ! ! ! ! ! ! ! !"" " " " "
 (9.A.1) 

where ms is the mass of the spacecraft and mp the mass of the PGB. sω!  is the spin speed of the 
system. extF

!
is a non gravitational external force acting on the spacecraft. sr

! is the position 
vector of the centre of mass of the spacecraft (with components xs and ys); pr

! is the position 
vector of the centre of mass of the PGB (with components xp and yp). cR and cNR are the 
rotating and non rotating damping coefficients, k the elastic constant of the suspensions. 

2
ns sk / mω =  and 2

npω =k/mp are the natural frequencies of the spacecraft and PGB. From now 
on, the labels s and p refer to the spacecraft and PGB respectively. Let us now consider the 
state vector X (with components xi (i=1…8)) defined as it follows: 

T T
s s s s p p p pX [x x y y x x y y ]= " " " "  (9.A.2) 

It is well known that a linear dynamic system may be represented by its differential equations 
in state variable form; the matrices for the state variable form are 

 (9.A.3) 
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and B, whose components are null except for B2,1=B4,2=1/ms. The inputs of the system are the 
components of the external force, namely T x y T

x y ext extu [u u ] [F F ]= = . The outputs of the 
system are the four components of the projection of the position vectors in the plane 
perpendicular to the spin axis and they are expressed in a matrix form as:  

 [ ] [ ]T T
1 2 3 4Y y y y y C X= = ⋅  (9.A.4) 

where the C matrix is defined as: 
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0

C
 
 
 =
 
 
  

 (10:5) 

The second order differential equations (9.A.1) may be written in the form: 

X A X B u= ⋅ + ⋅"  (9.A.6) 

By combining equations (9.A.4) and (9.A.6) and introducing the Laplace transform (s=jω is 
the complex variable),  it follows: 

( ) 1Y(s) C sI A B u(s) H(s) u(s)−= ⋅ − ⋅ =  (9.A.7) 

H(s) is a matrix of transfer functions which connects the system’s outputs to its inputs: 

1,x 1,y

2,x 2,y

3,x 3,y

4,x 4,y

H(s)

ℑ ℑ 
 ℑ ℑ =
 ℑ ℑ
 ℑ ℑ  

 (9.A.8) 

Note that  i, xℑ is the transfer function from the x component of the external force x
extF to the   

i-th component of the output vector (9.A.4); in the same manner, i, yℑ  is the transfer function 
from the y component of the force and the same component of the output vector. If the system 
has an isotropic behaviour, the components of the transfer matrix (9.A.8) are not independent; 
the following equalities are readily obtained: 

1,x 2,y

3,x 4,y

1,y 2,x

3,y 4,x

ℑ = ℑ
ℑ = ℑ
ℑ = −ℑ
ℑ = −ℑ

 (9.A.9) 

The first two equalities in (9.A.9) mean that the x components of the position vectors in 
presence of a force Fx acting along the x direction coincide with the y components of the 
positions vectors in presence of a force Fy acting along the y direction. The last two equalities 
in (9.A.9) mean that, even though the external force have been applied along a direction, finite 
differential displacements occurs along the other direction, due to the dissipative nature of the 
suspensions (see equations (1.68) and (9.12)).  
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The 8 transfer functions in (9.A.8) are shown in figure9.A.1 as functions of the frequency. 
They are listed below as functions of the governing parameters of the problem. 
 

( ) ( ) ( ){ } ( )
( ) ( ){ } ( ){ }

2 2 2 2
p R NR p s R NR s p R s s p

1,x 22 2 2 2
p s R NR s p R s s p

k m j c c m m k j c c m m c m m

m m k j c c m m c m m

 − ω + ω + ω − + ω +  + − ω +  ℑ =
ω − + ω +  + + ω + ω 

( ) ( ){ } ( ){ }
2 2

R s p
2,x 22 2 2 2

p s R NR s p R s s p

c m

m m k j c c m m c m m

ω ω
ℑ =

ω − + ω +  + + ω + ω 

 

( ) ( ) ( ){ } ( )
( ) ( ){ } ( ){ }

2 2 2
R NR p s R NR s p R s s p

3,x 22 2 2 2
p s R NR s p R s s p

k j c c m m k j c c m m c m m

m m k j c c m m c m m

 + ω +  ω − + ω +  + − ω +   ℑ =
ω − + ω +  + + ω + ω 

 

( ) ( ){ } ( ){ }
2

R s p s
4,x 22 2 2 2

p s R NR s p R s s p

c m m

m m k j c c m m c m m

− ω ω
ℑ =

ω − + ω +  + + ω + ω 

 

( ) ( ){ } ( ){ }
2 2

R s p
1,y 22 2 2 2

p s R NR s p R s s p

c m

m m k j c c m m c m m

− ω ω
ℑ =

ω − + ω +  + + ω + ω 

 

( ) ( ) ( ){ } ( )
( ) ( ){ } ( ){ }

2 2 2 2
p R NR p s R NR s p R s s p

2,y 22 2 2 2
p s R NR s p R s s p

k m j c c m m k j c c m m c m m

m m k j c c m m c m m

 − ω + ω + ω − + ω +  + − ω +  ℑ =
ω − + ω +  + + ω + ω 

( ) ( ){ } ( ){ }
2

R s p s
3,y 22 2 2 2

p s R NR s p R s s p

c m m

m m k j c c m m c m m

ω ω
ℑ =

ω − + ω +  + + ω + ω 

 

( ) ( ) ( ){ } ( )
( ) ( ){ } ( ){ }

2 2 2
R NR p s R NR s p R s s p

4,y 22 2 2 2
p s R NR s p R s s p

k j c c m m k j c c m m c m m

m m k j c c m m c m m

 + ω +  ω − + ω +  + − ω +   ℑ =
ω − + ω +  + + ω + ω 

 

Let us now define the noise reduction factor as the ratio between the amplitude of disturbing  
vibration  at  the  PGB  level  and the amplitude of vibration at the spacecraft level: 

( ) ( )

( ) ( )

2 2
p p

2 2
s s

x j y j

x j y j

ω + ω
ℑ =

ω + ω
 (9.A.10) 

The function  (9.A.10) is defined in the inertial reference frame and it is plotted on the 
vertical axis in figure 9.A.2 as a function of frequency. The lower this ratio, the lower the 
platform noise of the experiment, since the experiment is carried out inside the PGB. We 
consider the case of Q=90. It is apparent that the system is transparent ( ( 0) 1ℑ ω → = ) to 
frequencies lower than the natural frequency of the system, such as the orbital one, while it 
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provides good attenuation close to the spinning frequency (40dB/decade in the limit ωs→∞). 
The system is resonant at frequency npω . 
 

 
Figure 9.A.1: Transfer  functions i, xℑ and i, yℑ of the spacecraft-PGB system in the inertial reference frame 
for the case of supercritical rotation at 2Hz. 

We here show how to transform the noise reduction factor into the rotating frame. In our 
setting, we may write the two components outputs N Nx , y  in the rotating frame as function of 
their counterparts in the non rotating frame by means of rotation matrix: 

s s

s s

cos( t) sin( t)
R

sin( t) cos( t)
ω ω 

=  − ω ω 
 (9.A.11) 

It is known that the sine and the cosine may be written as the sum of two complex 
exponentials: 

( )s sj t j t
scos( t) e e 2ω − ωω = +  (9.A.12.a) 
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( )s sj t j t
ssin( t) e e 2jω − ωω = −  (9.A.12.b) 

Let us take a function f(t) and its Laplace transform L(f(t))=F(s). 

 
Figure 9.A.2:Noise reduction factor of the GG spacecraft/PGB system as seen in the non rotating reference 
frame. 

The phase shifting property states that the Laplace transform of a function multiplied by an 
exponential factor is just the transform of the original function shifted of a phase: 

j tL(e f (t)) F(s j )α = − α  (9.A.13) 

By combining equations (9.A.11),(9.A.12.a),(9.A.12.b) and (9.A.13) it is possible to write for 
the Laplace transform of the components of the position vectors in the rotating frame as 
function of their counterparts in the non rotating frame. After some simple algebra, we obtain: 

{ }R
s,p s,p s s,p s s,p s s,p sx ( j ) x ( j j ) x ( j j ) j y ( j j ) y ( j j ) 2 ω = ω− ω + ω+ ω − ω− ω − ω+ ω 

{ }R
s,p s,p s s,p s s,p s s,p sy ( j ) j x ( j j ) x ( j j ) y ( j j ) y ( j j ) 2 ω = ω − ω − ω+ ω + ω− ω + ω + ω   

 (9.A.14) 

Hence, the noise reduction factor in the rotating frame is easily obtained: 

( ) ( )

( ) ( )

2 2R R
p pR

2 2R R
s s

x j y j

x j y j

ω + ω
ℑ =

ω + ω
   (9.A.15) 
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In figure 9.A.3 it is plotted as a function of frequency.  Perturbations which are seen at  2Hz  
by the non rotating observer (and attenuated), have frequencies 0Hz and 4Hz for the rotating 
one, and in fact he too finds that they are attenuated. Instead, perturbations at low frequencies 
in the non rotating reference frame (lower than the natural one) are seen at about the spin 
frequency in the rotating frame. Hence, the value of the noise reduction factor is 1 at the 
spinning frequency, i.e. the system is transparent to 2Hz effects. When viewed in the rotating 
frame, the peak at the natural frequency in figure 9.A.2 is splitted up into two peaks at 
frequencies ω=ωs-ωnp and ω=ωs+ωnp.  In summary, the weak mechanical suspensions of the 
PGB, which can be used only thanks to the weightlessness, provide an effective, passive 
means of isolation from the high frequency vibrations around the spin modulation frequency. 

 
Figure 9.A.3: Noise reduction factor of the GG spacecraft/PGB system as seen in the rotating reference frame. 
Inset: enlargement around the spin frequency (2Hz). Two peaks are visible at frequencies ω=ωs-ωnp and 

s npω = ω + ω . 
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APPENDIX 9.B: 

A PGB-LIKE PASSIVE/ACTIVE NOISE ATTENUATOR ON THE SPACE 
STATION. 

 

The ISS is a perfect environment to realize experiments which require absence of weight; 
many activities of the applied sciences are potentially destined to take great advantage from 
the availability of space structures such as it. However, in some cases the absence of weight is 
not sufficient and a low level of vibrational noise is required (official data obtained by NASA 
show an expected noise as large as 103 µg). The PGB laboratory is a passive/active vibration 
isolation system studied to reduce those kind of disturbances [53]. In essence, it is connected 
to the ISS by means of mechanical suspensions. Weightlessness allows us to use very soft 
suspensions and hence to have a low threshold frequency of the system and a good attenuation 
of vibration noise above it. Below and close to this frequency it is possible to use capacitance 
sensors/actuators in order to reduce noise actively.  
Vibration noise is a serious issue for the ISS as far as its use for micro-gravity science and 
applications is concerned. Many activities typical of the applied sciences (like material and 
fluid sciences) can take advantage from the availability of the ISS only provided that residual 
disturbances on board the ISS are significantly reduced. 
This is the goal of the PGB: it is a facility for vibration isolation onboard of flying structures 
which can be easily adjusted (in future) to the needs of the experimentalists. 
For a detailed description of the PGB project (transportation to/from the ISS; in-orbit 
accommodation; locking/unlocking mechanism; interfaces; passive vibration isolation; active 
vibration isolation; electronic unit; thermal analysis; data acquisition)  see [53].  In this 
chapter we will only study the problem of passive/active control of the system and its thermal 
stability. 
The PGB is a small laboratory (its side is 25 cm) suspended to the ISS by means of two 
helical springs. It may be accommodated in the volume of a double Middeck Locker box 
(MDL) in the Express Rack of the US laboratory (figure 9.B1).  
We have planned to use two ISA (Italian Space Accelerometer) accelerometers, one rigidly 
connected to the ISS and one inside the PGB. In this way it is possible to measure the level of 
the vibrational noise on the ISS and compare it with residual noise in the suspended 
laboratory. The ISA accelerometer can work in a range of frequency from 10-4Hz to 10Hz 
reaching the sensitivity of 10-11g/√Hz at a frequency of about 3Hz. The total mass of the 
system PGB + inner accelerometer is about 40 kg. 
Passive noise attenuators rely on the fact that when the suspension point is forced at a 
frequency ω much larger than the natural frequency ωo of a pendulum, the oscillation 
amplitude of the suspended body is reduced by a factor (ωo/ω)2 with respect to that of the 
suspension point. A noise attenuator should work in all 6 degrees of freedom, because both 
rotational and translational noise is transmitted by the ISS to the suspended laboratory. Since 
the torsion elastic constant of a helical spring is very small if compared with its translation 
elastic constant, the rotational noise is reduced much more effectively than translational noise 
(see figure 9.B.2). As a result, a passive attenuator must be essentially designed with regard to 
reduction of translational noise. 
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Figure 9.B.1: PGB accommodated in a double Middeck Locker box. We can see the external container, the PGB 
with the springs and two capacitance plates for each face of the laboratory. The dark square represents the 
external ISA accelerometer fixed to the rack. 

Capacitance plates, rigidly connected to the ISS, located in between the PGB laboratory and 
the containing rack, form capacitance bridges capable to sense both small displacements and 
rotations of the PGB. Capacitance plates can also be used as actuators. The clearance between 
the fixed plates and the PGB surfaces has been designed to be 3-5 mm so that it is possible to 
produce forces of 2-4⋅10-3N assuming 300V maximum voltage. 
 

9.B.1: The Mechanical Suspensions. 

 
Absence of weight in space allows very soft suspensions ([57 � 60]) to be used even for 
suspending a large mass, thus ensuring a low mechanical threshold frequency of the passive 
attenuator. By means of the mechanical spring it is also possible an electrical grounding of the 
PGB box (avoiding electrostatic disturbances) and data/power  transmission from/to the any 
instrument/experiment inside the PGB (in this case, the ISA accelerometer). 
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Figure 9.B.2: The transfer function for both rotational and translational noise. Blue line is the translational 
transfer function; red line is the torsional transfer function for rotations around the symmetry axis of the spring; 
green line is the flectional transfer function for rotations around an axis normal to the symmetry axis of the 
spring. They have been evaluated for a system consisting of a box of side 25 cm and mass 40 kg, suspended by a 
steel helical spring of quality factor Q=100, coil diameter D=4.5cm, wire diameter d=0.021cm, number of coils 
n=3.25. It is apparent that rotational noise is reduced much more effectively than translational noise.  

This is easily made by suspending the PGB laboratory with two helical springs, acting on 
opposite faces of the box, each one made of four wires: one steel wire, which provides the 
stiffens and 3 Cu wires for the required electrical connections. This kind of springs have been 
proposed because they can easily satisfy the needs of the attenuator. One such spring has been 
manufactured as a prototype spring for the proposed GG experiment (see figure 9.B.3).  

 
Figure 9.B.3: One suspension spring made of 1 steel wire and 3 Cu wires.  

A configuration a little different from the one shown in figure 9.B.3  can be studied in order to 
supply the electric power.  For PGB power line is requested at least an equivalent section of 
AWG32 (0.18−0.2 mm of diameter against 0.12 mm of diameter for the Cu wire in the 
prototype made for the GG experiment). That can be reached by manufacturing a spring with 
3 Cu wires with different diameters (i.e. one steel wire for the stiffness, one Cu wire of 
0.18−0.20 mm of diameter for conduction and stiffness too, two thin  Cu wires only for 
conduction) or by splitting power on 2−3 AWG36 lines (0.12 mm of diameter, the same of the 
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prototype) obtaining a spring with one steel wire for the stiffness and 4−5 thin Cu wires for 
conduction. Some possible designs are listed below. Q=90 is the value measured in the 
laboratory for the quality factor of the spring shown in figure 9.B.3 (all wires insulated and 
grouped together to form a single wire). A value of Q higher than this (i.e. a lower 
dissipation) can be obtained by manufacturing a spring with separate wires (not grouped 
together) insulated only at the clamping; in this way, parts were deformations occur are not 
insulated and therefore give rise to smaller losses. 
Because of the many variables involved, a large number of springs can be designed that can 
satisfy a given set of equations for stress and deflection. We introduce the following 
parameters (see figure 9.B.4) which characterize the helical spring: D= mean coil diameter, 
d=  wire diameter, L= free length, n=  total number of coils, ν= Poisson's ratio, E= modulus of 
elasticity of the spring material (Young's modulus), G= E/2(1+ν) (modulus of shear), F= 
working load (4⋅10-4N), τ= design stress at working load F, f= total deflection, p= coil pitch 
(distance between adjacent spring coils). These factors are related in some fundamental spring 
equations and are hereafter considered. 

 
Figure 9.B.4: Sketch of one helical spring . 

! Elastic constant. 
We can expand the spring's constants as functions of its geometry and the spring's material 
characteristics. Doing so we find the formulas summarised below. So the linear spring 
constant in axial direction (see figure 9.B.4.a) is: 

4 4

a 3 3
P

Gd Edk (N / m)
8(n 2)D 16(n 2)(1 )D

= =
− − + ν

 (9.B.1) 

Assuming Hooke's law, the total deflection of the spring with a working load F is: 
3

a 4
8 (n 2) D Ff (cm)

Gd
−=  (9.B.2) 

The linear spring constant for a force applied in the plane of the coil (i.e. normal to the 
spring's axis; see figure 9.B.4.b) is: 

 
4

t
t 3 3

8E J Edk (N / m)
nD 8nD

= =
π

 (9.B.3) 
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where we have introduced: 4 / 64J dt = π . We  can also distinguish two different kinds of 
rotation; for rotations around the spring's axis (see figure 9.B.4.c) the constant is:  

4

torr
Edk (N mm / deg)

2375(n 2)D
⋅ =

−
 (9.B.4) 

while for rotations in the plane containing the axis and a diameter of the helical spring figure 
9.B.4.d), we have: 

fl
p t

D 1 1k (N mm / rad) 1 n
2 GJ EJ
 

⋅ = π +  
 

 (9.B.5) 

where 4 / 32J dp = π . 

 

           a)     b) 
 

c)                 d) 
Figure 9.B.5: Sketch of the elastic constants for the helical spring. 

! Spring geometry. 
The distance between adjacent spring coils (coil pitch) is: 

( )p L 2d / n ~ L / n= −  (9.B.6) 

The rise angle (α in figure 9.B.4) of the spring coils is:  

( )arctan p /( D)ϑ = π  (9.B.7) 
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The free length of the spring is: 

L ~ n D tan( )π ϑ  (9.B.8) 

The length of the wire needed to make the spring is: 

( )wL D 2 n 2 / cos( )= π + − ϑ    (9.B.9) 

and its mass is: 
2 2m ~ nd D / 4π ρ  (9.B.10) 

! Failure Criteria and Risk Factors. 
If the working load F is much smaller than the critical one, the spring works in safe 
conditions. The maximum load P for a helical spring is equal to: 

2

fl

2
fl

tor

2πk L
LP

k 2π1
k L

 
 
 =
 +  
 

 (9.B.11) 

The condition F<P must be satisfied. Compression spring buckling refers to when the spring 
deforms in a non-axial direction. This is a very dangerous condition. As a result, it is 
important to design the spring in such a way that this risk is minimized. One way to check for 
buckling is to compute the deflection height ratio f/L as a function of the ratio D/L and see if 
it exceeds the maximum allowable value plotted in figure 9.B.6. The black cross represents 
the value for the helical spring to be used for suspending the PGB. This value is well below 
the limit curves depicted in figure 9.B.6.  
The maximum shear stress occurs on the inner surface of the coils and it is equal to: 

2
2P

3 2
P

8 F D 3d 3τ 1 tan ( )
2 (1 )π d 16 D

 + ν= − + ϑ + ν 
 (9.B.12) 

The Soderberg Criterion provides a way to calculate a failure limit. The spring will fail if the 
following condition is satisfied: 

fatiguemax max
fatigue

yield

στ τ σ
2 σ 2

 
> − +  

 
 (9.B.13) 

where σfatigue and σyield are tabulated (see table 9.B.1). We can also plot the stress state of our 
spring in the Soderberg diagram (figure 9.B.7). For our choices the stress state is always 
below the limit line. 
When springs are used in a mechanism, their dynamic behaviours must be analysed. The first 
natural frequency of a helical spring is found to be: 

a
S 2

spring

1 k d Gν
2 m ρ9D n

= =   (9.B.14) 

We need this frequency to be higher than the working frequency 3Hz. 
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Figure 9.B.6: Check for compression spring buckling. 

 

 

 

 
Figure 9.B.7: Soderberg Diagram.  
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Table 9.B.1: Stainless Steel and Copper Properties. 

 

! Guidelines for Spring Choice. 
From equations (9.B.1) and (9.B.3) it is clear that ka can be equal to kt only if n=3.25 (n = 3 
1/4). This choice is quite unusual since the number of active coils is very small  (i.e. n-2 = 
1.25). If we want a large number of active coils in the spring (for example ten active coils), 
from (9.B.1) and (9.B.3) we find that ka will be about 0.5kt. This difference is not a problem 
from the point of view of the control laws. Once the material has been selected, 3 free 
parameters (n,d,D) can be varied in order to satisfy a set of conditions. Note that if each 
spring is made of 4−6  wires, the total elastic constant is evaluated as kTotal=kSteel+ΣkCu. 
 

9.B.2: Goal and Requirements of the Active Control. 
 

The control equations have been written for the active control required [53]. Numerical 
simulations of the entire system have been carried out, including both passive and active 
control, so as to obtain the transfer function to be expected. The transfer function was 
constrained by the fact that the level of residual vibration noise inside the suspended PGB 
must be well suited for the characteristics of the ISA accelerometer used to measure it, so as 
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to be able to make the most sensitive measurement possible. It is necessary that the residual 
noise achieved is in accordance with the best sensitivity of the instrument located inside the 
PGB (i.e. the residual noise should not exceed 10-11 g/√Hz at about 3 Hz) and that the 
clearance is compatible with the design of capacitive actuators (an error of ± 5 mm would 
provide a maximum force of 3 mN assuming a 350 V maximum voltage). Official input data 
(simulated) have been obtained by NASA representatives on the level of vibration noise 
expected on board the ISS (see figure 9.B.8). These data refer to vibration noise at high 
frequencies (from 0.01 Hz till 300 Hz); they also give constraints on the expected quasi 
stationary noise (at low frequencies), particularly at the orbital frequency.  

 
Figure 9.B.8: PSD (Power Spectral Density) of simulated disturbances on the ISS. 

Considering the expected environmental disturbance on the ISS, the former of the specified 
requirements corresponds to impose a rejection margin of at least 130 dB, while the passive 
system attenuation at this point is 90 dB. Therefore the active control must be able to increase 
the rejection by at least 40 dB in the measurement bandwidth. 
The two-body system is presented in figure 9.B.9. Let us assume that ISS and PGB are 
described by )x,x,x( 111 !!! , )x,x,x( 222 !!! and that FC and FD are the control and the disturbance 
forces. The equations of motion for the 2 bodies are: 

 
Figure 9.B.9: Two-body  representation of the ISS � PGB system. 
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The equations of motion for the 2 bodies are: 

1 1 D C
C D 1

2 2 C

m x k F F
k F F / m

m x k F

 = ξ + βξ + + ⇒ µξ = − ξ − βξ − − µ
= − ξ − βξ −

!!! !! !
!!!

 (9.B.14) 

with 12 xx −=ξ  the relative displacement, )mm/(mm 2121 +=µ  the reduced mass of the 
system, k the spring stiffness, Q/kµ=β  the damping coefficient and Q the overall 
mechanical quality factor (including the internal spring damping and external viscous 
damping acting on the PGB). All the simulations refer to the following values of m1, m2, k, Q: 
m1 = 300000 Kg  -  m2 = 60 Kg  -  k = 0.3 N/m  -  Q = 100. 
In figure 9.B.10 the control block diagram is shown. The control force is the superimposition 
of the position control force (output of [ POSH ]=[N/m]) and the acceleration control force 
(output of [ ACCH ]=[Kg]):  

C POS ACCF H (s) H (s)x= ξ + !!  (9.B.15) 

In the frequency domain, the relative displacement is: 

2

d

2 POS

2 ACC

�a�
m G Hs

m H

ξ = −
 µ ++  µ + 

 (9.B.16) 

while the absolute accelerations of ISS and PGB are: 

C
1 d

1 1

POS d
2

2 ACC 2 2 POS

2 ACC

�F�� �x G a
m m

�G H a�x
m H m G Hs

m H

 µ= ξ + +

   µ +=   +  µ + +  µ + 

!!

!!

 (9.B.17) 

with ( )G k s= +β µ . ξ�  and 2
�x!!  are the relevant variables from the point of view of the 

PGB/control performance, while the value of CF�  has to be within the capacitor capability of 
generating force. 
 

9.B.3: Derivation of the Transfer Function. 

 
The block diagram of the actively controlled system can be sketched as in figure 9.B.11, 
where adist is the acceleration of environmental applied on the ISS and then on the external box 
of the PGB; aPGB is the acceleration of the PGB in an inertial reference frame; acon is the 
control acceleration; xREF is the elongation of the idle spring. 
Ha(s) is the acceleration filter. It must be able to augment the rejection permitted by the 
passive system at the frequency of about 3 Hz. Hp is the position filter. Its aim is to maintain 
the elongation of the spring below a threshold corresponding to the admitted clearance (i.e.   
ξ-xREF must be lower than the admitted clearance between the internal and the external 
boxes). 
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Figure 9.B.10: Block diagram. 

 
Figure 9.B.11: Block diagram of the controlled system. 

The transfer function of the closed loop system from disturbance acceleration and reference 
spring length to the PGB acceleration is: 

( )

a p p dist a p REF

PGB
2

a a p a p p

k � �DenH (s) NumH (s) s DenH (s) DenH (s) NumH (s) x
m m�

ks NumH (s) DenH (s) DenH DenH (s) NumH (s) s DenH (s)
m m

 β + + +    =
 β + + + +    

a
a

 (9.B.18) 

The transfer function of the closed loop system from disturbance acceleration and reference 
spring length to the elongation is: 

( )

( )
p a a dist a p REF

2
a a a p a p

� �DenH (s) NumH (s) DenH (s) DenH (s) NumH (s) x�
ks NumH (s) DenH (s) s DenH (s) DenH (s) DenH (s) NumH (s)

m m

− + +
ξ =

 β + + + +    

a

 (9.B.19) 
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As there isn�t a reference profile for the spring elongation the attenuation of the external 
disturbance and the response in terms of distance between inner and external boxes can be 
studied considering only the first part of the reported transfer functions (9.B.18) and (9.B.19) 
depending on dist�a . 
 
! Acceleration Filter Design. 

The simplest acceleration regulator that can be designed is formed by three terms.  An high-
pass filter, a phase-lead filter introduced for stability reasons and a low-pass filter (see table 
9.B.2).  Applying that filter the system response is the one represented by the dashed red line, 
�a� in figure 9.B.12.  A part for the removal of the resonance peak, its benefit is large in the 
band between 10-3 and 10-1 Hz, while at 1 Hz the attenuation w.r.t. the passive system (black 
continue line) is negligible.  Moreover this filter reduces the frequency of the slope start by 2 
decades that implies an amplification of the peak-to-peak spring elongation in the order of 
several centimetres. The response �b� (dotted-dashed green line) is obtained from �a� moving 
at higher frequency the frequency of the slope start.  This is obtained by a proper modification 
of acceleration and position filters.  The problem is that the maximum clearance is more or 
less the same permitted by the passive system itself so the effect of the active control reduces 
in practice to delete the resonance peak and the attenuation is too low to justify introduction 
of active control.  The evident result of this first analysis is that the filter shape must be 
modified to guarantee a slope of the system response of at least 60 dB/dec.  This has been 
obtained in �c� (dotted blue line).  The draw-back of this filter is that it maintains a large gain 
(40 dB) up to frequencies of at least 1 Hz so the cross-over frequency is very high.  
Theoretically speaking, as the gain reduces by 20 dB/dec, gaining 40 dB up to 2-3 Hz 
(corresponding to the measurement frequency) the cross-over frequency would be 200-300 
Hz, thus the controller should require a sampling rate of at least 400-600 Hz.  To guarantee 
feasibility, the acceleration filter must be made more complex. The solution envisaged in �d� 
(dashed violet line) corresponds to an acceleration filter where the low-pass includes a 4th 
order lag-lead filter.  The gain reduces with a slope of 80 dB/dec between 2 and 7 Hz, then a 
triple zero modify the slope to 20 dB/dec and the resulting cross-over frequency is between 10 
and 20 Hz which permits a control loop at a frequency lower than 100 Hz.  The maximum 
attenuation is between 2 and 3 Hz and corresponds to about 130 dB.   

Filter Order, frequency [Hz] 

�High-Pass� - Numerator 1, ω=0 

�High-Pass� - Denominator 1, ω=1⋅10-4 

�Phase-Lead� � Numerator 2, ω=1⋅10-3 

�Phase-Lead� -  Denominator 2, ω=1⋅10-4 

�Low-Pass� � Numerator 3, ω= 7 

�Low-Pass�- Denominator 4, ω= 2.5 

�Gain� 85.9 

Table 9.B.2:Parameters used in the acceleration filter. 
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Figure 9.B.12: System response with different filters. 

More complex and higher order the acceleration filter is, more complex also the position filter 
becomes. This is a consequence of the interactions between the two filters (position and 
acceleration) that have antagonist aims. 
 
! Position Filter Design. 

The aim of the position filter is to maintain the elongation of the spring below a threshold 
corresponding to the admitted clearance. To approach the filter design the equation (9.B.19) 
can be made equal to a specification equation like: 

spec dist2
1 2 1 2

1x a
s ( )s

−=
+ ω + ω + ω ω

  (9.B.20) 

The frequencies ω1 and ω2 have been chosen so that the low frequency gain in (9.B.20) 
maintain the clearance under 5 mm taking into account a disturbance of 10-5 m/s2 and that the 
transfer function shape remains similar to the one of the passive system, a part the resonance 
peak. In this manner the following equations (9.B:21) descends for the numerator and 
denominator of the position filter: 

( ) ( )p a a 1 2 1 2 a
kNumH (s) NumH (s) DenH (s) s s DenH (s)

m m
β = +  ω + ω + ω ω − +    

 (9.B.21.a) 
( )p aDenH (s) DenH (s) s / k 1= β +  (9.B.21.b) 

Note that the term 1+βs/k has been introduced to guarantee that the denominator of the 
transfer function has a degree equal to the degree of numerator. The resulting shape has been 
rearranged to guarantee stability and feasibility in terms of sampling frequency. The 
parameters of the position filter for the cases �b�, �c� and �d� are illustrated in the table 
9.B.3.   
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Filter Order, frequency [Hz] 

�Lead-Lag� � Numerator 1, ω=5⋅10-5 

�Lead-Lag� � Denominator 2, ω=1⋅10-4 

�Phase-Lead� � Numerator 2, ω=1⋅10-3 

�Phase-Lead� - Denominator 2, ω=3⋅10-2 

�Gain� 0.226 

Table 9.B.3: Parameters used in the position filter. 

 

! Frequency Response. 
Figure 9.B.13 shows the expected frequency response of the PGB for acceleration control. 
Figure 9.B.14 shows its phase as a function of frequency. In figure 9.B.15, instead, the 
transfer function of the closed loop system from disturbance acceleration to the elongation is 
shown as a function of frequency.  The solid line is referred to passive isolation only while the 
dashed one is evaluated in the presence of active control �d� too. Figure 9.B.16 shows the 
expected vibration acceleration (RMS) on the PGB. The residual noise at about 3 Hz is at the 
level of 10-10m/s2 (i.e.10-11 g/√Hz), which is the goal. It is obtained by combining the result 
plotted in figure 9.B.13 with the expected noise on the ISS shown in figure 9.B.8.  
  

9.B.4: Thermal Analysis. 

 
The ISA accelerometers need thermal stability of the environment in order to minimize 
thermal noise. This environment is the MDL which includes the PGB. It is necessary to 
thermally insulate the accelerometer from its environment both radiatively and conductively. 
We need to study the main mechanism of heat transmission ([61 � 63]). Let us take two 
parallel surfaces S with temperatures T and T+∆T. Vacuum between the two surfaces does 
ensure radiative transfer of heat according to: 

3
rad TQ 2 ST Tσε ∆∼  (9.B.22) 

where σ is the Stefan-Boltzmann constant and εT the emissivity of the material. 
The radiative coupling between the mobile structure (PGB) and the MDL can be minimized 
by means of an aluminised kapton tape on all the surfaces of the fixed structure, which 
guarantees a very low thermal emissivity. 
The conductive coupling between the ISS and the PGB is well reduced by the thin springs. If 
the helical spring used to suspend the PGB has total length L, wire diameter d and is made of 
a material with thermal conductivity λT, heat conduction from the two ends of the spring at 
temperatures T and T+∆T is expressed by the relation (9.B.23). 

2
cond TQ 4 d / Lπ λ∼  (9.B.23) 
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Figure 9.B.13: Transfer function PGB acceleration/disturbance of the actively controlled system. Solid line: 
passive isolation only. Dashed line: active control �d�. 

 
Figure 9.B.14: Phase as a function of  frequency. Solid line: passive isolation only.  Dashed line:  active control 

�d�. 
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Figure 9.B.15: Transfer function PGB displacement/disturbance of the actively controlled system. Solid line: 
passive isolation only. Dashed line: active control �d�. 

 
Figure 9.B.16:  Log / Log   plot of the expected vibration acceleration  (RMS)  on the PGB.  The solid line is  
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referred to passive isolation only while the dashed one is evaluated in the presence of active control �d� too. The 
dotted line is the PSD of simulated disturbances on the ISS. 

The residual gas in the MDL can contribute to the thermal coupling between the ISS and the 
PGB.  Being p the pressure of the residual gas, the heat transferred per second is: 

gas T 0Q c a pS T∆∼  (9.B:24) 

We have to take into account the power dissipated by Joule�s effect. If ρE is the electrical  
resistivity  of  the   wire  of  the  spring  and  i  the  electrical  current,  energy dissipated as 
heat is: 

2 2
E EQ L / dρ∼ i  (9.B.25) 

It is easy to show that the temperature variations due to the heat transfer mechanisms 
(9.B.22), (9.B.23), (9.B.24) and (9.B.25) are negligible if compared with the variation of the 
air temperature of the cooling system. In this case the expected variation is of 11.1K.  
Here we report the results of a preliminary analysis of disturbances due to thermal variations 
assuming passive thermal isolation only. We analyse how heat passes firstly through the 
external environment (MDL) and secondly through the Pico Gravity Box. Let us consider 
both the internal surface of the MDL and the internal surface of the PGB covered by a Multi 
Layer Insulator composed by ten layers at least. The system can be modelled by a 
block−diagram with two subsystems (see figure 9.B.17). MDL represents the rack of the 
international space station containing the PGB. We are interested in temperature fluctuation at 
the level of the ISA accelerometer located inside the PGB. 
 

PGB ∆Ton ISA∆Texternal  MDL
 

Figure 9.B.17: Thermal Block diagram . 

The mass and thermal capacity of a system will reduce thermal variations at frequencies 
higher than a threshold frequency depending on the timescale of its thermal inertia τT. First 
hand knowledge of the apparatus is  required in order to establish how long is this timescale.  
The resulting attenuation factor at a frequency ν is ( ) ( ) ( )ext 1 2T T + πντν = ∆ ν . At the first 
block corresponds a thermal transfer function (TTF) which is constant at low frequencies (i.e. 
frequencies lower than the critical one; we assume a critical frequency of about 10-4Hz 
(τ1≈104s), which is not an optimistic assumption) and which decreases at a rate of 20 db per 
decade at frequencies higher than the critical one.  
At the second block corresponds the thermal transfer function of the PGB. In this case the 
transfer function is similar to the previous one, but the critical frequency is about 10-3Hz (we 
have assumed a higher frequency because the mass of the body is smaller than the mass of the 
Container). Instead of this model we could consider a third subsystem in order to take into 
account the external box (a few kilograms) of ISA. With this choice we would obtain a better 
rejection at high frequencies, but also the 2-stage model shown in figure 9.B.17 is found to be 
enough to guarantee a residual thermal noise lower than the vibrational noise expected from 
active and passive attenuation.  
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We obtain the total transfer function (for the full system of figure 9.B.17) by multiplying the 
TTFs of each block. At high frequencies it decreases at the rate of 40 db per decade (see 
figure 9.B.18). 
Now, we must evaluate how temperature variations affect the accelerometer, starting from the 
experimental evidence that ISA�s sensitivity to temperature is of about 5⋅10-7 g/√Hz per 
degree of temperature variation, at all frequencies. As a consequence, in the presence of a 
temperature variation ∆T(ν), the accelerometer will measure an acceleration:  

7
T

g K( ) 5 10 T( )
Hz

−
∆ ν = ⋅ ∆ νa  (9.B.26) 

This noise must be lower than the residual vibrational noise obtained thanks to passive and 
active attenuation assuming no temperature perturbation. The red line in figure 9.B.19 refers 
to a single stage system (PGB only) and a temperature fluctuation ∆T(ν)=1K/√Hz.  Green and 
magenta lines refer to a double stage system (MDL + PGB; see figure 9.B.17) and 
temperature variations of ∆T(ν)=1K/√Hz and ∆T(ν)=11K/√Hz respectively at the level of the 
external surface of the MDL.   

 
Figure 9.B.18: Thermal transfer functions. Red is the MDL's TTF, blue is the PGB's TTF and green is the total 
TTF. 

Temperature gradients and residual gas pressure around the PGB will give rise to the 
radiometer effect. The radiometer acceleration is given by: 

p V T( )( )
2m T L

∆ νν =a  (9.B.27) 

where p is the pressure of the residual gas, T  its temperature, m the mass of the PGB, V its 
volume and L the length of its side. 
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Figure 9.B.19: The blue line represents the level of vibrational noise expected inside the PGB after passive and 
active attenuation, assuming no temperature perturbation; the other three lines represent the level of disturbances 
that would be measured by the ISA instrument (inside the suspended PGB) because of the temperature 
fluctuation ∆T(ν): the red line refers to a single stage system (PGB only) and a temperature fluctuation 
∆T(ν)=1K/√Hz at all frequencies; green and magenta lines refer to a double stage system (MDL + PGB; see 
figure 10.20) and temperature variations of ∆T(ν)=1K/√Hz and ∆T(ν)=11K/√Hz respectively (at the level of the 
external surface of the MDL).  

 
Figure 9.B:20: The blue line represents the level of vibrational noise expected inside the PGB after passive and 
active attenuation, assuming no temperature perturbation; the other three lines represent the level of disturbances 
measured by the ISA instrument inside the PGB because of the radiometer effect: the red line refers to a single 
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stage system (PGB only) and temperature gradients ∆T(ν)=1K/√Hz; green and magenta lines refer to a double 
stage system (MDL + PGB; see figure 10.20) and temperature gradients of ∆T(ν)=1K/√Hz and ∆T(ν)=11K/√Hz 
across the PGB respectively. In all cases the residual gas pressure is that inside the MDL, i.e. about 10-3  mbar. 

In the MDL the residual pressure is quite low (p≅ 10-3mbar) and the temperature is about 
300K. The radiometer effect resulting from (9.B.27) is plotted (expressed in g/√Hz) in figure 
9.B.20 as a function of frequency. It is compared to the residual vibrational noise inside the 
suspended PGB (resulting from active and passive isolation as reported in section 9.B.3), 
showing that the radiometer effect is not a matter of concern. 
The previous analyses appear to indicate that temperature induced disturbances can be kept 
below the expected level of noise reduction to be provided by the PGB passive/active 
vibration isolation system without implementing active thermal control of the ISA 
accelerometer.     
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APPENDIX 9.C: 

NUMERICAL SIMULATION OF THE GG DYNAMICAL SYSTEM. 

9.C.1: EIGENVALUES OF THE GG ROTOR IN THE INERTIAL FRAME. 
 
By following the steps in chapter 3, section 3.6, it is convenient to turn (9.10) into a form 
involving only first-order time derivatives. To this aim, we define the 8-components state 
vector x!  as: 

T
t tx r r r r = ∆ ∆ ∆ ∆ 

" " " "# #!  (9.C.1) 

Equations (9.10) may be now written in a compact form: 

x Ax=# !! !  (9.C.2) 

where A! (8×8)  is the following square matrix: 

( ) ( )
NR NR,t NR NR,t

NR NR,t NR NR,t

O 4 4 I 4 4
O I

K K C CA
K C

K K C C

× × 
  ′ ′− − − −= =    − −  ′ ′− − − − 

!  (9.C.3) 

O(4×4) is the null matrix; I(4×4) is the identity matrix.  K is the matrix of the elastic 
constants. C is the matrix of the damping coefficients. By introducing the Laplace variable s 
and the identity matrix I8×8, the characteristic equation may be written as: 

8 8
sI I sI I

det(sI A) det det 0
K C sI K D×

 −   −    
− = = =      +      
!  (9.C.4) 

Because A! is (8×8), the characteristic polynomial is: 
8 7 6 5 4 3 2 1

7 6 5 4 3 2 1 0p(s) s p s p s p s p s p s p s p s p= + + + + + + + +  (9.C.5) 

The 9 coefficients of the characteristic polynomial are listed in table 9.C.1 as a function of the 
system parameters. There are several methods of obtaining information about the roots of the 
polynomial (9.C.5) without solving for them. We may apply the Routh’s stability criterion 
([44 – 49]) to make certain statements about the stability of the system. To determine the 
Routh array, we arrange the coefficients of (9.C.5) in two rows, starting with the first and 
second coefficients and followed by the even numbered and odd numbered coefficients: 

8
6 4 4 0

7
7 5 3 1

s : 1 p p p p

s : p p p p 0
 

Then we add the third and the fourth rows as follows: 

6 4 2 0

7 5 7 3 7 1 7
1 2 3 4

7 7 7 7

1 p 1 p 1 p 1 p
det det det det

p p p p p p p 0
b ; b ; b ; b

p p p p

       
       
       − − − −  (9.C.6.a) 
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7 37 5 7 1

1 31 2 1 4
1 2 3

1 1 1

p pp p p p
detdet det

b bb b b b
c ; c ; c

b b b

    
    

     − − −  (9.C.6.b)

  

Coefficient of the characteristic polynomial Approximated Coefficient1 

P8=1 P8=1 

22
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7 2
s tn

Qp 2 1
Q Q
 ωω= +  ω ω 

 ( )
2
n

7 7
s

p 2 p 0
Q

ω
ω

$ ∼  

( )
22 22 2

2 2nt r rt ntn n
6 n nt2 2

s t tp n

m m Qp 2 1 1 2
Q Q Q Qm

    ω ωω ω  = − + + + ω + ω    ω ω   
 ( )2 2

6 n ntp 2 ω + ω$  

4 4 2 2 2 2
n nt r rt nt n nt r rt nt

5 3 2 2 2 2 2
t s ts t p n p n

4 2
n r rt nt

2 2
s tp n

1 m m Q 1 1 m m 1 Qp 2 1 1 4 1
Q Q 2 2 QQ Q m m

1 1 m m Q2 1 2 1
Q 2 Qm

    ω ω ω ω ω ω
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  ω ω  + + −
  ω ω  
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2
2 2n r rt

5 nt n2
s p

5

1 1 m mp 2 2 1
Q 2 m

p 0

  ω   ω − + ω
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$
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2
4 4 4 2 2
n nt r rt n nt r rt nt

4 4 2 2 2 2 2
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2 2 4 4r rt r rt
n nt n nt2 2 2 2
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m m m m Q 1 2p 1 2 1 1 2
Q Q QQ Q m Q m

1 m m 1 m m 1 14 1 1 1
2 2m QQ m Q Q

     ω ω ω ω ω   = − + − + +      ω ω ω      
    
 + ω ω + − + ω + + ω +          

 2 2 4 4r rt
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p

1 m mp 4 1
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$

2
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2 2 2 2 2
2n nt r rt nt n nt
n2 2 2 2
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m m 1 1p 2 1
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n nt n nt2 2 2
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m m Q 1 Q 1p 1 4 1 1
Q QQQ m Q Q

m m 1 12 1 1 1
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 2 2 2 2r rt
2 n nt n nt2

p

m mp 2 1
m

 
  ω ω − ω + ω  

 
$  

2
4 4
n nt r rt

1 2 2 2
s tp t

m m 1 1 1 1p 2 1 1 1
Q Qm Q Q

     ω ω
 = − + + +      ω       

 
2

4 4
n nt r rt

1 2
s p

m mp 2 1
Q m

 ω ω
 = −
 ω  

 

2
4 4 r rt

0 n nt 2 2 2
t p

1 1 m mp det(K) 1 1 1
Q Q m

   
 = = ω ω + + −       

 
2

4 4 r rt
0 n nt 2

p

m mp 1
m

 
 ω ω −
 
 

$  

Table 9.C.1: Coefficients of the characteristic polynomial. 

 
                                                 
1 The coefficients are evaluated in the limit 

s n nt

1 1 1,<<
ω ω ω

  and  
t

1 1 1
Q Q

<< << .  
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We then complete the Routh’s array: 
8

6 4 2 0
7

7 5 3 1

6
1 2 3 4

5
1 2 3

4
1 2 3

3
2

2
1 2

1
1

0
2

s : 1 p p p p

s : p p p p 0

s : b b b b 0

s : c c c 0 0

s : d d d 0 0

s : 0 e 0 0 0

s : f f 0 0 0

s : g 0 0 0 0

s : f 0 0 0 0

→ ε

 

Note that the elements of the successive rows are formed from the two previous rows using 
determinants, with the two elements in the first column and other elements from successive 
columns. The first element in the 6-th row is zero, then we can replace it with a small positive 
constant ε>0. The subsequent rows are determined with the procedure described above and 
the stability criterion is applied in the limit ε→0. If all the coefficients in the first column are 
positive, then all the roots of the characteristic equation (9.C.4) have real part negative and the 
system is stable. If they are not all positive, then the number of sign changes in the first 
column equals the number of roots with positive real part. For example, if the n-th coefficient 
is positive, the (n-1)-th is negative and the (n-2)-th is positive, then there are two sign 
changes, hence two roots with positive real part. The coefficients in the first column are listed 
in table 9.2 together  with the sign changes.  

Coefficient in the first column Sign Changes 
1>0 NO 

( )2
7 n sp 2 Q 0ω ω >$  NO 

2 2 2
1 n nt r rt pb m m / m 0ω + ω >$  NO 

22 4
2 2n nt r rt r rt

1 n nt2 2
s p p

m m m mc 2 1 0
Q m m

   ω ω
   − − ω + ω <
   ω    

$  YES 

( )2 2 2 2 2
1 nt n nt n r rt pd 1 m m m 0 ω ω + ω + ω − > $  YES 

0→ε>0 NO 

( )22 4 8
1 r rt p n nt sf 2 1 m m / m ( Q) 0− − ω ω ω <$  YES 

24 6
2 2 2n nt r rt r rt

1 n nt n2 2
s p p

m m m mg 2 1 1 0
Q m m

    ω ω     − ω + ω + ω − >
    ω     

$  YES 

2
4 4 r rt

2 n nt 2
p

m mf 1 0
m

 
 ω ω − >
 
 

$  NO 

Table 9.C.2: Coefficients in the first column of the Routh’s array and the sign changes in that column.  
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Since there are four sign changes, we conclude that there are four roots of (9.C.4) with 
positive real part, hence the system is unstable. This conclusion is valid in the limit ωs>>ωn, 
ωs >>ωnt and Qt>>Q>>1. Note that the eigenvalues of equation (9.12) differ from the 
eigenvalues of equation (9.C.4) for a factor j (imaginary unit). 
 

9.C.2: SIMULATION OF THE WHIRLING MOTION IN THE ROTATING FRAME. 
 

In section 9.6 we have written the equations of motion in the rotating reference frame. Before 
proceeding to implement these equations in Simulink, we need to recast equations (9.15) in a 
more manageable form:   

{ }
{ }

{ }

2
s sCentrifugal

Coriolis
R
ext s Fext

t2
t s t sCentrifugal t Coriolis

to _ PGB/ TM 2

F / m from _ PGB/ TM

to _ s / c _ PGB 2

from _ s / c _ PGB

η

ξ

η

ξ

  ∆ρ   ∆ρ = + ω ∆ρ + ω   −∆ρ    


+ − +

  ∆ρ   ∆ρ = + ω ∆ρ + ω   −∆ρ    
 +

#" "##
#

#" "##
#

 (9.C.7) 

where we have introduced the following quantities: 

( )R R

r r

k cto _ PGB_ TM
m m

= − ∆ρ − ε − ∆ρ" " "#  (9.C.8.a) 

( )R
t p t t Rt p tfrom _ PGB_ TM k / m c / m= ∆ρ + ε + ∆ρ" " "#  (9.C.8.b) 

p

rt

m
to _ s / c _ PGB from _ PGB_ TM

m
= −  (9.C.8.c) 

p

r

m
from _ s / c _ PGB to _ PGB_ TM

m
= −  (9.C.8.d) 

The total block diagram implemented to simulate the whirling motion is illustrated in figure 
9.C.1.  

 
Figure 9.C.1: Total block diagram describing the behaviour of the system. 
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The block “Equations in the Rotating Frame” implements equations (9.C.7) in the rotating 
frame. It is illustrated in figure 9.5. It has one input, the temporal variable t, and 4 outputs, the 
vectors t tr, r, r , r∆ ∆ ∆ ∆" " " "# # . They are the inputs of the block “Coordinate Transformation”. This 
block (not illustrated) transforms a vector in the rotating frame  into its counterpart in the non 
rotating frame.  

 
Figure 9.C.2: Block “Equations in the Rotating Frame”. 

The block “Equations in the Rotating Frame” is illustrated in figure 9.C.2. The two blocks 
“Epsilon” and “Epsilont” define the eccentricities R R

t,ε ε" " . The block “Equations for the 
system s/c + PGB” implements the first equation of (9.C.7) and it is illustrated in figure 9.C.3, 
while “Equations for the system PGB +TM” implements the second equation of (9.C.7). 

 
Figure 9.C.3: Block “Equations for the system s/c + PGB”. 
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The block in figure 9.C.3 receive signals from the clock, from the block “epsilon” and from 
the block “to_sc_PGB”. The Sum block adds 5 vectors, i.e. the accelerations in the right side 
of the first equation in (9.C.7) which are generated in the blocks with the same name 
(illustrated below). The two components of r∆"## are integrated (double integration) in the 
“Integrator” block 1/s to obtain r∆"#  (first integration) and r∆" (second integration).  
The block “External Force” is equivalent to the term { } Fext

R
ext sF / m−  in (9.C.7) and it is shown 

in figure 9.C.4. The external force is defined in the following way. The referring orbit is a 520 
km circular orbit, with angular velocity ωorb. For the purposes of the present analysis the 
orbital motion of the satellite can be neglected. The orbiting reference system is therefore 
approximated by an inertial reference frame. The main drag component has been set to     
5⋅10-9N (after drag free control). It converts to a signal at frequency ωs in the rotating 
reference frame. A second component of the drag acts at frequency ωs-ωorb in the rotating 
frame and has amplitude 2⋅10-9N.  
Figure 9.C.5 shows the block “Coriolis”, which is equivalent to { }s2 ,η ξ ω ∆ρ − ∆ρ # #  in (9.C.7).   

 
Figure 9.C.4:Block “External Force”. 

 
Figure 9.C.5: Block “Coriolis”. 

The block “Centrifugal” in figure 9.C.6 is equivalent to the term { }2
sω ∆ρ" .   

 
Figure 9.C.6: Block “Centrifugal”. 

The block to _ PGB _ TM  is defined by  equation (9.C.8.a) and is shown in figure 9.C.7.   
 



Appendix 9.C: Numerical Simulation of the GG Dynamical System.  

 248

 
Figure 9.C.7: Block “to_PGB_TM”. 

The values of the governing parameters in the GG experiment are listed in table 9.C.3. 

Parameter Numerical Value 
ms – Spacecraft’s mass 122.071 kg 

mp – PGB’s mass 43.647  kg 
mt – test cylinder’s mass 20  kg 
k, kt – Elastic constant  0.02 N m-1 

Q – Quality factor -  PGB/spacecraft 90 
Qt – Quality factor – PGB/test mass 500 

ωs – Spin angular velocity 12.57 rad/s  (2Hz) 
ε, εt  - Eccentricity  10-7m 

cR – rotating damping – PGB/spacecraft 1.77 10-5 kg s-1 
cRt – rotating damping – PGB/test mass 3.18 10-6 kg s-1 

Torb – Orbital period 5700 s 
Table 9.C.3: Nominal values of the parameters in the GG experiment. 

 

9.C.3: SIMULATION OF THE WHIRLING STABILIZATION – IDEAL CASE. 
 
The damping forces in the rotating frame (9.18) and (9.19) are added to the system (9.C.7) by 
introducing the blocks “Control_1” and “Control_2”, namely: 

{ } { }

{ }

2 R
s s ext sCentrifugal Fext

Coriolis

rt

p

t2
t s t sCentrifugal t Coriolis

to _ PGB/ TM 2 F / m

mfrom _ PGB/ TM Control _1 Control _ 2
m

to _ s / c _ PGB 2

fro

η

ξ

η

ξ

 ∆ρ   ∆ρ = + ω ∆ρ + ω + −  −∆ρ   

+ − +

 ∆ρ   ∆ρ = + ω ∆ρ + ω  −∆ρ   

+

#" "##
#

#" "##
#

r

p
(9.C.9)

mm _ s / c _ PGB Control _ 2 Control _1
m













− +
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with: 

nr
s

r

cControl_1
m

η

ξ

 −∆ρ  
= ∆ρ + ω   ∆ρ  

"#  (9.C.10.a) 

tnrt
t s

trt

cControl_ 2
m

η

ξ

 −∆ρ  
= ∆ρ + ω   ∆ρ  

"#  (9.C.10.b) 

The non rotating damping coefficients cnr and cnrt used in the simulation are γ and γt  times 
larger than the minimum value required for stabilizing a Jeffcott rotor (see equation (1.23)): 

0
nr nr nc c k /( Q)= γ = γ ω   (9.C.11.a) 

0
nrt t nrt t t nt tc c k /( Q )= γ = γ ω  (9.C.11.b) 

The block “Equations for the system s/c + PGB” implements the first equation in (9.C.9) and 
it is illustrated in figure 9.C.8 This block differs from the block in figure 9.C.3 for the 
presence of non rotating damping forces (9.C.10.a) and (9.C.10.b). 

 
Figure 9.C.8: Block ”Equations for the system s/c + PGB” in presence of non rotating damping. 

The term ( )T
nr s rControl _1 c / mη ξ = ∆ρ + ω −∆ρ ∆ρ 
"#  is shown in figure 9.C.9.   
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Figure 9.C.9: Block “Control_1”. 

 

9.C.4: SIMULATION OF THE WHIRL CONTROL WITH REALIST ERRORS. 
 
The total block diagram implemented in this section is shown in figure 9.15.  Figure 9.10 
shows the content of the block “Equation of Motion Rotating Frame”. Inputs are the 
components of the control feedback force and the temporal variable t. Its outputs are the 
vectors e∆ρ = ∆ρ+ ∆ρ" "!  and t t te∆ρ = ∆ρ + ∆ρ" "!  (errors are added in the two blocks 
“Drho+Noise” and “Drhot+Noise”: a bias of the read-out capacitors and white noise, 
generated as normally distributed random numbers with mean of 0 and a standard deviation of 
σ). The block “Equations in the Rotating Frame” is similar to the block in figure 9.C.2.  

 
Figure 9.C.10: Block “Equation of Motion - Rotating Frame”. 

Equation (9.29) is implemented in the block “B(t)” included in “Signal in the Inertial Frame”. 
“B(t)” is illustrated in figure 9.C.11. The “Zero-Order Hold” block implements a sample-and-
hold function operating at the specified sampling rate. This block provides a mechanism for 
discretizing one signal. The block “Integrator” integrates the signal in input. The block can 
reset its state to the specified initial condition based on an external signal produced by the 
“Pulse Generator” block (this block produces a pulse with period Ts). 

 
Figure 9.C.11: Block B(t). 
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wst is the noisy spin angular velocity measured by the ESS.  It is generated in the block 
“Frequency from ESS” shown in figure 9.C.12 inside the block “C(t)” (not shown). Note that 
white noise is added to the actual value of the spin frequency in order to simulate the sensor 
noise affecting the ESS. The block “Mean” returns a mean value of the input elements. The 
block can reset its state to a specified initial condition based on an external signal produced by 
the “Pulse Generator” block. Vectors (9.31.a) and (9.31.b) are the outputs of the block “Signal 
in the Inertial Frame”. 

 
Figure 9.C.12: Block “Frequency from ESS”. 

From the difference between the corresponding values of the relative displacement in two 
successive spin periods, the velocity of the modulating signal in the inertial frame is then 
reconstructed (see equation (9.32) and figure 9.C.13). 

 
Figure 9.C.13:Block “Velocity”. 

A second Fourier harmonic analysis at the whirl period Tw is performed in the block “Whirl 
Velocity” (not described here) to obtain vectors (9.33.a) and (9.33.b). The control command is 
generated in the form of a pulsed force obtained starting from the reconstructed velocities 
(9.33.a) and (9.33.b). This operation is performed in the block “Control Force”. After 
changing reference frame (to write the whirl velocities in the rotating frame where the 
actuators are located), the velocities are sent to the block “Pulsed Control” which generates 
the control forces. The hearts of this element are the two blocks “V2csi” and “V2eta”, where 
the pulse command at frequency 2ωs is produced. Input of  “V2csi” (see figures 9.C.15 and 
9.C.16) is the component of the whirl velocity along the ξ axis in the rotating reference frame. 
It is sent with positive sign to the block “Positive” and with negative sign to “Negative”. 
These two blocks “Positive” and “Negative” propagate their input only if  it is positive (which 
is true only for one block each time), otherwise the output is null.  
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Figure 9.C.14: Block “Pulsed Control”. 

 
Figure F:15: Block “V2csi”. 

 
Figure 9.C.16: Block “Positive”. 
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Abstract

The GGG differential accelerometer is made of concentric coaxial test cylinders weakly coupled in the horizont
and spinning in supercritical regime around their symmetry axis. GGG is built as a full scale ground based prototyp
proposed “Galileo Galilei-GG” space experiment aiming to test the equivalence principle (EP) to 10−17 at room temperature
We report measuredQ values of 95000 at 1.4 Hz, and expect even better ones at typical spin frequencies of a few Hz
violation signal in the field of the Sun would appear as a low frequency displacement in the horizontal plane of the lab
and it can be separated out from a much larger whirl motion of the test masses at their natural differential frequenc
we have managed to reduce the amplitude of this whirl to about 0.1 µm. We discuss how to improve these results in
the very high accuracy GG experiment in space, and/or to reach a 10−13 sensitivity in the lab which would allow us to eithe
confirm or rule out recent predictions of violation to this level.
 2003 Published by Elsevier B.V.

Keywords: Equivalence principle; Quality factor measurements; Rotordynamics
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1. Introduction

A fast rotating differential accelerometer made
weakly coupled concentric and self centering t
cylinders, has been designed to be flown inside
small “Galileo Galilei”-GG satellite with the purpos
of testing the equivalence principle (EP) to 1 part
1017 at room temperature, see [1,2] and referen
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E-mail address: nobili@dm.unipi.it (A.M. Nobili).
0375-9601/$ – see front matter 2003 Published by Elsevier B.V.
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therein. EP experiments in low Earth orbit take adv
tage of the stronger signal (by 3 orders of magnitu
for orbiting test masses, and the absence of weight
lowing the test masses to be very weakly suspen
and coupled). Two other proposed missions, STEP
and µSCOPE [4], also aim to test the equivalence p
ciple in space. The goals are 10−15 for µSCOPE and
10−17–10−18 for STEP (by running the experiment
very low temperature). Both the STEP and µSCO
accelerometers are sensitive only along the symm
axis of the test cylinders and are designed to modu
the signal by rotation around an axis in the plane p
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pendicular to it. Instead, the GG accelerometer sp
around the symmetry axis (which appears to be
natural choice) and is sensitive in the plane perp
dicular to it. In addition to preserving the 2D dime
sion of a possible EP violation signal in the orbi
plane of the satellite, and to make fast rotation p
sible, a 2D accelerometer allows a full scale 1-g v
sion of the instrument to be designed and tested in
laboratory. Indeed, if the spin/symmetry axis is us
to suspend the accelerometer against local gravity
plane of sensitivity lies in the horizontal plane whe
it could detect the signal of a possible violation
the equivalence principle. The “GG on the Groun
GGG accelerometer is a full scale prototype of the
proposed for flight with GG (see [5] for details). W
report the experimental measurements which con
the main novel features of the GGG acceleromete
predicted from the theoretical analysis of its dynam
cal behavior, and the measured quality factors wh
demonstrate that the accelerometer is suitable for
accuracy EP tests. We also report the current sens
ity of the instrument and discuss how to improve it
demonstrate the feasibility of the GG experiment
space to 10−17 and to perform a ground test to 10−13.
The latter test would improve the present best res
[6,7] by one order of magnitude, enough to either c
firm or rule out recent violation predictions based
string theory [8].

2. Design and main features of the GGG
differential accelerometer

Experimental tests of the equivalence principle
tests of the most direct experimental consequenc
the “Principle”, namely the universality of free fa
(UFF) by which in a gravitational field all bodie
fall exactly the same independently of their mass
composition. UFF experiments require two test bod
of different composition in the gravitational field of
source mass (e.g., the Earth or the Sun). The bo
must be arranged to form a differential accelerome
and to accommodate a read-out system in betw
them to sense the effects of differential forces. In
GG accelerometer design for space the differen
nature of the instrument is obtained in two wa
First, by arranging the test bodies (concentric, coax
hollow cylinders) like in a beam balance with th
beam along the spin/symmetry axis of the cylind
and very weak coupling in the plane perpendicula
it (the plane of sensitivity). Second, by means o
capacitance read-out which is sensitive primarily
differential displacements of the centers of mass
the test cylinders relative to one another (it may se
common mode displacements too, but only to sec
order).

Both these features are retained in GGG at 1
Like in space, the design is that of a beam bala
with the beam along the local vertical, which
also the spin/symmetry axis of the test bodies. Th
are concentric, coaxial hollow cylinders with th
same 10 kg mass as in space. Appropriate card
suspensions are used such that they can withs
gravity along the vertical while also weakly couplin
the test cylinders in the horizontal plane, for b
sensitivity to differential forces. The coupling vertic
beam is enclosed inside the rotation shaft by me
of 3 such suspensions: the central one to suspen
whole system, the top and down ones for the ou
and inner test cylinder respectively (see Fig. 1). T
relative displacements between the centers of m
of the test cylinders are detected by a differen
capacitance read-out in all similar to the one desig
for flight. As in the design for space, the syste
spins in supercritical regime, i.e., at frequencies
a few Hz) higher than its natural frequencies wh
allows self centering and reduced mechanical
electronic noise. The main difference with respec
the experiment in space is the need of a motor
of bearings (which are well-known sources of noi
to provide the rotation of the system. To the contra
in space, once the whole satellite has been spu
the required rate, this is maintained by conserva
of angular momentum and no motor or bearings
needed. Another important difference is that on
ground the spin/symmetry axis of the accelerome
is also the direction of local gravity, a force whic
exceeds any other force acting on the system
far hence imposing a top/down asymmetry in
accelerometer design, as it is apparent by compa
the GGG accelerometer shown in Fig. 1 with the G
accelerometer shown in Fig. 2 of Ref. [1].

The theoretical analysis of the GGG dynami
system allows us to predict its natural frequencies
oscillation in the plane of sensitivity of the instrume
(the horizontal plane), to be compared with th
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Fig. 1. Section through the spin axis of the GGG differential accelerometer inside the vacuum chamber. (Figure is in colour on the web.)
VC: vacuum chamber; MO: motor (drawn in brown); x: ball bearings; OR: O-rings; AD: annular dishes with the read-out electronics; CP:
capacitance plates; OD: optical device;mi : inner test mass (green);mo : outer test mass (blue); LS: laminar suspensions (orange);ma : coupling
arm (cyan); ST: suspension tube (yellow). The open circle indicates the position of the bodies center-of-mass CM. The drawing is to scale and
the inner diameter of the vacuum chamber is 1 m. Also:Lo = 38 cm;La = 19 cm;Li = 4.5 cm;	L ∼= 0 cm; l = 0.5 cm.
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ment) as
t zero spin
the other.
Fig. 2. Natural frequencies of the GGG system in the X and Y directions of the horizontal plane (the plane of sensitivity of the instru
theoretically predicted (lower plot) and measured (upper plot). (Figure is in colour on the web.) The measurements are performed a
rate. The lowest frequency (just below 0.1 Hz) is the frequency of the differential oscillations of the test cylinders one with respect to
The difference in the X and Y directions is due to manufacturing differences of the cardanic suspension strips in the two directions.
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measured values. The sensitivity of the instrumen
the effect of differential forces (such as the effect
an EP violation) increases with the natural freque
of differential oscillation of the test cylinders one wi
respect to the other to power−2, and this frequenc
can be reduced by using the force of gravity to prov
a negative spring.

In Fig. 2 this frequency is just below 0.1 H
but it can be further reduced. The figure shows
comparison between the theoretical and the predi
values of the 3 natural frequencies at zero spin
in the X and Y directions of the horizontal/sensitivi
plane, indicating that the values of these frequen
are known beforehand. Once in rotation, the val
of the natural frequencies slightly change depend
on the spin rate, and these changes can also
predicted theoretically. Fig. 3 shows that all measu
values of the natural frequencies lie on the predic
lines. For each spin rate, the supercritical regime
below the 45◦ resonance line. In this regime, due
inevitable losses in the system, at the slightly chan
values of the natural frequencies the system deve
whirl motions (see Section 3). More details on t
simulation program that we have developed in or
to predict the dynamical behavior of the GGG syst
(and possibly improve its sensitivity by appropria
changes in the design) are given in [9,10].

3. Quality factor, whirl control and sensitivity

In order to reduce thermal noise and to impro
sensitivity, an accelerometer devoted to testing
equivalence principle should have quality factorsQ

(inverse of loss factors in the system) of values
high as possible. An important advantage of rotat
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frame of
ithin our

m, to show
dicted ones.
Fig. 3. So-called “Campbell diagram” for the GGG rotor. It gives the natural frequencies of the system (in the non-rotating reference
the laboratory) as function of the spin rate of the rotor. (Figure is in colour on the web.) The blue (solid) lines have been predicted w
simulation program of the system (circles on these lines are computed including also a realistic dissipation, i.e., losses in the syste
that dissipation does not affect the natural frequencies); the red crosses are the measured values, and they clearly confirm the pre
The supercritical regime is easily identified below the red dashed line at 45◦ inclination (see [9] for details).
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in supercritical regime (spin frequency higher than
natural ones) comes from the well-known fact that
this regime the suspensions are deformed at the
frequency of the system, not at their natural on
hence, losses occur at this frequency (which is
highest in the system), and they are known to decre
with frequency. We can therefore design the system
as to have a very weak coupling of the test cylinde
hence, a very low natural frequency for different
oscillations of their centers of mass one with resp
to the other (for best sensitivity to differential force
and yet obtain a high quality factor by spinning
high frequency. Moreover, since rotation provides
modulation of the signal, high spin rate also mea
high modulation frequency and reduced “1/f ” noise.
It is therefore apparent that the supercritical regim
extremely well suited for accelerometers aiming to t
the equivalence principle.

Quality factors at the natural frequencies can
measured, for the whole system, at zero spin rate
exciting oscillations at these frequencies and mea
ing the decay in the oscillation amplitude. Fig. 4
ports measurements performed in 2002 at the 0.9
natural frequency, yielding value of 16450. In 200
with improved suspensions, we have obtained, at a
the same frequency a higherQ value (33000), as
shown in Fig. 5. The same figure shows measureQ

values at the other 2 natural frequencies (1.4 Hz
0.08 Hz). As expected, theQ value increases with th
frequency (losses are smaller at higher frequenc
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Fig. 4. Measurement of the quality factor of the GGG system at its natural frequency of 0.9 Hz. (Figure is in colour on the web.) The system (at
zero spin) is excited at this frequency and the decay in oscillation amplitude is measured. The decay turns out to be compatible with aQ value
of 16450. The run refers to the GGG system set up as in the year 2002.

Fig. 5. Resulting quality factors of the GGG accelerometer at the natural frequencies (at zero spin) as obtained by measuring the oscillation
decay of the system. (Figure is in colour on the web.) The blue curve is the FFT of the fitted output data. The runs refer to an improved system
set up (with improved cardanic suspensions) of June 2003. Note the higherQ value at about 0.9 Hz as compared to the value reported in Fig. 4.
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system.
requency
Fig. 6. FFT of the relative displacements of the test cylinders in the Y direction of the horizontal plane in the non-rotating reference
The relevant whirl at the natural frequency of 0.08 Hz has been reduced to about 0.1 µm. The effect of a differential force at lower f
must be separated out and emerge from the low frequency residual noise (see Fig. 7).
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reaching the value of 95000 at 1.4 Hz. Since the s
rate is 2 Hz and above, we expect that the relevantQ in
supercritical regime will be even better (higher) th
this value. With cardanic suspensions of rather co
plex shape (see Fig. 1), which are therefore not e
to manufacture, the measuredQ is indeed higher than
we had expected. It is worth noting that the GG sp
mission studies have been carried out assuming
the mission target of testing the equivalence princ
to 10−17, a Q value of 20000 (see [1] and referenc
therein). The ground measurements reported in Fi
indicate that such an assumption is in fact rather c
servative.

In supercritical rotors losses at the spin freque
are also relevant for the growth rate of whirl motio
that such rotors are known to develop, once in su
critical rotation, at their natural frequencies in the no
rotating system. For instance, the centers of mas
the GGG test cylinders do develop an orbital mot
in the horizontal plane of the laboratory at the n
ural frequency of differential oscillations around th
position of relative equilibrium, which is determine
by external differential forces (see simulation, Fig
of Ref. [1] for the case in space). Such a whirl m
tion grows in amplitude at a rate which depends
theQ of the system at the spin frequency: the hig
the Q at this frequency, the slower the growth ra
of the whirl. More precisely, rotordynamics predic
that whirl grows with a (negative)Q equal and op-
posite to theQ of the system at its spin frequenc
In GGG whirls are controlled actively by means
capacitance sensors/actuators with a control sch
which is proportional to the tangential whirl velocit
Measurements of the relative displacements of the
cylinders show, after coordinate transformation to
non-rotating reference system, a controlled whirl m
tion at a differential frequency of 0.08 Hz: the wh
radius has been reduced from a few hundred µm
about 0.1 µm (see the FFT plot of Fig. 6 at this wh
frequency). In order to detect the effect of a low f
quency differential force (such as in the case o
24 hr EP violation signal in the field of the Sun
the corresponding displacement between the cen
of mass should be separated out from the whirl
also emerge from the residual low frequency no
mostly seismic noise. An example of recovery of
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bout 100
10 times
Fig. 7. A signal applied at 0.01 Hz in the Y direction of the non-rotating reference system is recovered from the output data though a
times smaller than the whirl (more than 100 µm in amplitude during this run) at about 0.1 Hz (system spinning at 2 Hz). Since it is also
larger than the noise, an applied signal even several hundred times smaller than the whirl could be recovered.
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applied signal at frequency below whirl frequency
shown in Fig. 7, and indicates that recovery is poss
even though the applied force produces a displacem
much smaller than the whirl radius. However, this w
possible in the run of Fig. 7 where the residual low f
quency noise was also much smaller than the whir
Fig. 6 (which reports more recent measurements)
whirl radius is smaller than in Fig. 7 by about 3 o
ders of magnitude, but residual low frequency nois
not correspondingly smaller. In fact we have reason
think that this is local noise due to the vacuum cha
ber opening/closing system, which can be fixed.

Though the measurements reported in Fig. 6 cle
show the potentiality of the GGG novel design f
detecting the effect of very small low frequen
differential forces in the horizontal plane, they ha
also identified an important issue which requi
immediate attention. In spite of the highQ values
t

measured at zero spin rate (due to the suspens
only), the growth rate of whirl once in supercritic
rotation is indeed much faster than expected by h
Q, indicating that, during rotation, much bigger loss
take place in the system beside the ones in
suspensions. A source of “rotating damping” (the
kind of damping which is known in rotordynamics
produce whirl instability) may be due to the rubber
ring used to transmit rotation from the motor (in
offset location) to the rotating suspension shaft/tu
(see Fig. 1). This problem can be solved by eliminat
the O-ring altogether, i.e., by locating the motor on
spin axis with care to have a hollow shaft for optic
transmission of digitised data from the read-out to
computer outside the vacuum chamber. Other poss
causes of spurious losses are under investigatio
order to obtain theQ values measured in absence
rotation.
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4. Conclusions

A space version of the fast rotating GGG differe
tial accelerometer presented here, to be used within
GG mission ([1] and references therein) in low Ea
orbit, would take advantage of the stronger driving s
nal (8.4 m s−2 from the Earth at 520 km altitude i
GG, instead of 0.006 m s−2 from the Sun in GGG)
It would also allow much weaker suspensions due
absence of weight, and consequent higher sensit
(which depends on the differential period squared)
a factor of about 450. It can be argued that ano
factor of about 200 can be gained due to the abse
of motor and motor/bearings noise, and thanks to
much higher symmetry of the space accelerometer
1-g preferential direction, hence much better reject
of common mode forces and consequent higher
sitivity to differential forces). Overall this amounts
about 8 orders of magnitude gain, thus making a 10−17

test in space a goal worth pursuing. In point of fa
the error budget of the GG space experiment, as de
oped within mission studies so far, has turned out to
compatible with this goal [1]. The improvement ov
current best ground results [6,7] would be of 5 ord
of magnitude.

Very recently, predictions of violation have been
ported [8] at levels close to the current best results
that even a slight improvement on those experime
on the ground (to reach the 10−13 level) would be able
to either confirm or rule out these predictions. T
GGG rotating differential accelerometer can be u
to test the equivalence principle in the gravitatio
field of the Sun to 1 part in 1013. In GGG this goal
requires to detect low frequency (24 hr) relative d
placements of the test cylinders of 10−13 m, which in
turn requires to reduce daily seismic disturbances
7 orders of magnitude with respect to daily tilts me
sured so far. This can be done partly actively and pa
passively. Active reduction is done using as sens
tiltmeter placed inside the vacuum chamber at the
of the GGG frame (not rotating), and as actuator
set of PZTs (also not rotating, at 120◦ in the horizon-
tal plane around the symmetry axis, providing tilts
the apparatus through vertical displacements). 3 or
of magnitude reduction can be obtained in this w
A further reduction by about 4 orders of magnitud
down to 4×10−14 m, which would bring the effects o
tilts and horizontal disturbances well below the tar
signal, can be obtained using a passive cardanic
pension and the lever effect (see [11] for details).
discussed in [11], the main reason why such a sig
cant reduction of seismic noise at very low frequen
is possible is in the very nature of the GGG differen
accelerometer. Since the test cylinders are arrange
in a vertical beam balance, the observable of inte
in GGG are the relative displacements of the test cy
ders relative to it, not the absolute location of the be
which indeed undergoes much larger displacement
following the local vertical in its seismic disturbed m
tion. This is not the case in VIRGO-like apparata us
to detect gravitational waves with interferometric tec
niques. The suspended test masses being the m
of the interferometric system, their absolute displa
ments (unless one could make it possible that b
mirrors undergo exactly the same displacements) m
fulfill a rather stringent requirement coming from t
need that locking is preserved (see [12]).
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Abstract

Experiments to test the equivalence principle (EP) in low Earth orbit require to detect the effects of an extremely sm
classical differential acceleration between test masses of different composition. In all proposed experiments the test m
concentric coaxial cylinders, so as to reduce classical tidal effects which are differential too. Perfect centring being im
tidal effects need to be carefully investigated as they impose severe constraints on the basic features of the experime
The present analysis shows that with free flying (uncoupled) test masses an EP violation signal could be detected if
conditions of the masses were finely adjusted for them to remain at a fixed distance relative to each other while orbitin
the Earth. However, such an experiment is severely limited by non-gravitational effects. If the test cylinders are weakly
in 2D in the plane perpendicular to their symmetry axis (close to the orbit plane), while rapidly spinning around it, a pos
relative equilibrium is provided by physical laws which makes tidal effects widely separated from the signal. Weak cou
1D along the symmetry axis (to lie and slowly rotate in the orbit plane) is viable but less advantageous.
 2003 Published by Elsevier B.V.

Keywords: Equivalence principle; Tidal effects; Rotordynamics

1. Introduction

The equivalence principle (EP) is tested through its most direct consequence, the universality of free fal
whereby in a gravitational field all bodies fall the same regardless of their mass or composition. UFF expe
therefore require two test masses in the gravitational field of a source body plus a read-out system to d
effects of tiny, non-classical differential forces acting between the two. If the experiment is carried out w
test masses enclosed by a spacecraft orbiting the Earth at low altitude the driving signal is much stronge
is for suspended bodies on the surface of the Earth. However, unless the centers of mass of the orbitin
are perfectly coincident, classical (differential) tidal effects arise which might compete with a non-class

* Corresponding author.
E-mail address: nobili@dm.unipi.it (A.M. Nobili).
0375-9601/$ – see front matter 2003 Published by Elsevier B.V.
doi:10.1016/j.physleta.2003.07.020
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violation signal. This is why in all proposed EP experiments in space the test masses are “concentric”
cylinders [1–3]. However, since perfect centering is impossible to achieve, the signature and amplitude
effects must be carefully assessed, as they might compete directly with the target signal of a putative EP v
For the space missions under study the goals are to perform an EP test to: 10−15 with µSCOPE [3], 10−17 with
“Galileo Galilei” (GG) [1], 10−18 with STEP [2].

We proceed by investigating, using analytical as well as numerical methods, different model cases of in
complexity. We start in Section 2 with the case of free flying (uncoupled) test masses, showing that tida
and EP violation signal have the same frequencies. For the relative displacement of an EP violation to be
with certainty the initial conditions of the bodies should be adjusted so that they orbit the Earth with the sam
angular velocity while remaining fixed relative to each other. Non-gravitational effects due to electric char
the test masses make it very hard to realize this configuration.

In Section 3 we demonstrate that one way to separate the EP violation signal from the tide is to cou
test masses in the orbit plane, e.g., with a mechanical spring, thus introducing a natural frequency of dif
oscillation of the test masses with respect to one another. In this case, while the EP signal is still detect
orbital frequency, tides are at the natural differential frequency, and at this frequency plus or minus twice th
frequency. This is the case of the proposed “Galileo Galilei-GG” space experiment, where the natural diff
frequency is about a factor 10 away from the orbital frequency, which makes it easy to separate tidal effects
signal. The need for all EP experiments in space to spin the spacecraft in order to provide a frequency modu
the signal is discussed in Section 4. In Section 5 the GG experiment is analysed under realistic conditions, i
the rotation of the system in super-critical regime, to demonstrate that indeed an EP violation signal woul
masked by tidal effects. While the well-known self-centring property of super-critical rotors is exploited in GG
is not possible in the STEP and µSCOPE experiments discussed in Section 6 because the test bodies are c
to 1D motion. Being in sub-critical regime, they would then be too much off-centred at equilibrium, which m
it necessary to actively force their centres of mass as close as possible to each other. The masses a
maintained in their fixed position and the force required to do that is the observable from which a possible s
violation should be extracted. In this case tidal effects are at twice the orbital/EP-violation-signal frequen
they are separated by a factor 2), and they are larger than the signal because of the difficulties of active
Overall this design is less elegant and advantageous than the GG design, the main issue being that the
not rotate around their symmetry axis.

2. EP violation signal and tidal effects on free-flying test masses in low Earth orbit

If two test masses of different composition, falling in the gravitational field of the Earth with an acceleraa
and the same initial conditions, experience a non-classical differential acceleration�a it means that there is an E
violation to the levelη =�a/a. However, exactly the same differential acceleration might be due to a diffe
�r in the orbital distancer of the two bodies at initial time such that�r/r � �a/a, with no EP violation. We
demonstrate this fact by analyzing the case of an initial separation�r and no violation (case (i)), and then th
case with a violation to the levelη and zero initial separation (case (ii)). We investigate also an ideal exper
configuration such that, having reached appropriate initial conditions, the test masses remain fixed with re
each other while freely orbiting the Earth. Then, by measuring their fixed relative displacement it should be p
to tell if there is an EP violation or not. Non-gravitational effects appear to be a major limitation to achievin
maintaining such fixed configuration.

2.1. Test masses separated by �r; no EP violation (case (i))

In absence of EP violation inertial and gravitational mass are the same. Body 1, with massmi1 = m
g

1 �M⊕,
starts its motion around the Earth at an orbital distancer1(0)= r and with the corresponding Keplerian veloc
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v1(0)= √
GM⊕/r perpendicular to its position vector, whereas body 2, with massmi2 = m

g

2 �M⊕, is released
at r2(0) = r + �r with 	v2(0) = 	v1(0). Therefore, while body 1 performs a circular orbit with constant ang
velocity (mean motion)n1 = n1(0)=

√
GM⊕/r3, body 2 moves along an elliptic orbit with major semiaxisa and

eccentricitye satisfying the relationship:

(1)a(1− e)= r +�r.

Referring to Appendix A for details, we obtain

(2)�n≡ n2 − n1 � −n1 · 3�r

r

for the relative mean motion of the two bodies. Since the orbital periodsP1 = 2π/n1 andP2 = 2π/n2 are slightly
different, the bodies’ separation in longitude around the Earth will grow with time.

We have computed the time-evolution of the relative positionsX ≡ x1 − x2 andY ≡ y1 − y2 of the two bodies
by numerically integrating the equations of motion

(3)miαẍα = − GM⊕mgαxα
(x2
α + y2

α)
3/2
, miαÿα = − GM⊕mgαyα

(x2
α + y2

α)
3/2

with miα =m
g
α andα = 1,2. The orbit of body 2 relative to body 1 is shown in Fig. 1. It is a spiral, and the rel

distance grows with time at the orbital frequency.

2.2. Test masses with the same initial conditions but with an EP violation η (case (ii))

Body 1 and body 2 start their motion with identical initial conditions, namely, at distancer1(0) = r2(0) = r

with initial velocity v1(0)= v2(0)= √
GM⊕/r along the tangential direction. In this case though, there is a

violationη such that:

(4)m
g

2 =mi2(1+ η).

Thus, while the equations of motion for body 1 is the same as (3), those for body 2 are modified into

(5)mi2ẍ2 = −Gm
i
2(1+ η)x2

(x2
2 + y2

2)
3/2

, mi2ÿ2 = −Gm
i
2(1+ η)y2

(x2
2 + y2

2)
3/2

.

As a result, to first order inη the Keplerian elementsa ande of orbit 2 and the difference�n in mean motion are
(see Appendix B):

(6)e� −η, a � r(1− η), �n� 2η.

Again, since the orbital periods of the two bodies are slightly different, the motion of body 2 relative to b
is a spiral, but in this case it starts from the origin. By comparing the expressions for�n in (6) and in (2), it turns
out that under the condition:

(7)η= −3

2

�r

r

the relative orbit resulting from the classical tidal effect of case (i) and the one with an EP violation of case (i
at the same rate. This is shown in Fig. 2, while Fig. 3 shows that the dominant frequency in the relative displa
of the test cylinders is the orbital one, both in the classical case with tides and in the non-classical case wi
violation (with relation (7) between�r andη).

Case (i) represents a space-fixed-like configuration. We now consider the case in which the two bodies
same initial angular velocityn1 = n2 =√

GM⊕/r3 but they are released at different altitudes (Earth-pointing-



254 G.L. Comandi et al. / Physics Letters A 318 (2003) 251–269

ken

e-fixed
aration

st
rder of a

rs or just
ncertainty

vity in
at lunar
Fig. 1. Case (i): test bodies with initial separation�r and no EP violation. Orbit of body 2 relative to body 1 for 15 orbital periods having ta
�r = 1× 10−6 m andr = R⊕ + h with h= 500 km. Inset: close-up of the relative motion in the first half period.

configuration). The initial conditions for body 1 being the same, for body 2 we take:

(8)r2(0)= r +�r, v2(0)= n1(r +�r).

The difference in mean motions in this case is (see Appendix C for details):

(9)�n� −n1 · 6�r

r
.

The motion of body 2 relative to body 1 in the Earth-pointing case is quite similar to that of the spac
configuration, the only difference being that the relative distance grows twice as fast. Again, the initial sep
�r mimics an EP violation if

(10)η= −3
�r

r
.

Expression (10) differs from (7) by the same factor of 2. In any case, the value�r of the release error of the te
masses which would result in a classical effect as large as the targets of the proposed missions is of the o
nanometer for the least ambitious goal of µSCOPE, and even smaller (to the level of a few tens of picomete
several picometers in GG and STEP). Release errors as small as these are impossible to achieve. The u
with which initial conditions (and the orbital elements) can be determined would set the limiting sensiti
EP testing with these experiments. The same conclusion is reported in [4,5]. How is it possible, then, th
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Fig. 2. (Figure is in colour on the web.) Blue curve: orbit of body 2 relative to body 1 forη = 2.1 × 10−13 after 15P1 of integration time
(case (ii): identical initial conditions in the presence of an EP violation). The classical orbit of case (i) with�r = −2rη/3 = 10−6 m is shown
as a red curve for comparison. The value ofr is the same as in Fig. 1.

laser ranging (LLR) data can be used to search for EP violations in the Earth–Moon–Sun system of free
by checking whether the Earth and the Moon fall the same in the gravitational field of the Sun? LLR test
equivalence principle have been able to reachηLLR � 10−13 [6] because at this level, at the 1 AU orbital distance
the Earth–Moon system from the Sun,�r must of the order of a few mm, which is just in the present capabil
of current lunar laser tracking technology.

2.3. An ideal EP experiment with free falling test masses

In order to avoid the spiral motion of Figs. 1 and 2, it is possible in principle to adjust the initial conditions
test bodies so that their relative position vector remains fixed with respect to the centre of the Earth while
around it (i.e., the test bodies must have the same orbital angular velocity). Then, by measuring their se
distance it would be possible to tell whether there is an EP violation or not: if there is a non-zero separatio
�	r pointing to the center of the Earth, and in addition the masses remain fixed with respect to each other (n
along track), this means that there is an EP violation to the levelη��r/r (provided that the motion is dominate
by gravity). The experiment requires: first to be able to reach the initial conditions which make the test
orbit the Earth in a fixed configuration; then to measure their relative displacement; and finally to make s
there is no relative motion along track due to gravitation. The first step appears to be the most difficult one
of the electrostatic effects caused by the well-known phenomenon of electric charging of the test masses (
that charging changes with time in an unpredictable way). As for checking that there is no relative motio
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Fig. 3. FFT of the signals in the inertial reference frame. Solid curve: the orbit corresponding to case (ii) of two bodies starting with
initial conditions in the presence of an EP violation. The orbit corresponding to case (i) with�r = −2rη/3 = 10−6 m is shown as a dashe
curve for comparison. In the inertial reference frame, the tidal effect end EP signal would be detected atνorb and 2νorb. The main contribution
is at the orbital frequency.

track, this might be difficult because of the competing effect of residual air drag along the orbit of the sa
whose effect is a linear displacement growing quadratically with time. If the test masses are free flying air
the spacecraft gives rise to the same inertial acceleration on both test masses (common mode); however,
differential displacement is detected by the read out if the common mode one is much larger than the targ
Drag compensation is needed, and can be realized, but the problem remains of how to separate with ce
along track motion of pure gravitational origin whose presence in this experiment would rule out EP vio
We conclude that an EP experiment in space with free falling, uncoupled, test masses would have to fac
limitations.

3. EP violation signal and tidal effects with test masses coupled in the orbit plane

We now show that if the test bodies are coupled in the orbit plane, tidal effects and EP violation signal a
different frequencies, which makes it possible to separate them out. Let us consider a spacecraft orbiting
with radiusr and Keplerian angular velocity

(11)ωorb =
√
GM

r3
.

Let the test massesm1 andm2 be separated by�r in their initial orbital distance, and be coupled to each ot
with a positive stiffnessk (the coupling may be of different nature, e.g., mechanical, electrostatic or magne
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the orbit plane. The suspension is assumed to be rigid (in reality it is only much stiffer) along the orbit n
We investigate their motion in the reference frame of the orbiting satellite. The frame is centered on the c
mass of the Earth, with thex axis in the Earth-to-satellite direction, thez axis perpendicular to the orbit plane a
they axis to complete the Cartesian system. In this frame we call	r1 and	r2 the test masses position vectors w
respect to the center of mass of the spacecraft, and	ρ1 = 	r + 	r1, 	ρ2 = 	r + 	r2 their position vectors with respect
the center of mass of the Earth. The bodies have the same inertial mass but different composition. In add
assumed that there is a violation of the equivalence principle to the levelη, namely:mi1 =mi2 ≡m andmg1 =m,
m
g
2 =m(1+ η). The Lagrange function is:

L= 1

2
m
[
ṙ2
1x + ṙ2

1y + 3ω2
orbr

2
1x +ωorb(r1x ṙ1y − r1y ṙ1x)+ ṙ2

2x + ṙ2
2y + 3ω2

orbr
2
2x +ωorb(r2x ṙ2y − r2y ṙ2x)

]
(12)− 1

2
k
(
r2
1x + r2

1y + r2
2x + r2

2y − 2r1xr2x − 2r1yr2y
)−mω2

0rηr2x + 1

2
mω2

0η
(
2r2

2x − r2
2y

)
.

Tidal effects can be singled out by puttingη = 0 in (12) (i.e., no EP violation), and then deriving the equation
motion of the test masses in their relative coordinatesX= r2x − r1x andY = r2y − r1y :

(13)

{
Ẍ− 2ωorbẎ + (

ω2
n − 3ω2

orb

)
X = 0,

Ÿ + 2ωorbẊ+ω2
nY = 0.

The angular frequencyωn = √
2k/m appearing in (13) is the natural frequency of oscillation of the test ma

relative to one another in the orbit plane due to the coupling stiffnessk: the weaker the coupling stiffness, th
more sensitive the test bodies are to differential forces, such as those due to tides or EP violation. In spac
to weightlessness, the coupling can be very weak, much weaker than on the ground where suspension
stiff enough to withstand local gravity. Hence, the natural differential frequency can be much lower in spa
in the lab. Yet, it is always much larger than the orbital frequency, which in all proposed space experim
about 1.7× 10−4 Hz (typical orbital periods in low Earth orbit are 6000 s). By combining Eq. (13) into one s
equation of higher order, we obtain

(14)
....
X + (

ω2
orb + 2ω2

n

)
Ẍ+ω2

n

(
ω2
n − 3ω2

orb

)
X = 0,

whose eigenvalues are:

(15)Λ1,2,3,4 = ±i
√
ω2
n +ω2

orb/2∓ 2ωorbωn

√
1+ω2

orb/
(
16ω2

n

)
.

These eigenvalues give the angular frequencies of tidal effects in the reference frame of the satellite whi
around the Earth atωorb. For the EP experiments in space it isωn � ωorb, and these frequencies become:

(16)Λ1,2,3,4 = ±i(ωn ±ωorb).

If seen in the inertial reference frame (centered on the center of mass of the Earth and fixed in space), tid
would therefore appear at frequencies:

(17)νn, νn ± 2νorb

(ν = ω/2π ). Hence, the effect of coupling the test masses in the orbit plane is to shift the tidal signal from the
frequencyνorb of the uncoupled case (see Fig. 3), to the (typically much larger) natural differential frequenνn
introduced by the coupling. What about the effect of coupling on an EP violation signal?

In order to answer this question we considerη �= 0 in the Lagrange function (12) and find that in this ca
there exists a position of relative equilibrium of the test masses in the Earth-to-satellite direction (thex axis of the
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orbiting reference frame). The coordinates of the test masses at equilibrium are:

(18)




r0
1x = ω2

nrη

6(ω2
n−3ω2

orb)+2η(ω2
n−6ω2

orb)
,

r0
2x = r0

1x

(
1− 6

ω2
orb
ω2
n

)
,

r0
1y = r0

2y = r0
1x

(
ω2
n

ω2
n+2ηω2

orb

)
.

Since the equilibrium position (18) due to an EP violationη is fixed in the orbit plane of the reference frame
the orbiting satellite, it is apparent that in the inertial reference system the EP violation signal is at the
frequency (as in the case of uncoupled test masses), while tides are now close to the natural differential f
due to coupling. Since the orbital frequency is several times lower than the natural one, we conclude that—
to coupling in the orbit plane—an EP violation signal can be well separated from classical tidal effects.

4. Signal modulation

For high accuracy EP tests in space the spacecraft should also rotate, so as to modulate the signal at i
frequency relative to the Earth (the synodic frequency). EP tests require weak suspensions and large
rates: weak suspensions increase the sensitivity of the test masses to applied forces; fast rotation prov
frequency modulation and reduced “1/f ” noise. Conceptually, the problem is that of a rotating oscillator mad
a body of massm whose center of mass is suspended with stiffnessk from a point located a vector	ε away from
the rotation axis.	ε is the inevitable offset due to construction and mounting errors, and is fixed with the
Two frequencies are relevant for equilibrium: the spin frequencyωs and the natural frequencyωn = √

(k/m).
Equilibrium is achieved at a position	req where the centrifugal force is balanced by the restoring force of
suspension:

(19)	req= 1

1− (ωs/ωn)2
· 	ε.

If ωs/ωn < 1 (“sub-critical” rotation),	req ‖ 	ε andreq> ε: the equilibrium position moves farther away from t
rotation axis than the original offset. Ifωs/ωn > 1 (“super-critical” rotation),	req ‖ −	ε and|	req|< |	ε|: equilibrium
is achieved on the opposite side of the rotation axis with respect to	ε and closer to it than obtained by constructio
Note that in this case equilibrium is not possible if the body is constrained to motion in one dimension, as
demonstrated long time ago in Chapter 6 of [7]. If, moreover,

(20)
ω2
s

ω2
n

� 1

as it is desirable for very accurate EP tests, then:

(21)	req� −	εω
2
n

ω2
s

and self-centering occurs since the original offset is reduced by the large factorω2
s /ω

2
n � 1. The same line o

reasoning holds for two rotating coupled masses, whose relative position at equilibrium is as in (19),ωn now being
the frequency of differential oscillations. This is the case of the GG experiment design, for which tidal effe
EP violation signal are analyzed in detail in Section 5. Note that, since the offset vector	ε is fixed with the rotor,
the position vector of relative equilibrium is also fixed with the rotor, and therefore the corresponding tidal e
(in the rotating reference frame) at twice the spin frequency, just as lunisolar tides on the surface of the Ea
periodicities of 12 h (solar tide) and 12 h 25 min (lunar tide).
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5. EP violation signal and tidal effects in the GG space experiment design

Let us now analyze EP violation signal and tidal effects in the case of the GG experiment in space.

5.1. The GG apparatus

The GG satellite is planned to fly at an altitude of about 520 km on a circular sunsynchronous orbit
the Earth with inclinationI = 97.494 degrees (see [8]). The satellite spins around its symmetry axis at a
high frequency (2 Hz with respect to the center of the Earth) and this rotation provides passive stabilizatio
spacecraft attitude because the axis of symmetry is also the axis of maximum moment of inertia. Becau
flattening of the Earth, the orbit plane of an inclined satellite is known to precess around the normal to the E
in sunsynchronous orbits inclination and orbital radius are chosen so that the orbit plane follows the Su
annual motion around the Earth (at about 1◦ per day). Since the spin axis of GG remains fixed in space (due t
very high energy of spin), the angleθ that separates it from the orbit normal will also increase by about 1◦ per day.
In GG θ is maintained within±10◦, allowing about 20 days duration for each experiment run before realign
of the spin axis along the orbit normal is performed.

The test masses—referred to with subindexes 1 and 2—are two concentric, coaxial hollow cylinders,
axes along the spin/symmetry axis of the spacecraft and weighing 10 kg each (planned to be made of
CuBe). They are coupled as in a beam balance by means of mechanical suspensions which are stiff alon
axis but very soft in the orthogonal plane, where high sensitivity to differential accelerations has to be pr
The mechanical suspensions also allow electric grounding of the test masses, so that no discharging mec
required (which would disturb the experiment).

Note that:νs = ωs/2π = 2.000175 Hz is the spin frequency of the satellite around its symmetry axis
respect to a star fixed reference frame;νorb = ωorb/2π = 1.75× 10−4 Hz is the orbital frequency around the Ea
andνprec=Ωprec/2π = 3.17×10−8 Hz is the frequency of precession of the normal to the orbit around the no
to the equator (too small to be detected in 20 days of integration time).

5.2. Whirl motion and tidal frequencies in the sensitive plane

In super-critical regime mechanical suspensions are known to undergo deformations (and therefore to
energy) at the spin frequency. Energy dissipation makes the spin rate to decrease, together with the spi
momentum. Since the total angular momentum must be conserved, the bodies develop a whirl motion of in
amplitude around each other at a frequency close to the natural differential one due to the coupling. The
the losses (i.e., the higher the quality factorQ), the slower is the growth rate of the whirl. GG relies on highQ (for
slow growth) and on active whirl damping (see [9,10, Chapter 6]).

We use a simplified model, as sketched in Fig. 4 and write the equations of motion in the inertial re
frame(X,Y,Z) centered on the center of the Earth, theX-axis along the nodal line of the satellite’s orbit at init
time, theY -axis perpendicular to it in the orbit plane at initial time and theZ-axis along the spin axis, coincidin
with the orbit normal at initial time.	ρ1 = (x1, y1,0) and 	ρ2 = (x2, y2,0) are position vectors of the test mass
with respect to the center of mass of the Earth while the satellite orbits around it with a constant radiusr. The
bodies have the same inertial mass but different composition, and there is a violation of equivalence to theη,
namely:mi1 =mi2 ≡m andmg1 =m, mg2 =m(1 + η). They are coupled to each other by a dissipative spring
elastic constantk and quality factorQ. An offset vector	ε = ε(cos(ωst + φ), sin(ωst + φ),0), due to construction
and mounting, locates the suspension point of the spring with respect to the center of mass of body 2; it
with the rotor, and therefore spins with angular frequencyωs in the inertial reference frame. The dissipative fo
is proportional to the relative velocity through the coefficientcr = k/Qωs (sub-index “r” stands for “rotating
friction”, since it is determined by losses in the rotor).



260 G.L. Comandi et al. / Physics Letters A 318 (2003) 251–269

,

l
ry large
l

espan is

all four

al
e
rotation
te
Fig. 4. Simplified model of the GG coupled test masses. The reference system is centered on the center of mass of the Earth; theX-axis is the
line of nodes of the satellite orbit at initial time;(X,Y ) is the orbit plane of the satellite at initial time; theZ-axis (not shown) is the spin axis
coinciding with the orbit normal at initial time;m1 andm2 are the test bodies, connected by a spring, with position vectors	ρ1 and 	ρ2 from the
center of mass of the Earth. The offset error due to inevitable construction and mounting imperfections is indicated asε. The figure is obviously
not to scale.

The equations of motion are:

	̈ρ1 = k

m
( 	ρ2 − 	ρ1 + 	ε)− cr

m

( 	̇ρ1 − 	̇ρ2 −ωs × ( 	ρ1 − 	ρ2)
)− GM 	ρ1

| 	ρ1|3 ,

(22)	̈ρ2 = − k

m
( 	ρ2 − 	ρ1 + 	ε)+ cr

m

( 	̇ρ1 − 	̇ρ2 −ωs × ( 	ρ1 − 	ρ2)
)− GM 	ρ2(1+ η)

| 	ρ2|3 ,

which we have integrated numerically with initial conditions:

	ρ1(0)= (r + x0,0), 	̇ρ2(0)= (r − x0,0),

(23)	̇ρ1(0)=
(
0,ωorbr +√

k/mx0
)
, 	ρ2(0)=

(
0,ωorbr −√

k/mx0
)

representing a system in which whirl radiusrw = 2x0 at initial time. (ωn = √
k/m is the natural differentia

frequency of the coupling.) For demonstration purposes the numerical integration is carried out with a ve
whirl radius rw = 2.5 × 10−4 m and assuming a very high level of violationη = 10−11. Instead, the natura
differential period of the coupling (also the whirl period) isTw = 540 s as in GG, the quality factor isQ= 20000
as originally assumed in GG (though better values have been measured), andε = 10−6 m. Since at this point we
are interested only in frequencies much faster than the precession frequency, the numerical integration tim
short and precession is not included.

The resulting FFT of the relative displacement between the test bodies is shown in Fig. 5(a) where
expected peaks are visible: whirl motion appears atνw = 0.00185 Hz ≈ νn, tidal effect atνw, νw + 2νorb =
0.00220 Hz,νw − 2νorb = 0.00150 Hz and EP signal atνorb = 0.000175 Hz (EP signal has a peak atνs too due to
the offset). The FFT of the relative acceleration between the test masses is plotted in Fig. 5(b).

We now derive the same results by analytical methods, taking into account also precession. Let(s1, s2, s) be a
reference frame fixed with the satellite, wheres is in the direction of the spin axis (coinciding with the orbit norm
Z at initial time),s1 is along the nodal line at initial time (same asX-axis) and(s1, s2) is therefore the sensitiv
plane of the instrument. In the reference system identified by the equatorial plane of the Earth and by its
axis it is:s1 = (1,0,0), s2 = (0,sinI,cosI) ands = (0,−sinI,cosI) and the unit position vector of the satelli
at timet is:

(24)r̂ = cos(ωorbt + ϕ)

(cos(Ωprect)

sin(Ωprect)

0

)
+ sin(ωorbt + ϕ)

(−cos(I)sin(Ωprect)

cos(I)cos(Ωprect)

sin(I)

)
,



G.L. Comandi et al. / Physics Letters A 318 (2003) 251–269 261

otion at
at
(a)

(b)

Fig. 5. (a) FFT of the relative displacement where all four expected peaks are visible, which are assigned to whirl m
νw = 0.00185 Hz ≈ νn, to the tidal effect atνw , νw + 2νorb = 0.00220 Hz,νw − 2νorb = 0.00150 Hz and to an EP violation signal
νorb = 0.000175 Hz. (b) FFT of the relative acceleration in the presence of an EP violation to the levelη = 10−11, which is sensed atνorb,
while whirl motion is atνw and tides are atνw andνw ± 2νorb.
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Table 1
Tidal acceleration components in the sensitive plane of the GG system

Component Frequency
GM⊕
r3

3rweωwt/(2Q) cos(ωwt)cos2(ωorbt)cos2(Ωprect) ωw, ωw ± 2ωorb ± 2Ωprec

ωw ± 2ωorb, ωw ± 2Ωprec
GM⊕
r3

3
2rwe

ωwt/(2Q) sin2(I )sin(ωwt)sin(2ωorbt)cos(Ωprect) ωw ± 2ωorb ±Ωprec

−GM⊕
r3

rwe
ωwt/(2Q) cos(ωwt) ωw

GM⊕
r3

3rw sin2(I )cos(I )eωwt/(2Q) sin(ωwt)sin2(ωorbt)sin(Ωprect) ωw ±Ωprec,ωw ± 2ωorb ± 2Ωprec
GM⊕
r3

3
2rw cos(I )eωwt/(2Q) sin(ωwt)cos2(ωorbt)sin(2Ωprect) ωw ± 2Ωprec,ωw ± 2ωorb ± 2Ωprec

−GM⊕
r3

3
2rw cos(I )eωwt/(2Q) cos(ωwt)sin(2ωorbt)sin(2Ωprect) ωw ± 2ωorb ± 2Ωprec

GM⊕
r3

3
2rw cos2(I )eωwt/(2Q) sin(ωwt)sin(2ωorbt)cos(2Ωprect) ωw,ωw ± 2ωorb ± 2Ωprec,ωw ± 2Ωprec,ωw ± 2ωorb

GM⊕
r3

3
2rw cos2(I )eωwt/(2Q) cos(ωwt)sin2(ωorbt)sin2(Ωprect) ωw ± 2ωorb ± 2Ωprec

GM⊕
r3

3
2rw cos3(I )eωwt/(2Q) sin(ωwt)sin2(ωorbt)sin(2Ωprect) ωw ± 2Ωprec,ωw ± 2ωorb ± 2Ωprec

while whirl motion is described by the vector

(25)	p = rwe
ωwt
2Q

( cos(ωwt)
sin(ωwt)cos(I)
sin(ωwt)sin(I)

)
.

Then, the tidal (differential) acceleration between the test bodies is:

(26)	a = −GM
r3

{−3rwe
ωwt
2Q sin(ωwt)

[
(r̂ × ŝ) · ŝ1

]
r̂ − 3rwe

ωwt
2Q cos(ωwt)(r̂ · ŝ1)r̂ + 	p}

and its components in the sensitive plane are:

as1 = 	a · ŝ1 = −GM
r3

{−3rwe
ωwt
2Q sin(ωwt)

[
(r̂ × ŝ) · ŝ1

]
(r̂ · ŝ1)− 3rwe

ωwt
2Q cos(ωwt)(r̂ · ŝ1)2 + 	p · ŝ1

}
,

(27)

as2 = 	a · ŝ2 = −GM
r3

{−3rwe
ωwt
2Q sin(ωwt)

[
(r̂ × ŝ) · ŝ1

]
(r̂ · ŝ2)− 3rwe

ωwt
2Q cos(ωwt)(r̂ · ŝ2)(r̂ · ŝ1)+ 	p · ŝ2

}
.

Using (24) in (27) we can list all the frequencies at which the whirl-related tides take place. Acceleratas1
can be seen as the sum of the nine signals listed in Table 1. The same holds foras2.

The table shows that tides between the test masses occur at angular frequenciesωw, ωw ± 2ωorb, ωw ± 2Ωprec,
ωw ± 2ωorb ± 2Ωprec, andωw ± 2ωorb ±Ωprec. In the case of GG, however,Ωprec is too tiny to be detected. Thu
the relevant frequencies of the tides in GG areωw andωw ± 2ωorb, in agreement with the numerical simulation

We conclude this analysis by showing in Fig. 6 the time evolution of the EP violation signal comp
aEP
s1 = −(GM⊕/r3)η(	r · ŝ1) as compared to the same component of the tidal effect, giving the correspo

FFT analysis in Fig. 7. It is apparent that the wide separation in frequency allows an EP violation signa
recovered even if it is much smaller than tidal effects.

5.3. Tides due to relative displacements along the spin/symmetry axis

Even if the GG system is stiff along the spin/symmetry axisZ, perturbations acting along this direction a
present (e.g., due to solar radiation pressure or to coupling of the Earth’s monopole with higher mass m
of the test bodies) which may produce a displacement between the centers of mass of the test cylinder
the spin axis remains all time exactly perpendicular to the orbit plane (which is not the case in GG), a c
mass separation along its direction will give a tidal signal also in the sensitive plane. We use the same a
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Fig. 6. Time evolution of the EP violation signal (above) and of the tidal signal (below) along thes1 direction in the sensitive plane. All signa
are given in units of(GM⊕/r2) · η= 1.

procedure as in Section 5.2 to describe the resulting tidal signal. The tidal acceleration	a corresponding to the
relative separation vector(0,0,�z) with respect to the satellite center-of-mass, can be written as

(28)	a = −1

2

GM⊕
r3 �zŝ + 3

2

GM⊕
r3 �zr̂(r̂ · ŝ).

In the reference frame(s1, s2, s), we have

as1 = 3

2

GM⊕
r3

�zrx
(
ry sin(I)− rz cos(I)

)
,

(29)as2 = 3

2

GM⊕
r3

�z

[
1

2

(
r2
y − r2

z

)
sin(2I)− ryrz cos(2I)

]
.

The corresponding time evolution and FFT analysis are reported in Figs. 8 and 9. In this case, tidal eff
detected at frequency 2νorb, while the EP signal is still atνorb. The peak at 2νorb in Fig. 9 does not resolve th
contributions at 2νorb ± νprec and 2νorb ± 2νprec.

We end this section noticing that, although the frequency analysis of tidal effects is useful in order to und
the physical nature of these subtle perturbations, in the actual GG experiment the measurement data pr
the capacitance bridges, rotating with the test cylinders and the whole spacecraft at a nominal frequency
are transformed (using the reference signal provided by the Earth elevation sensor onboard the spacec
an Earth pointing, non-rotating reference frame centred in the centre of mass of the spacecraft. In this f
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Fig. 7. FFT analysis of the data shown in Fig. 6. The amplitudes of the tidal peaks are about 20 times larger than the EP signal. Ne
the differences between the orbital and the whirl frequency allows us to recover the EP signal from the FFT analysis.

EP violation signal appears as a constant offset (for zero orbital eccentricity) in the satellite-to-Earth d
while tidal disturbances appear at a frequency close to the natural differential frequency of the test cylind
therefore average out to zero.

6. EP violation signal and tidal effects with test masses coupled and controlled in one dimension: the STEP
and µSCOPE cases

In STEP and µSCOPE the test cylinders are sensitive only along the symmetry axis, which lies and ro
order to modulate the signal) in the orbital plane. Being constrained to motions in 1D the test bodies ar
to sub-critical rotation, with no self-centering (see Section 4). Sub-critical rotation is indeed confirmed for
by the values of the rotation and oscillation frequencies reported in [11]. Since the original offsetε can hardly be
smaller than 1 µm, the residual tidal acceleration would exceed the signal by orders of magnitude. Furth
the center-of-mass separation—hence the tidal effect—are not exactly constant because radial oscillatio
plane perpendicular to the sensitive axis, are excited by residual spacecraft motion. Thus, a component of
tidal disturbance would appear at the signal frequency as well. This is why tides must be reduced, i.e., the
must be actively centered.

Let us therefore calculate this control force, assuming no spacecraft rotation at first. In the inertial re
frame(X,Y,Z) centered on the center of mass of the Earth the satellite orbits in the(X,Y ) plane and its position
vector is	r = r(cos(ωorbt),sin(ωorbt),0). For simplicity, the first test mass is assumed to coincide with the ce
of mass of the satellite, while the second one is separated from it by the vector�	r =�rX̂ along theX direction.
A force equal and opposite to the tidal one must be applied in order to maintain the second mass fixed in its
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Fig. 8. Time evolution of the EP signal (above) and tidal signal due to a center of mass offset along the spin axis (below) in thes1 direction of
the sensitive plane. All signals are given in units of(GM⊕/r2) · η= 1.

The tidal force to be reduced to zero is:

(30)	FTide
2 = −GMm

( 	r +�	r
|	r +�	r|3 − 	r

r3

)
= −GMm

r3

(
�	r − 3

	r�	r
r2 	r

)
= −mω2

orb

(
�	r − 3

	r�	r
r2 	r

)

or else, after making the time-dependence explicit,

(31)	FTide
2 = −mω2

orb

[
�r
(
1− 3 cos2(ωorbt)

)
,−3

2
�r sin(2ωorbt),0

]
.

It is apparent from (31) that the tidal force, as well as the control force required to make it vanish, are
frequency 2νorb in the inertial reference frame.

Let us now assume that the test masses are perfectly coincident, while there is an EP violation s
m2 = m(1 + η). In this case the control force required to maintain the second mass fixed is equal and o
to the EP violation force

(32)	FEP
2 = −GMm

r3 η	r = −mω2
orbη	r,

which is at frequencyνorb. In this case too, as in GG, we can distinguish the tidal effect from the EP viola
However, typical orbital periods of the spacecraft are of the order of 6000 s, resulting in a separation as
1.7× 10−4 Hz in the FFT spectrum. In STEP and µSCOPE too the spacecraft spins in order to modulate the
Note, however, that the rotation axis is not the symmetry axis of the test cylinders—which is the sensitive ax
is perpendicular to it. After demodulation of the output signal (i.e., in the non-rotating reference frame),
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Fig. 9. FFT analysis of the data shown in Fig. 8. For a center of mass separation along the spin axis tidal effects appear in the sensit
frequency 2νorb, while the EP signal is still atνorb.

violation signal is still at the orbit frequencyνorb, as it is apparent from (32), where the position satellite-to-E
vector	r is obviously unaffected by the rotation of the spacecraft. Instead, the tidal force (30) contains the
position vector�	r between the test masses, which rotates with the spacecraft at its spin angular frequencωs . Its
coordinates in the non-rotating frame are:

(33)�	r =�r
(
cos(ωst),sin(ωst),0

)
and the tidal force becomes:

(34)	FTide
2 = 1

2
mω2

orb�r
[(

cos(ωst)+ 3 cos
(
(ωs − 2ωorb)t

))
,
(
sin(ωst)− 3 sin

(
(ωs − 2ωorb)t

))
,0
]

thus showing that tides are (in the non-spinning frame) at frequenciesνs and 2νs − νorb. This means that they ca
be separated from the EP violation signal at frequencyνorb; however, if the spacecraft rotates slowly (with a s
period not much smaller than the orbital one) as it is the case in STEP and µSCOPE the separation in f
between the two is still small, and due to the difficulties of active centering, the residual tide is still much
than the target signal. It is also worth noticing that, in this design in which the test masses are actively fo
remain in a fixed relative position, the observable from which a possible EP violation signal can be extra
the control force equal and opposite to the differential force of an EP violation. However, the latter is in th
(32) if the test masses are allowed to move in the orbital plane around the Earth. Instead, they are forced
along one direction only (the symmetry axis) of this plane, while the suspension is very stiff in the other dir
How this stiff suspension does influence the motion (hence the control force) along the sensitive axis is a m
concern for the STEP scientists (see [12,13]).

Electric charging of the test masses is a problem with electrostatic and magnetic suspensions. In µSCO
gold (conductive) wire is added to ground the masses [14], while the STEP masses need active dischargin
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We end this section by noticing that a fixed relative position of the test masses could also be prov
gravitation only. This was suggested in [15] for a short distance EP test exploiting the Lagrangean eq
configuration of equilibrium for a primary body and two test masses (of different composition) inside a
altitude spacecraft. In this case a composition-dependent effect would show up as a deviation from the eq
triangle of classical equilibrium.

7. Conclusions

Experiments to test the equivalence principle inside a spacecraft in low Earth orbit require classic
(differential) effects between the test masses to be separated from a non-classical differential signal
possible violation of equivalence. If the test bodies are free flying inside the spacecraft tidal effects have t
frequencies as an EP violation signal. However, if the initial conditions are adjusted until the test bodies
fixed configuration relative to each other while orbiting around the Earth, then only by measuring their r
displacement it would be possible to tell whether the equivalence principle is violated or not. The displa
measurement can be very accurate, but such a fixed configuration is hard to reach and to maintain du
gravitational forces, primarily the electrostatic forces caused by electric charging of the test bodies.

The frequencies of tides can be widely separated from the frequency of an EP violation signal by (w
coupling the test masses (concentric coaxial cylinders) in the orbit plane. In this case the signal is at th
frequency while tides are at the natural differential frequency of the coupling (several times larger than the
one) and at this frequency plus or minus twice the orbital frequency. If the spacecraft spins in order to m
the signal, weak coupling in 2D allows (fast) rotation in super-critical regime around the symmetry axis
cylinders. In this regime a self centered position of relative equilibrium exists by physical laws, and tidal
due to whirl motion around it are again widely separated from the signal (the whirl frequency is very close
natural differential frequency of the coupling). This is the GG experiment design.

If the test masses are weakly coupled in 1D tides are at twice the orbital frequency, i.e., a factor 2 away
frequency of EP violation. However, when spinning the spacecraft for signal modulation 1D motion only
(slow) rotation in sub-critical regime. In this regime the relative distance between the test masses at equ
would be far too large to be acceptable (it would produce too large tidal effects), and therefore they nee
centered actively, and to be maintained fixed in that configuration. During rotation tides are at the spin fre
and at the spin frequency minus twice the orbital one, which under this condition of slow rotation are close
other. Tides are also larger than the signal due to the difficulties of active centering. This is the STEP and µ
experiment design. Its limitations appear to derive from the fact that rotation is not along the symmetry axi
test cylinders.
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Appendix A

Let us start from Eq. (1) in Section 2.1, namely,a(1− e)= r +�r.
The angular momentum per unit massJ is expressed as

(A.1)J 2 =GM⊕a
(
1− e2)
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the
and is a conserved quantity, so that

(A.2)J 2 = J 2(0)= r2
2(0)v

2
2(0)=GM⊕r

(
1+ �r

r

)2

.

By equating (A.1) and (A.2), it follows:

(A.3)a = r(1+�r/r)2

1− e2 .

Eliminatinga from (1) and (A.3) we obtain the exact expression

(A.4)e= �r

r

for the eccentricity of body 2, valid to any order in�r/r.
After substituting (A.4) into (A.3) and expanding to second order in�r/r, the major semiaxis turns out to be

(A.5)a = r
1+�r/r

1−�r/r
� r

(
1+ 2

�r

r
+ 2

�r2

r2

)
.

The mean anomalyn2 is obtained from Kepler’s third law, namely:

(A.6)n2
2a

3 =GM⊕
with the major semiaxis given by (A.5). To first order in�r/r,

(A.7)n2 =
√
GM⊕
r3 ·

(
1+ 2

�r

r

)−3/2

� n1 ·
(

1− 3
�r

r

)
resulting in the difference�n

(A.8)�n≡ n2 − n1 � −n1 · 3�r

r
.

Appendix B

In the caseη �= 0, Eq. (A.1) is modified into

(B.1)J 2 =GM⊕(1+ η)a
(
1− e2),

while the initial condition isJ 2(0)= r2
2(0)v

2
2(0)=GM⊕r. The energy per unit of inertial mass is instead

(B.2)E = −GM⊕(1+ η)

2a

and the eccentricity satisfies the relation

(B.3)e2 = 1+ 2EJ 2

G2M2⊕(1+ η)2
.

Finally, the Kepler’s third law in Eq. (A.6) is changed into

(B.4)n2
2a

3 =GM⊕(1+ η).

Combining Eqs. (B.1)–(B.4), expanding to second order inη and retaining only the linear terms, we obtain
relations (6) of the main text.
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Appendix C

Eqs. (1) and (A.2) with the initial conditions (8) give us the exact expressions for the Keplerian elements
orbit of body 2. These are

(C.1)a = r(1+�r/r)4

1− e2

for the major semiaxis,

(C.2)e=
(

1+ �r

r

)3

− 1

for the eccentricity, and

(C.3)n2 =
√

GM⊕
(r + 4�r)3

= n1

(
1+ 4

�r

r

)−3/2

for the mean anomaly. After expansion of equations (C.1)–(C.3) to second order in�r/r, we obtain

(C.4)a � r

(
1+ 4

�r

r
+ 18

�r2

r2

)
, e� 3

�r

r
+ 6

�r2

r2
, �n� −n1 · 6�r

r
.
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Page 266, first line after Eq. (34): 
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Abstract

“Galileo Galilei-GG” is a proposed experiment in low orbit around the Earth aiming to test the equivalence princ
the level of 1 part in 1017 at room temperature. A unique feature of GG, which is pivotal to achieve high accuracy at
temperature, is fast rotation in supercritical regime around the symmetry axis of the test cylinders, with very weak cou
the plane perpendicular to it. Another unique feature of GG is the possibility to fly 2 concentric pairs of test cylinders, t
pair being made of the same material for detection of spurious effects. GG was originally designed for an equatorial o
much lower launching cost for higher inclinations has made it worth redesigning the experiment for a sun-synchrono
We report the main conclusions of this study, which confirms the feasibility of the original goal of the mission also
inclination, and conclude by stressing the significance of the ground based prototype of the apparatus proposed for s
 2003 Published by Elsevier B.V.

Keywords: Equivalence principle; Universality of free fall; Fundamental physics experiments in space
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1. Introduction

The equivalence principle (EP) stated by Galile
reformulated by Newton and reexamined by Einst
to become the founding principle of General Relat
ity, can be tested from its most direct consequen
the universality of free fall (UFF), whereby all bo
ies fall with the same acceleration regardless of th
mass and composition (η ≡ �a/a = 0). The most ac-

* Corresponding author.
E-mail address: nobili@dm.unipi.it (A.M. Nobili).
0375-9601/$ – see front matter 2003 Published by Elsevier B.V.
doi:10.1016/j.physleta.2003.07.019
curate EP experiments have been carried out on
ground with test bodies of different composition su
pended on a torsion balance. In the case of Be and
it was foundη(Be,Cu) = (−1.9±2.5)×10−12 [1]. In
[2], the differential acceleration between test cylind
of “earth’s core” and “moon/mantle” composition
the gravitational field of the Sun(a� � 0.6 cm s−2)

is reported with a 1σ statistical uncertainty�a� =
5.6× 10−13 cm s−2, hence�a�/a� � 9.3× 10−13.

Test bodies in low Earth orbit are subject to
driving gravitational (and inertial) acceleration mu
stronger than on torsion balances on the ground
about 3 orders of magnitude. Moreover, the abse

http://www.elsevier.com/locate/pla
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of weight is ideal in small force experiments. The
is therefore general agreement on the fact that a
high accuracy test of the equivalence principle c
be achieved only by flying the test masses insid
spacecraft in low Earth orbit. It is also agreed th
the test bodies should be weakly coupled, concen
co-axial cylinders, and that they should rotate (
faster the better) for signal modulation. The “Galil
Galilei” (GG) space experiment [3] aims to rea
10−17, which is highly competitive with µSCOPE
goal (10−15) [4]. STEP’s goal is the same as that
GG [5], or even 1 order of magnitude more ambitio
[6] but the spacecraft is much more massive and
experiment must be performed close to absolute z
rather than at room temperature as GG.

Both GG and STEP would be able to check
possible EP violation predicted by Fischbach et
[7] at the 10−17 level by rigorous calculation o
higher order weak interactions, should gravity cou
anomalously to weak interaction energy. Beyond
standard model, within string theory, recent work
predicts much stronger a deviation, to the level
10−12 for test bodies made of Cu and Be or Pt and
A modest improvement over current torsion balan
laboratory tests should be sufficient to either confi
or rule out this prediction.

2. The signal and the accelerometers

Testing the UFF requires two masses of diff
ent composition, arranged to form a differential a
celerometer, and a read-out system in between th
In GG the test bodies are concentric, co-axial, h
low cylinders weakly coupled like in a beam balan
with the beam directed along the symmetry axis, so
to be sensitive to differential accelerations acting
tween the bodies in thex, y plane perpendicular to
(the weaker the coupling, the higher the sensitivi
Coupling and balancing allow common mode effe
to be rejected. Two capacitance bridges in between
test cylinders read their relative displacements (cau
by differential accelerations) in the plane of sensitiv
The better the mechanical balance of the bridge ca
itance plates halfway in between the test cylinders,
more insensitive is the read-out to common mode
fects. Thus, the differential nature of the accelerom
is ensured both by the suspension and by the read
.

.

Fig. 1. Section across the spin/symmetry axis of the GG outer
inner test cylinders (of different composition) as they orbit arou
the Earth inside a co-rotating, passively stabilized spacecraft
shown). The centers of mass of the test cylinders are shown
displaced towards the center of the Earth as in the case of a viol
of the equivalence principle in the field of the Earth (indicated
the arrows). The signal is therefore at the orbital frequency, an
modulated at the spin frequency of the system with respect to
center of the Earth (2 Hz nominal). The figure is not to scale (ta
from [9]).

High frequency modulation of the expected signa
for the reduction of “1/f ” electronic and mechani
cal noise—is obtained by spinning the accelerom
around the symmetry axis (the beam of the balan
a cylindrical spacecraft encloses, in a nested confi
ration, a cylindrical cage with the test cylinders insid
and is stabilized by rotation around the symmetry a
Once the spacecraft has been given the required
of rotation at the beginning of the mission (2 Hz no
inal with respect to the center of the Earth), no m
tor is needed in space. Hence, the space experim
is not affected by noise from the motor, contrary
what happens with rotating apparata in ground ba
laboratories where the motor and its noise are a
rious matter of concern. As shown in Fig. 1, an
violation in the field of the Earth would generate a s
nal of constant amplitude (for zero orbital eccentr
ity) whose direction always points to the center of
Earth, hence changing orientation with the orbital
riod of the satellite. The read-out, also rotating with
system, will therefore modulate an EP violation sig
at its spin frequency with respect to the Earth.

The expected signal benefits from the spacec
orbiting the Earth at low altitude. Having select
520 km for GG, an orbit inclination of 97.5◦ ensures
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that the spacecraft follows the annual motion of
Sun (sun-synchronous orbit) and makes it possibl
use a high latitude, low cost, Russian launcher for o
injection. By maintaining the spin/symmetry axis
the spacecraft within about 10 degrees from the o
normal, there is almost no degradation of the sig
along both directions in the sensitivity plane of t
accelerometer.

For the GG space experiment we have designe
concentric differential accelerometers, the inner o
for EP testing (with cylinders of different compos
tion) and the outer one for zero check (with cylinde
made of the same material). They are sensitive in
x, y plane perpendicular to the symmetry axis wh
is also the (natural) axis of rotation, so as to prov
frequency modulation of the expected signal. Fig
shows a section through the spin/symmetry axis of
accelerometers, and a detailed description is give
the caption. In order to provide an intermediate st
of isolation between the spacecraft and the test cy
ders the accelerometers of Fig. 2 are not suspen
directly from the spacecraft, but instead from the
called PGB (“pico gravity box”) laboratory: a cylin
drical structure which is mechanically suspended fr
the spacecraft along its symmetry axis (see Fig. 4
as to provide weak coupling in the plane perpendi
lar to the axis while being more stiff along it (as in t
case of the test cylinders).

In GG the test cylinders are suspended mech
ically. However, whatever the nature of the susp
sions, there will always be a non-zero offset vecto
ε
from the spin axis (in the reference frame fixed w
the system) due to construction and mounting err
The equilibrium position vector of the centre of ma
of the suspended body, for given angular spin f
quencyωs , is given by the equation:

(1)
req = 1

1− (ωs/ωn)2 · 
ε,

whereωn is the natural frequency of the suspend
mass. The system will spin at a frequency either be
or above the natural one. From (1), it follows that
the first case the equilibrium position will be farth
away from the spin axis than the original offsetε,
while in the second case equilibrium will take pla
closer thanε to the spin axis. The phenomenon
known as auto-centering in super critical rotatio
Test masses used for EP testing naturally req
ωs > ωn, because they must be weakly coupled (i
with low natural frequency for better sensitivity
differential forces) and in rapid rotation (i.e., with hig
modulation frequency for better reduction of “1/f ”
noise). In space, thanks to the absence of weight
suspensions can be extremely weak, so thatωs � ωn.
In this case it is:

(2)
req� −
(

ωn

ωs

)2

· 
ε

which shows that extremely good auto-centering w
be achieved (the equilibrium position vector, li
the original offset vector, is fixed with the rotor);
also shows that, in order for the system to reach
equilibrium position on the opposite side with resp
to the offset vector
ε, it must have 2 degrees o
freedom. Indeed, it is well known that 1D systems
highly unstable if spinning at frequencies above
natural one [10].

As compared to EP testing accelerometers wh
have only one sensitive axis (the symmetry axis
the test cylinders), the 2D accelerometer of the
mission has 3 advantages:

(i) it retains the same dimensionality as the phys
problem, which is a 2-body problem in th
gravitational field of the Earth;

(ii) the plane of sensitivity being perpendicular
the symmetry axis of the test cylinders, t
symmetry axis is also the axis of rotation whi
is the natural choice, and the spin/modulat
frequency can be larger than the natural o
providing auto-centering and better reduction
“1/f ” noise;

(iii) it doubles the amount of output data for any giv
integration timespan.

The only well-known disadvantage of rotation
frequencies above the natural one is the onset of w
motions, at the natural frequencies of the syst
around the equilibrium position. Whirl is due to loss
in the suspensions (the smaller the losses, the slo
the growth rate of whirl) and needs to be damped
prevent instability, but it can be separated to reco
the equilibrium position thanks to the fact that t
whirl frequencies of the system are known [12,1
Chapter 6].
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Fig. 2. Section through the spin axis of the differential accelerometers of the proposed GG mission for testing the equivalence principle in low
Earth orbit. (Figure is in colour on the web.) There are 4 test cylinders (weighing 10 kg each), one inside the other, all centered at the same
point (nominally, the center of mass of the spacecraft) forming 2 differential accelerometers: the inner one for EP testing (cylinders of different
composition; shown in green and blue, respectively) and the outer one for zero check (cylinders made of the same material; both shown in
brown). In each accelerometer the 2 test cylinders are coupled to form a beam balance by being suspended at their top and bottom from the 2
ends of a coupling arm made of 2 concentric tubes (each tube suspends one test cylinder at each end, which makes it asymmetric top/down;
however, the two of them together form a symmetric coupling). All 4 tubes (2 for each coupling arm) are suspended at their midpoints from the
same suspension shaft (the longest vertical tube in figure). In all cases the suspensions are

⋃
-shape (or

⋂
-shape) thin strips (shown in red), to

be carved out of a solid piece of CuBe. At each connection there are 3 of them, at 120◦ from one another (the planar section in figure shows 2
for explanatory purposes only). There are capacitance plates (connected to the suspension shaft) for the read-out of differential displacements
in between each pair of test cylinders (shown as yellow lines in section). The 8 small cylinders drawn along the symmetry axis are inchworms
for the fine adjustment of the lengths of the coupling arms in order to center each test mass on the center of mass of the spacecraft. The whole
system is symmetric around the spin axis as well as top/down. The two accelerometers are both centered at the center of mass of the spacecraft
in order to reduce common mode tidal effects and improve the reliability of the zero check. (Taken from [11].)
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Would a relative displacement of the test bod
caused by an external force be wiped out by au
centering in supercritical rotation as it happens
the original offsetε? The answer is “No”, becaus
the offset vector is fixed in the rotating frame of t
system while an external force, such as a poss
violation of the equivalence principle, or the disturbi
effect due to air drag acting on the spacecraft ins
which the test masses are suspended, give ris
a displacement of the equilibrium position of t
bodies in the non-rotating reference frame. In
presence of such a force, whirl motion will take pla
around the displaced position of equilibrium. Th
phenomenon has been simulated numerically and
result is plotted in Fig. 3 which shows (in the no
rotating reference frame) whirl motion in the absen
of an external force, as well as around a displa
equilibrium position as caused by the effect of
drag.

The read-out consists of two pairs of capacita
plates located halfway in between the test cylind
and forming two capacitance bridges in thex, y direc-
tions of the plane perpendicular to the spin/symme
axis. A differential force acting between the cylinde
will displace their centers of mass and unbalance
bridges, thus generating an output voltage signal.
ally, the bridges should sense only differential forc
In practice, they can be rejected only to some ext
the better is the mechanical centering of the plate
between the test cylinders, the more effective is
rejection of common mode forces. As reported in S
tion 4, a capacitance read-out—which can operat
room temperature—is adequate to the task of the
mission.
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3. The spacecraft and the orbit

The GG spacecraft is designed around the
celerometers and it is meant to provide the rotation
the system around its symmetry axis. It is therefore
axi-symmetric spacecraft passively stabilized by ro
tion around its axis of maximum moment of iner
(Fig. 4). At 520 km altitude, a sun-synchronous or
requires an inclination of 97.5◦ over the equator. Th
orbit is almost circular. (See [14] for details.)

The sensitive plane of the accelerometers sho
lie in the plane of the expected signal, that is in
orbital plane. The spin/symmetry axis should theref
be normal to the orbit plane. However, while t
spin axis is almost unaffected by external torques
therefore remains fixed in space, regression of
nodes of an inclined orbit due to the flattening of t
Earth makes the orbit normal precess around the
perpendicular to the equator (with a 1 year period
the case of a sun-synchronous orbit). As a result, a
axis originally aligned with the orbit normal woul
no longer be so as time goes by. However, it can
shown that if the spin axis stays within about±10◦
from the orbit normal, the expected signal is on
very slightly diminished (along only one compone
with respect to its maximum value. Therefore, the G
spacecraft is equipped with cold gas thrusters (
Fig. 4) to be used to realign its spin axis along
orbit normal every about 20 days of data taking. F
the spacecraft to maintain its cylindrical symme
and its center of mass not to be affected by attit
maneuvers, two tanks have been designed, bot
toroidal shape, to be located one above and one b
the center of mass. During attitude maneuvers all
masses suspended inside the spacecraft are lo
using inchworms placed around their central coupl
arms—see Fig. 2).

Since the spin/symmetry axis of the spacecraf
maintained near the axis perpendicular to the s
synchronous orbit, solar cells for power generat
are located on the surface of a dish facing the
(see Fig. 4). This dish serves also the purpose
shielding the spacecraft body—a compact, 1 m s
structure in the shape of a spinning top enclosing
accelerometers—from sunlight, so as to reduce
effects of thermal disturbances on the experiment.
.) On the
erometers
he total mass
Fig. 4. The GG spacecraft as it has been designed for flight in high inclination, sun-synchronous orbit. (Figure is in colour on the web
right-hand side is a 3D view, while on the left is a section along the spin/symmetry axis—showing the PGB laboratory and the accel
inside the spacecraft. The section and the legenda give details on the main parts of the spacecraft and the experimental apparatus. T
is 280 kg, the orbit is almost circular, has an altitude of 520 km and an inclination of 97.5◦ (sun-synchronous orbit).
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The largest disturbing acceleration experienced
the accelerometers is due to the effect of resid
air drag acting on the spacecraft and not on the
masses suspended inside it, thus resulting in an ine
acceleration equal and opposite to the accelera
caused by air drag on the spacecraft. Moreover,
largest and most “dangerous” air drag effect is d
to its “along track” component, which has the sa
orbital frequency as the signal and differs from it on
in phase (the signal is in the radial satellite—cente
the Earth direction). The inertial acceleration result
from air drag—and in general from non-gravitation
forces acting on the spacecraft—are in principle
same on the test bodies in each accelerometer. T
are known as “common mode” effects and should
produce any differential signal to compete with t
target differential signal of an equivalence princip
violation. However, this would be so only in th
ideal case that the suspensions of the test cylin
in the accelerometers were perfectly identical and
capacitance bridges of the read-out were perfe
balanced, i.e., under conditions of perfect “comm
mode rejection”. In the GG space experiment
strategy chosen is for air drag (and non-gravitatio
effects) to bepartially compensated by the spacecraf
drag-free control system, andpartially rejected by the
accelerometers themselves. In this way, the burde
reducing to an acceptable level this very large eff
is shared between the spacecraft and the experim
apparatus, each of them being given a reasonable

Common mode rejection relies on the coupled s
pension of the test cylinders and the capacitance
ferential read-out in between them, and on well
tablished in-flight balancing procedures. Drag co
pensation requires the spacecraft to be equipped
thrusters and an appropriate control system to fo
the spacecraft itself to follow the motion of an und
turbed test mass inside it. Since drag compensa
must be active during data taking, there are severe
itations on the disturbances it produces which make
dinary impulsive thrusters not suitable. Finely tuna
proportional thrusters based on field emission elec
propulsion (FEEP) appear to be the best choice,
because of their high specific impulse and conseq
need of only a negligible mass of propellant. The t
mass which drives the drag-free control system is
PGB (see Fig. 4, left), whose motion relative to t
spacecraft in the plane perpendicular to the symm
l
.

axis is read by two capacitance bridges. In terms
frequency, drag must be compensated in a narrow
quency range around the orbital one, in order to red
its component along track. For this purpose, a con
based on a notch filter has been tested in nume
simulations of the GG system and found to be eff
tive [13, Chapter 6]. The PGB can provide the requi
driving signal to the drag control system because
orbital frequency around which drag must be comp
sated is below its natural frequency above which d
turbances acting on the spacecraft are attenuated
Fig. 5)

The transfer function of the PGB, given in Fig.
shows that effects at the orbital frequency are un
fected by the PGB suspension. They are sense
the capacitance read-out in between the PGB and
spacecraft through the relative displacements they
duce between the two, and these measurements
as input to the drag free control. Note that the expec
signal too is at the orbital frequency (see Fig.
hence, it is not attenuated. Instead, the figure sh
that disturbances at the spin frequency of the sp
craft (in the non-rotating frame) are significantly r
duced. Such disturbances are due primarily to
FEEP thrusters used for drag compensation, bec
in order to compensate for the effect of drag at
orbital frequency of the spacecraft around the Ea
(in the non-rotating reference frame) while spinni
with the spacecraft itself, they must fire at the spin f
quency relative to the center of the Earth (2 Hz). Si
this is also the modulation frequency of the expec
signal, its attenuation by the PGB by about 5 order
magnitude is a considerable advantage for the exp
ment.

4. Requirements and error budget

In order to be sensitive to differential effects
the plane perpendicular to the spin/symmetry axis,
test cylinders of each accelerometer (see Fig. 2)
weakly coupled to one another. With the suspens
as designed, the natural differential period is 540
Instead, all suspensions are stiff along the axis (w
a natural period of 30 s) as well as in response
forces acting on both masses in the accelerom
(common mode effects). These mechanical feat
have been chosen for best sensitivity to differen
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Fig. 5. Transfer function of the PGB laboratory (enclosing the accelerometers), suspended inside the spacecraft. The frequency
oscillations in the plane perpendicular to the spin/symmetry axis is 1/360 Hz. The transfer function is shown in the reference frame rota
with the system and also in the non-rotating one. In the non-rotating frame, any effect at frequencies below the natural one (the
frequency) is essentially unaffected, while above the threshold, disturbances are attenuated (the higher the frequency, the better then).
These facts can be seen at the corresponding frequencies also in the rotating frame. In the rotating frame the peak near the spin
larger than 1 because it shows (within the resolution of the figure) the transfer function at two nearby frequencies. These are the spin
± the natural one, and at the natural frequency disturbances are amplified depending on the mechanical quality factor of the suspe
the transfer function in the non-rotating frame). It is well known that a better attenuation is obtained with lower quality factors. In this
value of the quality factor is 90.
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forces in the plane, while minimizing the effects
common mode forces in the same plane as wel
those of all disturbances along the axes. In particu
the goal of testing the equivalence principle to 1 p
in 1017 in the gravitational field of the Earth require
to detect the effect of a differential acceleration
aEP � 8.4 × 10−17 m s−2 (pointing to the center o
the Earth as in Fig. 2), which amounts to a relat
displacement between the test cylinders of the in
accelerometer of 0.6 pm.

The main requirements which need to be fulfill
in order to reach the mission goal are concer
with: mechanical balance of the test cylinders; d
compensation; mechanical balance of the capacita
bridges; temperature variations (in space and tim
damping of whirl motions and quality factor at the sp
frequency.
Each accelerometer is conceptually a beam bala
with the beam along the symmetry axis. Ideally,
should be insensitive to common mode forces in
x, y plane of sensitivity perpendicular to it. Perfect r
jection is obviously impossible, and we require th
all common mode forces in the plane are rejected
a factorχCMR = 1/105. Much better rejection tha
this is achieved with ordinary balances on the grou
where the common mode force (local gravity) is ma
orders of magnitude stronger than the largest comm
mode force (due to residual air drag) acting on
GG test cylinders. The balancing procedure relies
the capacitance bridges in between the test cylin
as sensors and the inchworms on the accelerome
coupling arms (see Fig. 2) as actuators. Once bal
ing is completed, the inchworms can be switched
so as not to disturb the measurements. For the re
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ual effect of air drag at the orbital frequency and in
plane of sensitivity we require a compensation fac
of 1/104, using the capacitance bridges between P
and spacecraft as sensors and FEEP thrusters a
tuators. As a result of both compensation and re
tion, the residual differential effect of air drag on t
test masses of the accelerometers is 109 times smaller
than its original value, which for the GG spacecr
and orbit isadrag� 2× 10−7 m s−2 (worst case). This
means that the disturbance due to air drag is larger
the signal by a factor 2.4 at most, and can anyw
be distinguished from it because of the large ph
difference between the two. The amount of drag
fect remaining after compensation by FEEP thrus
gives a common mode effect on the test masse
the accelerometers, which—if the capacitance pla
of the read-out are not perfectly balanced in betw
the test cylinders (i.e., the gaps on the two sides
not equal)—results in a spurious differential sign
For it to be a few times smaller than the target s
nal the unbalance must be (with a 5 mm gap) of a
µm, which is not a stringent requirement. We also
quire drag compensation by a factor 1/400 along the
spin/symmetry axis (at the orbital frequency) in ord
to reduce the separation between the centers of m
of the test cylinders along this axis (see below).

All mechanical balancing will be affected by tem
perature variations. Since there are about 20 d
available for data taking between two successive
titude maneuvers, we require that temperature va
tions be small enough not to destroy the balancing
the system for that span of time. Temperature ti
variations must be such thaṫT < 0.1 K/day, the re-
quirement being set by the mechanical balance of
capacitance bridges, which are affected by the
ferential thermal expansion of the test masses
bridge frame. Variation of the suspensions stiffn
with the temperature are not relevant. Along thez

spin/symmetry axis it must be�T/�z < 4 K/m, and
this requirement is set by the mechanical balanc
the test cylinders since it is affected by the exp
sion/contraction of the coupling arms. Passive th
mal isolation is sufficient to avoid temperature va
ations larger than these, and no active thermal c
trol is needed. Temperature constraints are not v
demanding in GG because its rapid rotation avera
out azimuthal temperature variations and makes
radiometer effect negligible; much more demand
-

constraints need to be satisfied in case of slow
tation of the test cylinders [9,11]. During eclipse
when the satellite happens to go in and out of
Earth’s shadow, different heating of the outer shel
the spacecraft as compared to the internal appar
(which is thermally isolated) would produce a diffe
ential rotation rate due to changes in the moment o
ertia and conservation of angular momentum. Thi
avoided by means of a small mass compensation
tem based on a photo-diode sensor to detect the p
lag between the outer and inner part of the spacec
and inchworm actuators to displace little masses
compensate moment of inertia changes; the masse
quired are of a few grams because changes of mom
of inertia caused by temperature variations are v
small.

Whirl motions (as shown in Fig. 3) of all suspend
bodies are damped by means of capacitance
sors/actuators. In the non-rotating frame whirls h
the frequencies of natural oscillations (slow), wh
the sensors/actuators spin fast with the whole sys
(2 Hz). The spacecraft is equipped with Earth ele
tion sensors to measure its state of rotation in orde
perform the coordinate transformation between the
tating and non-rotating frame which is needed for
accurate reconstruction and damping of the whirl m
tion [13, Chapter 6]. The growth rate of whirls is d
termined by losses in the system, essentially in the
chanical suspensions as they undergo deformatio
the frequency of spin. The time constant of the grow
is (Qs/π) · Tw, whereQs is the quality factor at the
frequency of spin andTw the natural period of the
whirl. The force required to damp the whirl is a fra
tion Qs of the mechanical coupling force [12]. In G
the requirement isQs = 20000 (at 2 Hz), which labo
ratory tests have shown to be achievable: we have
cently measured 30000 at 0.9 Hz and about 10000
1.4 Hz with the “GG on the Ground-GGG” laborato
prototype. With aQ of at least 20000, whirl growth
is so slow that data taking can be performed betw
successive damping, thus avoiding any disturbanc
all from damping forces. In order to reconstruct t
position of relative equilibrium of the test cylinders
the non-rotating reference frame, as affected by a
frequency differential force (like an EP violation at t
orbital frequency around the Earth) whirl motion at t
natural frequency of oscillation can be separated
Tests with the laboratory prototype demonstrate th
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low frequency differential effect can be detected ev
in the presence of a much larger whirl [15].

The error budget of the space experiment is p
formed keeping in mind that both the frequency a
phase of the expected signal are well known: once
high frequency signal modulation due to the spin r
of the spacecraft has been eliminated by coordin
transformation to the non-rotating system, the sig
must appear as a differential displacement at the
bital frequency, and always pointing to the Earth.

The most dangerous perturbing effects are there
those which are close to the signal both in freque
and phase. There are two such effects: the E
monopole coupling to higher mass moments of
test bodies and the radiometer effect. The first is
to the fact that the test bodies are not monopo
they have non-zero higher mass moments, and
monopole mass moment of the Earth will coup
differently to them giving rise to a differential force
Being due to the Earth,—which is the also the sou
mass of a possible violation of equivalence—t
effect cannot in any way be distinguished from t
signal. For a given spacecraft altitude and a gi
target in EP testing, the dominant mass mom
of the test cylinders (quadrupole) must be sm
enough for this effect to be below the signal. T
values required (about 0.01) are realistic to obt
by test mass machining. The radiometer effect
caused by the residual gas pressure in the presen
temperature gradients across the test masses gene
by the infrared radiation from the Earth. In G
temperature gradients are averaged out by the
rotation and the radiometer effect is negligible ev
at room temperature [9,16].

At the same frequency as the signal but, with
phase difference of about 90◦, we have the inertia
force caused by residual air drag acting on the o
surface of the spacecraft along its orbit. With the
quirements given above for drag compensation
common mode rejection, the residual differential
celeration due to air drag is 2–3 times larger than
signal (worst case) and can be separated from it tha
to the large phase difference.

At twice the orbital frequency there is the tid
effect due to a non-zero separation between the ce
of mass of the test cylinders along the spin/symme
axis whenever it is not exactly aligned with th
orbit normal [13, Chapter 2.2]. With a compensat
f
d

of non-gravitational forces (mostly solar radiati
pressure) along the spin axis by 1/400, and with a
common mode rejection in that direction of 1/50 (by
suspensions machining only) this tidal effect is alm
one order of magnitude smaller than the signal.

At the natural frequency of differential oscillatio
of the test masses (1/540 s) there is a residual whi
motion of their centers of mass which gives rise
a tidal effect from the Earth at the whirl frequenc
However, it can be proven that it does not affe
the position of relative equilibrium around whic
whirl motion takes place (see [17]). It causes a sm
deformation of the whirl orbit which circulates wit
the motion of the spacecraft around the Earth, d
not accumulate in time and does not prevent recov
of the equilibrium position by separation of the wh
motion. Similarly, the whirl orbit is also affected b
resonant drag effects due to air granularities along
spacecraft orbit around the Earth. In this case too
equilibrium position is not affected, the deformati
of the whirl orbit circulates with the orbital period,
does not accumulate with time and can be separ
out.

The accelerometers are designed to be sensitiv
the plane perpendicular to the spin/symmetry axis
more stiff along it. However, there is a modest dr
compensation requirement along the spin axis bec
a center of mass separation along it will generate
the presence of a tilt angle with respect to the o
normal) a tidal effect in the sensitive plane who
frequency is close to that of the signal.

Mechanical suspensions allow the test masse
be electrically grounded, thus avoiding the need
measure the amount of accumulated charge an
discharge the masses, which inevitably disturbs
measurements. Residual so-called “patch effects”
known to be small and slowly moving. Moreove
their presence can be checked by changing sign t
applied known electric potential corresponding to
resolution achieved: since the force is proportiona
the square of the potential, the resulting effect m
be the same to rule out a patch effect potentia
that level. Requirements on magnetic impurities a
magnetic susceptibility for the test masses can be

Rotation of the whole system together makes m
effects coming from local (fixed) disturbances, (su
as local mass anomalies or parasitic capacitance
become DC signals, and therefore not an issue.
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Finally, thermal noise, is compatible with the go
of the experiment thanks to the high frequency of sp
to the highQ of the system and the large mass
the test cylinders (10 kg test bodies compensate
working at 300 K rather than at a few K but wi
masses of 100 g).

5. Significance of the ground prototype

Since the GG differential accelerometer has t
degrees of freedom it is possible to design a gro
version of it to be fully operated and tested at 1
In the ground version the plane of sensitivity
the accelerometer lies in the horizontal plane
the laboratory while the third dimension is us
to suspend the system against local gravity. In
way it can detect the horizontal component of
possible violation of equivalence either in the fie
of the Earth (a differential force constant in t
North–South direction) or in the field of the Sun
differential force following its 24 hr motion). This i
the “Galileo Galilei on the Ground-GGG” prototyp
which has been extensively described in [11] a
whose recent results are given in [15]. The GG
accelerometer is designed to have the same featur
the one proposed for flight, essentially: weak coupli
high frequency supercritical rotation and different
capacitance read-out. However, there are several
important differences to bear in mind.

The main difference is due to the special chara
of the third dimension—that of local gravity—whic
makes it impossible for the GGG design to be
symmetric as in space (see Fig. 2), and limits
capability to reject common mode effects. In additio
while no motor is needed in space once the space
has been brought to its nominal rotation rate, GG
requires a motor and its bearings, which are a rele
source of noise. Frequency modulation by fast rota
can be at higher frequency than in space, but while
entire spacecraft spins together with the test bo
and therefore any local mass anomaly gives rise
a DC effect which does not affect (as long as it
constant in time) the modulated signal, nearby m
anomalies in the laboratory and its vicinity give effe
which are directly competing with a possible violati
of the equivalence principle in the field of the Ear
In order to separate them out, these effects n
s

to be measured and compensated, as in the rot
torsion balance experiment by [1]. In GGG the t
bodies are rotors in a non-inertial reference fra
(because of the diurnal rotation of the Earth) and
resulting gyroscopic effects would be in the Nort
South direction like an equivalence principle violati
in the field of the Earth and indistinguishable fro
it, see [11]. However GGG can be used to det
a violation of equivalence in the field of the Su
because of its 24 hr period, and the driving signa
only slightly weaker than in the field of the Eart
Local mass anomalies are not a problem in this c
but the 24 hr component of the tidal effect fro
the Sun, not being perfectly rejected, would leav
residual differential force which must be separa
by measurements at different declinations of the S
around the equinoxes.

A 24 h signal requires local seismic noise at t
frequency (tilts and horizontal accelerations) to be
tenuated. This can be done first actively (using a
meter as sensor and PZTs as actuators to maintai
verticality of the rotation axis) and then passively,
means of a cardanic suspension of the whole sys
As long as horizontal accelerations are conside
it is worth noticing that in GGG only displacemen
with respect to the local vertical are relevant, and t
can be passively attenuated with a cardanic suspen
whose stiffness is only slightly weaker than that of
suspensions currently in use for the test bodies.

Whirl motions need to be damped both on t
ground and in space, but in space they can only
damped actively with capacitance sensors/actua
which are fixed in the rotating frame of the who
system. In GGG active damping can be perform
also in the non-rotating frame, which is what has be
realized so far.

An obvious advantage of the ground experimen
the absence of drag.

Given the stronger driving signal in space (by
orders of magnitude), the weaker coupling (and c
sequent higher sensitivity which can be achieved
absence of weight), the better symmetry of the
celerometer in space and the absence of noise
the motor, it can be convincingly argued that eve
relatively modest GGG test of the equivalence pr
ciple in the field of the Sun can generate confide
in the capability of the GG space experiment to re
its goal. The space experiment will benefit from s
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eral key features developed and tested in GGG:
read-out and data analysis, the beam-balance of th
celerometer and its rotation in supercritical regime,
weak and highQ mechanical suspensions, the capa
tive active control of whirl motions.
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Abstract

We have proposed to test the equivalence principle (EP) in low Earth orbit with a rapidly rotating differential
accelerometer (made of weakly coupled concentric test cylinders) whose rotation provides high frequency signal modulation
and avoids severe limitations otherwise due to operation at room temperature [PhRvD 63 (2001) 101101]. Although the
accelerometer has been conceived for best performance in absence of weight, we have designed, built and tested a variant of
it at 1-g. Here we report the results of measurements performed so far. Losses measured with the full system in operation
yield a quality factor only four times smaller than the value required for the proposed high accuracy EP test in space.
Unstable whirl motions, which are known to arise in the system and might be a matter of concern, are found to grow as
slowly as predicted and can be stabilized. The capacitance differential read-out (the mechanical parts, electronics and
software for data analysis) is in all similar to what is needed in the space experiment. In the instrument described here the
coupling of the test masses is 24 000 times stiffer than in the one proposed for flight, which makes it 24 000 times less

22sensitive to differential displacements. With this stiffness it should detect test masses separations of 1.5?10 mm, while so
far we have achieved only 1.5mm, because of large perturbations—due to the motor, the ball bearings, the non-perfect
verticality of the system—all of which, however, are absent in space. The effects of these perturbations should be reduced by
100 times in order to perform a better demonstration. Further instrument improvements are underway to fill this gap and also
to reduce its stiffness, thus increasing its significance as a prototype of the space experiment.
   2002 Elsevier B.V. All rights reserved.

PACS: 04.80.Cc; 07.10.2h; 06.30.Bp; 07.87.1v
Keywords: Gravitation; Relativity; Instrumentation: detectors; Methods: laboratory; Methods: data analysis

1 . Introduction
*Corresponding author.
E-mail addresses: nobili@dm.unipi.it (A.M. Nobili), The equivalence principle (EP) stated by Galileo,
bramanti@mail.dm.unipi.it(D. Bramanti), reformulated by Newton and reexamined by Einstein
comandi@mail.dm.unipi.it(G.L. Comandi),

to become the founding principle of General Re-toncelli@mail.dm.unipi.it(R. Toncelli),
lativity, can be tested from its most direct conse-polacco@mail.dm.unipi.it(E. Polacco).
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quence: the universality of free fall (UFF), whereby 1922) has provided a major improvement, by about
all bodies fall with the same acceleration regardless three orders of magnitude, over previous pendulum

¨ ¨of their mass and compositionh5Da /a 50 . The tests of the EP. However, Eotvos tested the uni-s d
most accurate EP experiments have been carried out versality of free fall in the field of the Earth,
on the ground with test bodies suspended on a therefore looking for a constant (DC) anomalous

213torsion balance, finding no violation to about 10 acceleration in the North–South direction of the
(Adelberger et al., 1990; Su et al., 1994; Baeßler et plane of the horizon. Another major improvement
al., 1999). (See Note added in proof.) Test bodies in (by about three more orders of magnitude) was made
low Earth orbit are subject to a driving gravitational possible in the 1960s and 1970s (Roll et al., 1964;
(and inertial) acceleration much stronger than on Braginsky and Panov, 1972) when a torsion balance
torsion balances on the ground, by about three orders was used to search for a deviation from UFF in the
of magnitude. Moreover, the absence of weight is field of the Sun, in which case the diurnal rotation of
ideal in small force experiments. As a consequence, the Earth itself provides a 24-h modulation of the
space missions can potentially improve by several expected signal. Further improvements on the torsion
orders of magnitude the current sensitivity in EP balance, including its rotation faster than the diurnal
tests. Three such experiments are being considered, rotation of the Earth (at. 1 h period) and con-

215and the goals are: 10 for the FrenchmSCOPE sequent modulation of the signal at higher frequency,
(MICROSCOPE Website: http: / /www.cnes.fr / have provided the most sensitive tests so far (Adel-
activites /activites /connaissance/physique/ berger et al., 1990; Su et al., 1994; Baeßler et al.,
microsatellite /1sommaire microsatellite.htm and 1999)

]
http: / /www.onera.fr /dmph-en/accelerometre; It seems therefore appropriate, for an EP experi-

217Touboul et al., 2001), 10 for the Italian ment in space, that the instrument be designed as a
‘‘GALILEO GALILEI’’ (GG) (‘‘GALILEO rotating differential accelerometer made of conce-
GALILEI’’ (GG), Phase A Report, 1998; Nobili et ntric test cylinders, thus leading naturally to a
al., 1999; ‘‘GALILEO GALILEI’’ (GG) Website: spacecraft of cylindrical symmetry too, and co-rotat-
http: / /eotvos.dm.unipi.it /nobili; Nobili et al., 2001), ing with the test cylinders. If the axis of symmetry is

21810 for the American STEP (Worden, 1978; STEP the axis of maximum moment of inertia, one-axis
Satellite Test of the Equivalence Principle, 1993; rotation provides (passive) spacecraft attitude stabili-
STEP Satellite Test of the Equivalence Principle, zation. This is how the GG space experiment for
1996; Step Website: http: / /einstein.stanford.edu/ testing the EP in the field of the Earth has been
STEP) [however, STEP studies within the European designed: the concentric test cylinders spin around

217Space Agency are consistent with a goal of 10 the symmetry axis at a rather high frequency (2 Hz
(STEP Satellite Test of the Equivalence Principle, with respect to the center of the Earth) and are
1993; STEP Satellite Test of the Equivalence Princi- sensitive to differential effects in the plane perpen-
ple, 1996)].mSCOPE and GG are room temperature dicular to the spin /symmetry axis. A cylindrical
experiments, STEP is cryogenic at very low tempera- spacecraft encloses, in a nested configuration, a
ture. cylindrical cage with the test cylinders inside, and is

In all the proposed space experiments the test stabilized by rotation around the symmetry axis. As
bodies are hollow cylinders one inside the other, shown in Fig. 1, an EP violation in the field of the
with their centers of mass as close as possible for Earth would generate a signal of constant amplitude
classical differential effects (such as tides) to be (for zero orbital eccentricity) whose direction is
reduced. However, in spite of the different arrange- always pointing to the center of the Earth, hence
ment of the test bodies needed in space, the main changing orientation with the orbital period of the
features of the ground apparata which have so far satellite. The read-out, also rotating with the system,
provided the best sensitivity should be retained. The will therefore modulate an EP violation signal at its
most relevant of such features is the differential spin frequency.
nature of the torsion balance, which makes it ideally We have designed and built a differential, rotating
insensitive to common mode effects. Its implementa- accelerometer similar to the one proposed for the GG

¨ ¨tion at the end of the 19th century (Eotvos et al., space experiment. It is a full scale prototype devoted

http://www.cnes.fr/activites/programmes/microsatellite/1sommaire_microsatellite.htm
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Fig. 1. Section across the spin/symmetry axis of the GG outer
and inner test cylinders (of different composition) as they orbit
around the Earth inside a co-rotating, passively stabilized space-
craft (not shown). The centers of mass of the test cylinders are
shown to be displaced towards the center of the Earth as in the
case of a violation of the equivalence principle in the field of the
Earth (indicated by the arrows). The signal is modulated at the
spin frequency of the system (2 Hz with respect to the center of
the Earth). The figure is not to scale (taken from Nobili et al.,
2001).

to testing the main features of the proposed instru-
ment, in spite of the fact that the local acceleration of
gravity is about eight orders of magnitude bigger

Fig. 2. Section through the spin axis of the differential ac-
than the largest disturbances the accelerometer wouldcelerometer inside the vacuum chamber (drawing to scale; inner
be subject to in space (due to the residual air drag diameter of vacuum chamber 1 m; see text for a description of its

parts).and to solar radiation pressure). Here we describe the
ground apparatus, show how it is operated and report
the results obtained from measurement data so far. mounted inside the chamber. In Fig. 2 the chamber
To conclude, we discuss the relevance of these and the frame (not rotating) on which the whole rotor
results in view of the GG target sensitivity. is mounted are drawn in gray. The test cylinders are

drawn in green (the inner one) and blue (the outer
one). On the top of the frame (at its center) is a shaft

2 . Design of the apparatus turning inside ball bearings (sketched as ‘‘x’’ in the
section of Fig. 2) to which rotation is transmitted

A schematic view of the apparatus is given in Fig. from the motor by means of O-rings on pulleys. This
2, where a section through the spin/symmetry axis shaft holds the suspension tube, which therefore
of the accelerometer is shown (enclosed by the rotates with the shaft. Inside the suspension tube is
vacuum chamber). (The color version of Fig. 2 is the coupling arm (also a tube) suspended at its
available in the article published on the World Wide midpoint from the suspension tube by means of a
Web.) Fig. 3 shows a picture of the accelerometer laminar suspension (drawn in red; see picture in Fig.
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4). The two test cylinders are suspended from the
two ends of the coupling arm (the outer one from the
top, the inner one from the bottom) by two more
laminar suspensions (all three suspensions are manu-
factured to be equal; they are all drawn in red in Fig.
2). Being metallic, they also ensure passive electro-
static discharging of the test masses. Fig. 3 shows
three light vertical bars and a horizontal ring used to
connect the outer test cylinder to its suspension at the
top of the coupling arm. The suspensions have the
property of being soft in both theX andY directions
in the plane perpendicular to the symmetry /vertical
axis, while at the same time being strong enough in
the vertical direction in order to withstand local
gravity. In this way the test cylinders—in spite of
being concentric—are in fact suspended like in an
ordinary beam balance, but with the beam of the
balance (the coupling arm) in the vertical direction
rather than in the horizontal one. The central suspen-

Fig. 3. The rotating differential accelerometer mounted inside the
sion (connecting the midpoint of the beam to thevacuum chamber (in the basement of the LABEN laboratories in
suspension tube) is therefore the one which carriesFlorence).
the whole weight of this balance, mostly due to the
test cylinders themselves (10 kg each).

The read-out consists of two pairs of capacitance
plates located halfway in between the test cylinders
and connected to the suspension tube by means of an
insulating frame (see picture in Fig. 5 and section in
Fig. 2, in which they appear as vertical lines in
between the test cylinders). They maintain the cylin-
drical symmetry of the system, forming two capaci-
tance bridges in theX and Y directions of the plane
perpendicular to the symmetry axis (the plane of
sensitivity of the instrument). The two annular dishes
(in yellow) mounted around the upper half of the
suspension tube contain the two capacitance bridge
circuits, their preamplifiers, the signal demodulators,
the A/D (analog-to-digital) converters and the driver
of the optical emitter, which is located at the very
top of the rotating shaft (in order to transmit the
demodulated signal from the rotor to the non-rotating
frame and then outside of the vacuum chamber). In
the upper part of the shaft, above the ball bearings,
are the rotating contacts for power transmission to
the electronics of the rotor and a dish with a circuit
for stabilizing this power. To this dish is also
attached an optical device which provides a reference

Fig. 4. One of the three laminar suspensions used in the ac-
signal for the phase of the rotor. The passive dampercelerometer (sketched in red in Fig. 2). They are carved out of a
is shown under the lowest laminar suspension, and issolid bar of CuBe by electroerosion in 3D and properly treated for

high mechanical quality. not rotating (see Section 4).
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is differential: were all plates mounted exactly
halfway in between the test cylinders (same clear gap
on either side), it would be totally insensitive to
common mode forces (i.e., to forces causing a
displacement of both test cylinders together with
respect to the capacitance plates). For a non-zero
off-centering of the plates between the cylinders, the
read-out is anyway less sensitive to common mode
displacements than it is to differential ones, by a
factor which is the ratio of the off-centering to the
average gap: the better the plates are centered, the
less sensitive is the read-out to common mode
forces, the more suitable it is for EP testing. The
sensitivity of the test cylinders to differential accele-
rations depends on the softness of the laminarFig. 5. The four capacitance plates (with their insulating frames)
suspensions and the balance of arms and masses informing the two capacitance bridges of the read-out. They are
their coupled mounting. Soft suspensions and goodmounted halfway in between the concentric test cylinders to read

their relative displacements (see section in Fig. 2). balancing are needed, providing long natural periods
of differential oscillations of the test cylinders with

A differential force acting between the test cylin- respect to one another. The longer the natural periods
ders in any direction in the horizontal plane of the of differential oscillations, the larger the mechanical
laboratory will incline the balance beam—pivoted at displacements of the test cylinders in response to
its midpoint—with respect to the vertical, thus giving differential accelerations, the stronger the output
rise to a relative displacement of the centers of mass voltage signal. Soft suspensions and good balancing
of the cylinders in the direction of the force. The are also needed in order to reduce the residual
resulting mechanical displacement will unbalance the differential fraction of forces which are common
capacitance bridges, thus allowing it to be trans- mode by their nature but do in fact produce also a
formed into an electric voltage signal. If the whole differential effect on the test cylinders due to the
system (test cylinders plus read-out) rotates around inevitable imperfections in their mounting and
the vertical shaft, the signal is modulated at the balancing. Ideally, a common mode force should be
rotation frequency, just as in the GG space experi- perfectly rejected by the system, leaving no differen-
ment (Fig. 1). In case of an EP violation in the field tial residual. By comparison, the test cylinders of the
of the Earth, two test cylinders of different com- mSCOPE accelerometer (also based on capacitance
position should show (after transformation to the sensing) are controlled with respect to the same
non-rotating reference frame) a constant, relative silica frame but are not coupled, neither by the
displacement in the North–South direction of the suspensions (each cylinder has its own electrostatic
horizontal plane. Instead, checking for violation in suspension) nor by the read-out (the differential data
the field of the Sun requires to detect a (smaller) of interest are obtained as the difference of the
relative displacement vector in the same plane individual readings of the capacitance sensors of
following the Sun in its daily motion with respect to each test cylinder (MICROSCOPE Website:http: / /
the Earth fixed laboratory where the test bodies are www.cnes.fr /activites /activites /connaissance/
located. physique/microsatellite /1sommaire microsatellite.

]
The instrument is therefore a rotating differential htm and http: / /www.onera.fr /dmph-en/

accelerometer sensitive in the horizontal plane. Its accelerometre;Touboul et al., 2001, Fig. 1).
differential character comes from two features. The Ordinary beam balances are known to be ideal
first is that the test cylinders are mechanically instruments for extremely effective common mode

28 29coupled so as to be sensitive to differential accelera- rejection (rejection factors of 10210 can be
tions acting between them because of the geometry reached at 1-g). Also in the accelerometer designed
of their mounting. The second is that the read-out too for space (see Fig. 6 and its caption; the color
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version of Fig. 6 is available in the article published change from the perfect symmetry of the space
on the World Wide Web) the test cylinders are design.
coupled like in a beam balance—with the plane of It is desirable that the spin rate be high, so as to
sensitivity perpendicular to the beam as in Fig. 2— get a correspondingly high frequency modulation of
and have a differential capacitance read-out. The the signal and consequent reduction of 1/f me-
geometry of the space accelerometer is perfectly chanical and electronic noise. It is also desirable for
symmetric, which is possible in the absence of the mechanical coupling between the test cylinders to
weight because the direction of the beam is not the be weak (long natural differential periodT ), fordiff

direction of a force many orders of magnitude larger them to be sensitive to differential forces like the one
than any force acting in the sensitivity plane perpen- which would result from an EP violation, because
dicular to it, as it is the case with the vertical balance the relative displacement due to a differential force

2of Fig. 2 because of the local acceleration of gravity. increases asT ). This means that typically thediff

In this case the advantage of the coupling of the test system spins at a frequency higher than the natural
cylinders is retained in spite of a lack of symmetry in frequency for differential oscillations of the test
their suspension arms: the center of mass of the inner cylinders, in which case it is known that the spinning
cylinder is very close to its suspension point, while bodies do reduce any original offset vector between
the center of mass of the outer one is much farther their centers of mass (fixed in the rotating system)
from its own (see Fig. 2). This asymmetry is a inevitably due to imperfections in construction and
consequence of the special character of the vertical mounting (see e.g. Den Hartog, 1985; Crandall,
direction when operating at 1-g and it is an inevitable 1995; Genta, 1993). In simple terms, a weakly

coupled and fast spinning rotor is an approximation

Fig. 6. Section through the spin axis of the differential ac-
celerometers of the proposed GG mission for testing the equival-
ence principle in low Earth orbit. There are four test cylinders (10
kg each), one inside the other, all centered at the same point
(nominally, the center of mass of the spacecraft) forming two
differential accelerometers: the inner one for EP testing (cylinders
of different composition; shown in green and blue respectively)
and the outer one for zero check (cylinders made of the same
material; both shown in brown). In each accelerometer the two test
cylinders are coupled to form a beam balance by being suspended
at their top and bottom from the two ends of a coupling arm made
of two concentric tubes (each tube suspends one test cylinder at
each end, which makes it asymmetric top/down; however, the two
of them together form a symmetric coupling). All four tubes (two
for each coupling arm) are suspended at their midpoints from the
same suspension shaft (the longest vertical tube in figure). In all
cases the suspensions are< -shape (or > -shape) thin strips
(shown in red), to be carved out of a solid piece of CuBe. At each
connection there are three of them, at 1208 from one another (the
planar section in figure shows two for explanatory purposes only).
There are capacitance plates (connected to the suspension shaft)
for the read-out of differential displacements in between each pair
of test cylinders (shown as yellow lines in section).The eight small
cylinders drawn along the symmetry axis are inchworms for the
fine adjustment of the lengths of the coupling arms in order to
center each test mass on the center of mass of the spacecraft. The
whole system is symmetric around the spin axis as well as
top/down. The two accelerometers are both centered at the center
of mass of the spacecraft in order to reduce common mode tidal
effects and improve the reliability of the zero check.
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to an ideal unconstrained rotor whose center of mass oscillation amplitudes (up to 1 mm).Q measure-
would have zero offset from the rotation axis. ments for the laminar suspensions alone—before

The natural periodT for differential oscillations assembling of the accelerometer—when set indiff

of the test cylinders, one with respect to the other, in horizontal oscillations at higher frequency (5 Hz) and
the vertical beam balance arrangement of Fig. 2 (in similar oscillation amplitudes, have been performed
the presence of both local gravity and mechanical (in vacuum), yieldingQ values of 2000 (‘‘GALILEO
coupling) can be written as: GALILEI’’ (GG), Phase A Report, 1998, Section

3.4; Nobili et al., 2000). Better (higher)Q values are
2p expected at higher frequencies and for smaller

]]]]]T . (1)]]]]diff oscillation amplitudes. However, once rotating, the3K g Dl
] ]]S D1 suspensions are deformed at the frequency of spinœ m l 2l

and losses occur at this frequency, which is higher
than the differential frequency, and should thereforewith m the mass of the test cylinder,g the local
result in higherQ’s (see Section 5).acceleration of gravity, 2l the length of the coupling

Besides the natural frequency for differentialarm (with a differenceDl . 0 between its lower and
oscillations the accelerometer system of Fig. 2 hasupper half respectively) andK the coupling constant
two additional natural frequencies, one slightly(note that, for lateral flexures,K is lower than the
below and one slightly above 1 Hz. The first can beelastic constant of the laminar suspensions shown in
viewed as the pendular frequency (common mode) ofFig. 4 and Fig. 2 by a factor given by the ratio,
the whole system; the second one as due to the innersquared, of the length of the laminar suspension
test cylinder being suspended close to its center ofitself to the lengthl of the arm—‘‘lever effect’’). In
mass and having a non-zero moment of inertia withEq. (1) the ratioDl /l accounts for both the balance
respect to the symmetry axis (if the inner mass isof arms and masses (Dm /m) attached to the beam.
modeled as a point mass this frequency disappears).The validity of Eq. (1) is confirmed by numerical
The predicted theoretical values of these naturalsimulations and measurements, and shows well the
frequencies have been confirmed by experimentalrelevance of gravity. IfDl . 0, gravity acts as a
measurements. In order to reach the spin rates ofpositive spring, thus increasing the stiffness of the
interest (above 1 Hz), the system must cross all thesecoupling, i.e. reducing the length ofT . Instead, ifdiff

natural frequencies, and when passing the twoDl ,0, gravity acts as a negative spring and the ratio
nearby ones it can undergo large resonant distur-Dl /l (indeed,Dl /l and/orDm /m) can be adjusted so
bances. It has been suggested (Luo, 2000) that theas to reduce the denominator of Eq. (1) whereby
system be simplified by substituting the laminarincreasing the value ofT . We have verified this,diff

suspension of the inner test cylinder (the bottom oneobtaining differential periods of up to about 90 s,
of the three sketched in Fig. 2; see also Fig. 4) with aalthough so far the accelerometer has been operated
solid brass cylinder of the same external dimensions.with differential periods around 10 s.
By simple readjustments of arms and masses weNatural differential oscillations in theX and Y
have set up the system for routine measurementsdirections as detected by the capacitance read-out are
with the natural period for differential oscillationsshown in Fig. 7 (zero spin rate, differential periods
close to 8 s and the pendular frequency slightlyof 11 s). When the rotor spins at 3 Hz the differential
below 1 Hz. These two values were predicteddisplacements between the test cylinders measured
theoretically and confirmed by measurements.Qby the (rotating) capacitance bridges show the same
measurements at variable residual pressure in thenatural periods, in addition to the expected rotation
vacuum chamber are reported in Section 5. It isfrequency (see Fig. 8). At zero spin the decreasing
worth noting that in this arrangement the relevantamplitude of oscillations allows the quality factorQ
whirl frequency of the test cylinders is split into two:of the system to be measured, yielding an average
a forward one, increasing with the spin rate, insteadvalue of 510. The dominant losses are due to the
of remaining constant (as shown in Figs. 7 and 8)laminar suspensions of the rotor as deformed at the
and a backward one. The reason is the following. Alow natural differential frequencies, and for large
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Fig. 7. Relative displacements, in theX andY directions of the sensitivity plane, between the centers of mass of the test cylinders at zero
spin rate. The natural periods of differential oscillations at 11 s are apparent. The amplitudes of these oscillations are slowly decreasing with
time, yielding a quality factor of about 510 (taken from Nobili et al., 2000).

differential force acting between the test cylinders in applied force but along the component of the exter-
their vertical beam balance arrangement causes a nal torque perpendicular to the spin axis. In a ground
relative displacement of their centers of mass by laboratory the gyroscopic effect for a body of mass

→
inclining the coupling arm of the balance pivoted at m, angular momentumL and center of mass sus-

→
its midpoint. In this case, if weakly suspended one at pended with an arml is due to the torque generated

→each end of the arm, the test cylinders keep spinning by the local gravity and to the angular velocityv%

around their axes. However, if the inner test cylinder of the Earth’s diurnal rotation around its axis:
is rigidly connected to the end of the arm, the

%&inclination of the arm forces it to spin along the arm %& %&%&dLitself, describing a whirl cone, while the angular S D S D] 5 V 2v 3Lg %dt labmomentum of the body would tend to conserve its
%&&% %&%&mglvertical direction. The result is a stiffer or softer

]S DV 5 2 , l 3mg 5V 3L (2)g gLsuspension of the inner test cylinder, depending on
the sense of rotation and—since the two are cou-
pled—also a period of their whirl motions shorter or Gravity makes the body precess around the local
longer than that of the natural oscillations, depending vertical (unless the center of mass lies exactly on the
on whether whirl motion is in the same sense as the vertical itself), while the non-inertial nature of the
rotation or in the opposite one (see Section 5). The laboratory reference frame (because of its diurnal
whirl period relevant to the sensitivity of the ac- rotation with the Earth) makes it precess around the
celerometer is the shorter one, corresponding to a Earth’s rotation vector; the suspensions produce a
stiffer coupling. restoring force towards the vertical. Equilibrium is

Spinning bodies are subject to gyroscopic effects, reached in the North–South direction, the only
whereby they move not in the direction of the direction along which the acting torques can balance
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Fig. 8. Relative displacements (for theY direction only, in the rotating reference frame) obtained with the same instrument as in Fig. 7 but
having brought it to a rotation rate of 3 Hz. The natural differential oscillation at about 11 s period (the same as at zero spin) is apparent, as
it is the faster rotation frequency of the system at 3 Hz.

each other. The test cylinders of Fig. 2 undergo space and for testing the equivalence principle in the
different gyroscopic effects, resulting in a net rela- field of the Sun, but cannot be used for testing the
tive displacement in the North–South direction. Its equivalence principle in the field of the Earth. It is
calculation shows a constant displacement at any worth stressing that the gyroscopic effect would not
given spin rate, and a linear increase with it, reaching affect the space instrument (‘‘GALILEO GALILEI’’
severalmm at a few Hz; if the laminar suspension of (GG), Phase A Report, 1998, Section 2.1.2). Unlike
the inner test cylinder is substituted by a rigid what happens in a ground laboratory, the angular
connection the differential gyroscopic effect in- momentum vector of the rotor is almost fixed in
creases by about a factor of 10 (see measurements of space, undergoing only a slow precession (around the
gyroscopic effect in Section 5). In both cases it is in orbit normal) due to the fact that the spin axis is not
the same direction as the effect of an EP violation in exactly normal to the orbit plane and the moment of
the gravitational field of the Earth, and much larger. inertia with respect to the spin axis is the dominant
Instead, a relative displacement due to an EP viola- one (‘‘GALILEO GALILEI’’ (GG), Phase A Report,
tion in the field of the Sun would show up as an 1998, Eq. (2.11)) (the effect is similar to the luni-
additional vector following the daily motion of the solar precession of the Earth’s axis around the
Sun (the gyroscopic constant displacement can be normal to the ecliptic). The system is symmetrical
subtracted away during data analysis or compensated and the test cylinders are suspended from their center
by properly changing the verticality of the suspen- of mass and symmetrically with respect to it (see Fig.
sion shaft in the North–South direction). 6). The resulting gyroscopic effects are found to be

For this reason the rotating differential ac- totally negligible (‘‘GALILEO GALILEI’’ (GG),
celerometer of Figs. 2 and 3 can be used as a Phase A Report, 1998, Section 2.1.2; Comandi,
prototype test instrument of the one proposed for 1999, Section 3.17).
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3 . Adjustments and settings of the apparatus movable in the vertical direction. A change in its
vertical position, by changing the mass distribution

Various adjustments can be performed for the of the beam balance, will change the natural period
rotating differential accelerometer to operate as it is of the differential oscillations (see discussion on Eq.
designed to. An inclination of the (rotating) coupling (1)). Being symmetrical around the arm, the position
arm, about its midpoint, by a non-zero (constant) of the ring does not affect its inclination. From an
angle from the vertical, gives rise to a constant operational viewpoint, this is the easiest way to
relative displacement of the test cylinders fixed in the change and adjust the differential period of the test
rotating frame. It is therefore detected by the (rotat- cylinders.
ing) read-out as a constant offset from zero (inX and In the conceptual design of the differential ac-
Y), which provides the driving signal for this adjust- celerometer it is very important that the suspension
ment. In order to reduce this offset the position of shaft (the tube enclosing the coupling arm, held by a
the top suspension (the one of the outer test cylinder; shaft turning inside ball bearings, to which rotation
see Fig. 2) can be adjusted so as to be as much as from the motor is transmitted by means of O-rings
possible in line with the other two suspensions at the on pulleys; see Fig. 2) be aligned with the local
center and the bottom. This is the coarsest adjust- vertical. In the case of a non-zero inclination of the
ment. Then, on the coupling arm, close to (just suspension tube from the local vertical—due to the
below) the central suspension, are mounted two shaft not being mounted perfectly vertical in the
small masses (5 g each) that can be displaced across laboratory reference frame—there will be a non-zero
the arm’s axis in theX and Y directions in order to lateral deformation of the central suspension which
reduce the corresponding offsets, and therefore the suspends the beam balance (see Fig. 2), and a
inclination of the arm. For yet a finer adjustment consequent relative displacement of the test cylin-
there are two additional smaller masses (0.5 g each), ders. The displacement is fixed in the laboratory
also movable inX and Y. (non-rotating) frame along the direction identified by

However, a constant offset in theX and Y mea- the misalignment of the shaft and is modulated by
surements of the relative displacements between the the rotating capacitance bridges at their spin fre-
centers of mass of the test cylinders as performed by quency. TheX and Y bridge measurements are
the rotating capacitance bridges may also be due to transformed into theX and Y relative displace-nr nr

the bridge capacitances being out of balance at zero ments in the non-rotating frame (see Section 4)
mechanical displacement; which would require the where the coordinates of the fixed displacement
variable capacitances in each bridge to be adjusted, indicate the direction of the deflection of the suspen-
and no change in the inclination of the coupling arm. sion shaft. They provide the driving signal for this
In order to separate the two effects, and operate the adjustment, which is performed by means of three
right adjustment, we perform these measurements by vertical micrometric screws (at 1208 from one
spinning the rotor at a frequency first below and then another) which control the inclination of the top
above the natural one for differential oscillations of plane of the frame around the shaft (see Fig. 3),
the test cylinders. If the offsets are due to the hence also its verticality. The micrometric screws are
inclination of the coupling arm, i.e. to the test differential and allow both coarse and fine adjust-
cylinders not being suspended along the same axis, it ments. A still finer adjustment of the verticality of
is known that that they should decrease when the suspension shaft is performed by means of three
spinning above the natural frequency (see e.g. Den (vertical) piezoelectric actuators (PTZs, also at 1208

Hartog, 1985; Crandall, 1995; Genta, 1993). Once a from one another) perpendicular to the horizontal
non-zero inclination of the coupling arm has been plane at the top of the rotor, on which it rests. They
ruled out, we can proceed to reduce the offsets of the allow finer adjustments of the verticality of the shaft
measurements by adjusting the variable capacitances. than micrometric screws can do, and moreover they
A few iterations of this procedure may be necessary. can be remotely controlled from outside the vacuum

Around the lower half of the coupling arm is chamber. In addition, if the central suspension which
mounted a small solid ring (see section in Fig. 2), carries the weight of the whole system is not



A.M. Nobili et al. / New Astronomy 8 (2003) 371–390 381

centered on the rotation axis, the centrifugal force only its base is visible in Fig. 3). It stabilizes the
will compress the same PZTs at the frequency of whirl motion at the natural differential frequency of
spin. Their three signals are acquired by means of a the test cylinders, as measurements show (see Sec-
National Instruments card and allow us to adjust the tion 5). The passive damper is also equipped with a
position of the central suspension on the rotation axis mechanism mounted in the vacuum chamber outside
by means of three micrometric screws mounted the accelerometer itself (it is clearly visible in Fig. 3
horizontally around it, so as to reduce the PZTs in front of the accelerometer) that can be activated
signals as much as possible. from outside the chamber in order to run the system

As the systems spins the suspensions are deformed with or without damping of whirl motion and to
at the spin frequency and the relevant loss factors measure (when off) the whirl growth rate, which
(inverse of quality factorQ) are those of the provides theQ of the system at the spin frequency
mechanical suspensions at the spin frequency. The (Section 5). We can also use this on/off mechanism
effects of such dissipation are unstable forward whirl during testing of the active damper. The active
motions whose frequencies are close to the natural damper (not shown in Figs. 2 and 3) is made by
frequencies of the system. The destabilizing forces eight small capacitance plates facing the outer test
which generate the whirl motions are equal to the cylinder (one layer of four sensors and one of four
passive spring forces divided by theQ. The mag- actuators, the two pairs of sensors forming the two
nitude of the forces is the same in the stationary and halves of two capacitance bridges in the two coordi-
in the rotating frame; only their frequencies change. nates of the horizontal plane). The electronics of
The forces required to achieve neutral equilibrium these bridges is essentially the same as that of the
are equal and opposite to the destabilizing forces. bridges of the main sensors (Section 4, Fig. 9)
They never exceed the passive spring forces as long except for the fact that here smaller capacitances and
as Q is larger than 1. For largeQs the destabilizing less good sensitivity are needed. The signals from
forces, as well as the active ones required for these two bridges drive the four (high) voltages for
stabilization, are much smaller than the passive the four actuators.
spring forces. This also means that the instabilities to
be damped grow very slowly. The negativeQ which
determines the growth of the whirl motions is equal
(with the opposite sign) to theQ of the suspensions 4 . Read-out and data acquisition
at the frequency of spin (Genta, 1993; Crandall and
Nobili, 1997; Nobili et al., 1999). The relative mechanical displacements of the test

In the rotating accelerometer of Fig. 2 whirl cylinders in theX and Y directions of the plane
motions can be stabilized either passively (by pro- perpendicular to the spin axis are read by two
viding sufficient non-rotating damping) or actively, capacitance bridges, rotating with the system, whose
by means of small capacitance sensors/actuators four sensing plates (Fig. 5) are located in between
which must be controlled to counteract the de- the test cylinders with a clear gap of 5 mm on either
stabilizing forces which generate the whirl motions. side. The electronic circuit of each bridge is sketched
In the GG space experiment, where there are no in Fig. 9. The smallest fractional capacitance unbal-
non-rotating parts (no motor is needed once the ance that the circuit was sensitive to in bench tests
spacecraft is set in rotation at the nominal spin rate) corresponds to mechanical displacements of 5
whirl motions can only be actively controlled (Nobili picometer in 1 s of integration time (‘‘GALILEO
et al., 1999; ‘‘GALILEO GALILEI’’ (GG), Phase A GALILEI’’ (GG), Phase A Report, 1998, Section
Report, 1998, Chapter 6). In the differential ac- 2.1.3). A voltage signal of high frequency is applied
celerometer of Fig. 2 a passive, non-rotating damper, to the bridge in order to shift the signal of interest to
made of a very light disk with little radial blades a high frequency band with reduced 1/f noise. Since
immersed in oil for vacuum, is mounted on the inner the capacitance bridges rotate with the accelerome-
test cylinder, below its suspension from the coupling ter, power and data transfer must be ensured between
arm (it is shown in yellow and gray in Fig. 2, but the rotating and the non-rotating frame. For power
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Fig. 9. The capacitance bridge sensor circuits used in the accelerometer of Figs. 2 and 3 for the read-out of the relative displacements of the
test cylinders.

transfer we use rotating contacts. The high frequency Instruments card) for independent checks of the spin
bridge measurements are first demodulated and then rate of the system and for various other tests to
converted from analog to digital to be optically ensure that the data combination procedure has been
transferred outside the vacuum chamber. The (rotat- performed correctly.
ing) electronics which is needed to perform these The capacitance bridges are calibrated by displac-
tasks, as well as the electronics of the bridges, is ing the outer test cylinder with respect to the inner
located on an annular dish mounted around the one by a known amount (by means of a micrometric
suspension tube (Figs. 2 and 3). screw mounted on the frame for this purpose only;

In order to be able to transform the relative not shown in Fig. 3) and recording the voltage signal
displacements as measured by the bridges in the read by the capacitance sensors. Displacements are
rotating frame of the rotor to the non-spinning applied in bothX and Y directions and linearity
reference frame of the laboratory, we need to know, checks of the calibration curve are performed in both
in correspondence of each data point, also the phase cases.
angle of the rotor. For this purpose a simple optical The electric zero of the capacitance bridges is first
device has been mounted at the top of the rotor set at its nominal value, by setting the value of the
which provides a reference signal with the rotor variable capacitance of the circuit (Fig. 9). More
phase information. A microprocessor outside the accurate checks are performed with the system in
chamber takes care of combining the reference signal rotation, first below and then above the natural
with the X andY measurements and of providing the frequency of differential oscillations of the test
resulting combined data in RS232 data format for cylinders, as discussed in Section 4.
computer acquisition (through a serial port) as a Mechanical balancing should be achieved to en-
binary file which is then transformed into a text file sure that the capacitance plates of the bridges be
for data analysis. The reference signal is also ac- located halfway in between the outer surface of the
quired, independently of the capacitance bridges inner test cylinder and the inner surface of the outer
data, by another computer (through a National one, a configuration which provides the best sen-
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25sitivity to differential displacements. The capacitance 10 mbar). Fig. 11 shows well this phenomenon
plates shown in Fig. 5 (two for each one of the two and indicates that, as long as the system is operated
bridges in the X and Y directions), are rigidly at sufficiently low pressure, losses depend on the
connected (via an insulating frame) to the suspension laminar suspensions only. Note thatQ 5 1590, as
tube (see Fig. 2). The linear dimensions of the frame from Fig. 10 for oscillations at.8 s, is about three
are dictated by the linear dimensions of the test times better than theQ value previously obtained (at
cylinders (outer radius of inner cylinder and inner 11 s; see Fig. 7).
radius of the outer one), which are chosen on the It is very important to check that gyroscopic
basis of the desired gap between the two. Since all effects are as theoretically expected. For this reason
parts are precisely manufactured according to the numerous measurements have been performed, at
design (their dimensions are checked a posteriori to various spin frequencies both in clockwise and
less than 1mm with a 3D measuring machine counterclockwise rotation. Relative gyroscopic dis-
equipped with a contact point sensor) it is possible to placements of the test cylinders are expected in the
design and manufacture the insulating frames of the North–South direction of the horizontal plane of the
plates (see Fig. 5) so that they provide a configura- laboratory (towards South for counterclockwise rota-
tion as close as possible to the nominal one corre- tion, towards North for clockwise rotation), and the
sponding to perfect mechanical balancing. This amount of the displacement should increase linearly
procedure has provided considerable improvement with the spin rate. Measurements reported in Fig. 12
with respect to a previous set up in which all parts of (with a fit to a straight line) show agreement with the
the frame were manufactured, mounted and adjusted theoretical predictions. Each data point in the plot
independently. has been obtained from the raw data of the capaci-

tance bridges (in the rotating reference frame) ac-
quired as discussed in Section 4, by coordinate
transformation to the non-spinning laboratory frame

5 . Results from measurement data (see Section 4) and after averaging out of short
periodic variations.

In this Section we report the results obtained The fit is good, but the amount of the displace-
during several months of operation of the rotating ment is higher than originally expected. The dis-
differential accelerometer as outlined above, with agreement is explained once the effect is calculated
only two relevant natural frequencies. The results taking into account that the laminar suspension of the
concern the quality factor of the system (at the inner test cylinder (at the bottom end of the coupling
natural differential frequency and at the spin fre- arm) had been replaced by a solid brass cylinder
quency), the differential gyroscopic effect, the connecting it to the lower half of the coupling arm,
growth rate of whirl motion and the stability in time suspended from the central laminar suspension. At
of the differential displacement vector between the any given spin rate the relative gyroscopic displace-
test cylinders. ment of the test cylinders, plus any original deviation

Fig. 10 shows the differential oscillations of the of the suspension shaft from the local vertical,
test cylinders in theX andY directions (at about 8 s; produce a relative displacement vector fixed in the
zero spin rate). The slow decay in the oscillation non-spinning reference frame of the laboratory. Any
amplitudes yields aQ value of 1590. This value has smaller, slowly changing differential effect must be
been obtained in vacuum with a residual air pressure detected as an additional relative vector moving

25of 2 ? 10 mbar. around this fixed displacement. The smaller the
By performing Q measurements at different deviation from a fixed displacement, the more sensi-

pressures it was possible to establish that residual air tive is the accelerometer to low frequency differen-
in between the test cylinders gives rise to dissipation. tial effects (such as the one due to an EP violation in
Losses due to air friction linearly decrease with the field of the Sun, with a 24-h period). The fixed
pressure until they remain constant and no longer displacement can be subtracted away during data
depend on the decreasing pressure (below a few analysis; however, once the nominal spin rate has
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Fig. 10. Relative displacements, in theX andY directions of the sensitivity plane, between the centers of mass of the test cylinders at zero
spin rate. The natural periods of differential oscillations are of about 8 s. The amplitudes of these oscillations are slowly decreasing with
time; data sets taken at subsequent times—under no changes in the system—yield a quality factor of about 1590. Residual air pressure

25during this measurement is of 2? 10 mbar.

been chosen, the verticality of the suspension shaft rule out any dissipation due to residual air (see Fig.
(in the laboratory frame) can be adjusted (as dis- 11) and data from the capacitance bridge sensors
cussed in Section 3) so as to compensate for the were taken continuously in order to monitor the
gyroscopic effect at the working spin rate. growth of oscillation amplitudes (whirl motions at

Although whirl motions at the natural frequencies the natural frequencies in the laboratory frame show
can be damped, it is very important to know how up as oscillations close to the spin frequency in the
rapidly they grow, i.e. how strong are the destabiliz- reading of theX andY relative displacements of the
ing forces (due to losses in the suspensions at the test cylinders by the rotating capacitance bridges).
spin frequency) which need to be counteracted. It is We have runs of 3.5 h in which no appreciable
apparent that, the slower is the growth rate of whirl growth in the oscillation amplitude could be de-
motions, the easier it is to stabilize the system, the tected. A shorter run is shown in Fig. 13 (at a spin
smaller are the perturbations caused by the required rate of 2.5 Hz), in which the oscillation amplitude of
damping on the signal of interest (Nobili et al., an undamped whirl motion at 0.74 Hz shows a
1999). growth corresponding to a (negative)Q of 4900,

We have therefore performed long runs (up to which is therefore (with the positive sign) the quality
several hours) with the accelerometer spinning at a factor of the system at the frequency of spin. We can
few Hz and no damping applied (neither passive nor compare it to aQ of about 2000 measured for the
active). Pressure in the chamber was low enough to laminar suspension only (Fig. 4), by setting it in
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Fig. 11. Log–Log plot of the 1/Q value of the natural differential oscillations (. 8 s period), at zero spin rate, as function of the residual air
23pressure in the chamber with linear best fits to the two sets of data, above and below 10 mbar. Each point refers to a separate run. For

23pressures greater than about 10 mbar the value ofQ decreases as pressure increases. For lower pressures the value ofQ reaches about
1590 and is then independent of pressure since it is the maximum value allowed by losses in the laminar suspensions.

oscillation at 5 Hz and monitoring the decay with head plotted as a black dot) dominated by the
time of the oscillation amplitude. The measurement gyroscopic effect (towards the South of the labora-
was performed for horizontal oscillation only, for the tory plane in this case because the accelerometer
measuredQ not to be affected by local gravity; the spins counterclockwise). This equilibrium vector is
amplitude of the oscillations was much larger computed as the average of the vectors (whose heads
(‘‘GALILEO GALILEI’’ (GG), Phase A Report, are plotted as red dots), which are obtained from the
1998, Section 3.4; Nobili et al., 2000). average over the whirl period (3.5 s at 2.5 Hz spin

The relevant physical quantity which remains to frequency; the decrease from the value of the
be measured is the stability in time of the relative differential period observed at zero spin, shown in
position of the test cylinders in the horizontal plane Fig. 10, is due to the inner test cylinder being rigidly
of the laboratory, non-rotating, frame after short connected to the bottom end of the coupling arm, as
periodic effects have been filtered out. Fig. 14 gives pointed out in Section 2). By performing a continu-
an example. It shows, for a run at 2.5 Hz, the relative ous run of measurements, with the accelerometer
displacements of the test cylinders in the horizontal spinning at a given spin rate, we can compute, for
plane of the laboratory after coordinate transforma- various data sets of the same run, the coordinates of
tion of the capacitance bridges measurements from the black dot, and check its stability in time. The
the rotating reference frame to the non-rotating one. more stable it is, the better is the instrument sen-
The curve gives the relative motion as time goes by, sitivity. The best result obtained so far is a stability
roughly represented with color: from blue at the of 1.5mm in 1 h (at aspin rate of 2.5 Hz).
beginning to green at the end of the run. The motion It is worth stressing that the large perturbations
occurs away from the origin (zero relative displace- that give rise to these displacements are not un-
ment), around an equilibrium position vector (vector expected: they are due to the motor, to the ball
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Fig. 12. Relative displacements (crosses) of the test cylinders, fixed in the horizontal plane of the laboratory, as function of the spin
frequency and the sense of rotation, with linear fit to a straight line (on the frequency axis, counterclockwise spin frequencies are indicated
as positive, clockwise ones as negative). The linear increase with the spin rate and the change of sign can be ascribed to the gyroscopic
effect. The offset at zero spin is due to the inclination of the suspension shaft from the vertical.

bearings, to the non-perfect verticality of the system, to be the limiting factor to the observed stability of
all causes that will be absent in the space experi- the relative position of the test cylinders. There is
ment. Firstly, because in the space experiment there therefore no physical reason to expect that the same
is no motor (once the spacecraft has been brought to perturbations, or other perturbations as large as these,
the desired rotation speed by small tangential jets, will act on the planned space experiment.
these jets can be completely turned off). Then,
because there are no bearings, since the whole
spacecraft rotates with all its parts at the same 6 . Concluding remarks
rotational speed. Then, because the direction of the
rotation axis is not critical, since there is no 1-g force We have built a rotating differential accelerometer,
of gravity to withstand. Other perturbations, such as at room temperature, with fast spinning test cylinders
terrain tilts and microseisms, are by far more rel- (10 kg each) suspended like in a vertical beam
evant for the ground prototype than it is residual balance so as to be weakly coupled in the horizontal
vibration noise inside the spacecraft. The only per- plane. In spite of the need to sustain its weight, the
turbations on the ground that have a corresponding coupled system is very sensitive to differential forces
perturbation in space, in addition to thermal noise, acting between the test cylinders in the horizontal
are the slow whirling instabilities which, according plane; in addition, the read-out is made of capaci-
to the measurements reported above, do not appear tance bridges which read the relative displacements
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Fig. 13. Amplitude of the relative displacements between the test cylinders once transformed in the non-rotating plane of the laboratory (at a
spin rate of 2.5 Hz). The growth in oscillation amplitude is due to an undamped whirl motion at 0.74 Hz. Its growth is represented by the
exponential curve, and is due to losses in the system (at the spin frequency) corresponding to aQ value of 4900.

of the test cylinders directly (instead of deriving ments for losses in the mechanical suspensions alone
them as the difference of their individual displace- (Nobili et al., 1999, 2000). Unstable whirl motions
ments). This makes the accelerometer well suited for which are predicted because of such losses have been
detecting tiny differential effects; by comparison, the found to grow very slowly, according to theQ
proposed mSCOPE accelerometer (also at room values, and therefore very small forces are needed to
temperature and based on capacitance sensors) is not stabilize them (see Nobili et al., 1999 for the
inherently differential because each test cylinder has relevance of this issue). Gyroscopic effects have
an independent suspension and sensing system (al- been measured and shown to be in agreement with
though both cylinders are controlled with respect to their theoretical prediction. Finally, it is found that
the same silica frame) (MICROSCOPE Website: the stability of the present prototype is such that, at
http: / /www.cnes.fr /activites /activites / 2.5 Hz spin rate and 3.5 s period of whirl, the 10 kg
connaissance/physique/microsatellite / mass test cylinders remain within 1.5mm from each
1sommaire microsatellite.htmand other for 1 h.

]
http: / /www.onera.fr /dmph-en/accelerometre; These results are relevant for the space variant of
Touboul et al., 2001, Fig. 1). The quality factor of this instrument, proposed for the GG space mission,
the system has been measured at the spin frequency, in several respects. Losses in the system and whirl
as well as at the low frequency of differential motions are in agreement with predictions, giving us
oscillations (when at zero spin rate). The results are confidence in the theoretical analysis and numerical
consistent with those obtained in previous measure- simulations of the GG dynamical system carried out
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Fig. 14. Relative displacements of the test cylinders in the horizontal (non-rotating) plane of the laboratory with the accelerometer spinning
at 2.5 Hz (counterclockwise). The position of relative equilibrium (the black dot at the middle of the figure) is displaced towards South (in
this plot North is at 458, i.e. in the1X, 1 Y direction) because of the gyroscopic effect and short periodic relative motions occur around it.
Average over the differential whirl period gives the red dots from whose average the black dot is obtained, thus defining the relative
equilibrium vector for this data set (lasting 660 s) of a run lasting about 1 h.

so far (‘‘GALILEO GALILEI’’ (GG), Phase A spin rate is almost the same (the nominal spin rate of
Report, 1998, Chapter 6). The relevant quality factor, GG is 2 Hz), but the test cylinders in space can be
as measured with the accelerometer in full operation, coupled much more weakly than on the ground,
is only a factor four smaller than the quality factor thanks to the absence of weight. We have 3.5 s whirl
required in the GG error budget for its target period in our recent measurement runs and expect to

217sensitivity in EP testing of 10 : 4900 instead of the be able to reach 540 s in space (as in the GG mission
20 000 value required (‘‘GALILEO GALILEI’’ baseline at Phase A study level (‘‘GALILEO
(GG), Phase A Report, 1998, Section 2.2.7). (Note GALILEI’’ (GG), Phase A Report, 1998), the rela-
that we have measuredQ 5 19 000 for a low stiff- tive displacement of the test cylinders in response to
ness CuBe suspension, suitable for use in space, differential forces being proportional to the square of
when set in horizontal oscillation at 5 Hz (Nobili et the differential period (and inversely proportional to
al., 1999, 2000). The read-out (mechanical parts and the stiffness of the suspensions). An EP violation
electronics), data acquisition and data analysis (in- signal would have a well defined signature (fre-
cluding the need for accurate coordinate transforma- quency and phase), in both the ground and the space
tion from the rotating to the non-rotating frame of experiment, so the relevant sensitivity of the instru-
reference) are of direct relevance to the space ment has to be assessed for this target signal. In
instrument and its operation. The stability observed space (Fig. 1) the signal is a relative displacement
in the relative position of the test cylinders can be vector of fixed length pointing to the Earth and
compared with the GG requirement as follows. The therefore changing direction with the orbital period
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215 22of the spacecraft. On the ground it is a fixed 8.4?10 cm s ) this corresponds to a full scale
2 211displacement in the North–South direction if the test at the levelh 5l h 5 5.8?10 , be-prototype GG

2source mass under consideration is the Earth; it is a causeDa 5v ?Dr , the differential natural fre-diff GG

displacement vector whose length and direction quencyv being proportional to the couplingdiff

change with the daily (and also annual) motion of the stiffness of the suspensions.
Sun if the Sun is the source mass. In all cases, the The local acceleration of gravity, because of the
rotation of the instrument provides higher frequency need for a stiff suspension in the vertical direction,
modulation of the displacement vector. For GG to forces a few asymmetries in the design of the ground
reach its target sensitivity, the relative displacement accelerometer which are not there in the instrument
of the test cylinders in the satellite-to-Earth direction, designed for space (as it is apparent by comparing
modulated at the high frequency of spin and then Fig. 2 and Fig. 6) and reduce the advantages of the
transformed into a constant signal in the non-rotating instrument for EP testing on the ground. Neverthe-
reference frame, should not exceedDr 5 6.2? less, rotation (especially if at high rate)—and theGG

21110 cm (‘‘GALILEO GALILEI’’ (GG), Phase A corresponding frequency modulation of the signal—
Report, 1998, Section 2.1.1). Bench tests have is extremely important, as the successful experiments

¨demonstrated that the sensitivity of our read-out by the ‘‘Eot-Wash’’ group have demonstrated, in EP
210electronics is of 5?10 cm in 1 s of integration testing (Adelberger et al., 1990; Su et al., 1994;

time (‘‘GALILEO GALILEI’’ (GG), Phase A Re- Baeßler et al., 1999) as well as in the measurement
port, 1998, Section 2.1.3), allowing us to detect the of the universal constant of gravity (Gundlach and
target displacementDr of the space experiment in Merkovitz, 2000) and in testing the inverse squareGG

about 100 s. So, the observed 1.5mm separation law at sub-mm distances (Hoyle et al., 2001). Our
between the centers of mass of the test cylinders is accelerometer shows that fast rotation can be
due to the ground perturbations mentioned at the end achieved, that it can be achieved with large test
of the previous section, while the read-out elec- masses (which is very important to reduce thermal
tronics could detect much smaller displacements. noise), that it is compatible with small force gravita-
The ground prototype, whose measurements of the tion measurements and—most importantly—that is
relative displacements of the test cylinders are suitable for use in space. The dynamics of the system
reported here, is stiffer than the one proposed for is understood, it can be theoretically anticipated and
flight by a factorl524 000, and consequently it is checked by the measurements. Losses measured with
24 000 times less sensitive to differential displace- the full system in operation (and with mechanical
ments. In order to demonstrate the feasibility of the suspensions of quite a complex shape; see Fig. 4),
space experiment to that level of sensitivity it should yield a quality factor only four times smaller than the
have detected relative displacements between the value that is required for the GG space experiment to
centers of mass of the test cylinders ofl ? Dr 5 reach its target. As for the fact that the prototype canGG

221.5?10 mm, while so far we have achieved only only check for violation in the field of the Sun and
1.5 mm. In order to gain this factor of 100, so as to not of the Earth (because of the gyroscopic effects
perform a better demonstration, we need to reduce discussed in Section 2), it is worth stressing that also

¨the effects of the ground perturbations by the same the best ‘‘Eot-Wash’’ results have been obtained in
amount. The significance of the ground demonstra- the field of the Sun (Baeßler et al., 1999), in spite of
tion improves by reducing the stiffness of the the slightly weaker signal and the need for long term
accelerometer (hence the scaling factorl), together measurements in this case. The reason is the difficul-
with a corresponding reduction of the effects of the ty—when searching for an effect in a fixed direc-
ground perturbations. An improved version of the tion—to model the spurious effects of local mass
prototype currently under construction is designed to anomalies (the small ones nearby and the very large
reach a scaling factorl5 2400 and a stability in the ones far away) which obviously do not rotate with
relative displacements of the test cylinders of 1.5? the instrument. A difficulty which is totally elimi-

2310 mm. By comparison with the target of the GG nated in space where the whole spacecraft co-rotates
space experiment in testing the equivalence princi- with the test masses.

217 22ple: h 5Da /a 5 10 (a 5 840 cm s , Da 5 In summary, we can convincingly argue thatGG
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theoretical understanding, numerical modeling and versity of Pisa. Special thanks are due to the Italian
experimental measurements performed so far put on space Industry LABEN (Divisione Proel Tecnologie,
solid grounds the novel idea of a high accuracy space Firenze) for making available to us their laboratories

17test of the equivalence principle (to one part in 10 ) and infrastructures.
with fast rotating weakly coupled test cylinders as
proposed for the GG small mission. It has been
shown (Nobili et al., 2001) that fast rotation and
large mass of the test bodies are pivotal in making it R eferences
possible to aim at such a high accuracy test in space
with an experiment at room temperature. Among the Adelberger, E.G. et al., 1990. PhRvD 42, 3267.
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Measurements performed with the fast rotating “Galileo Galilei on the Ground – GGG” 
differential accelerometer are reported. They show the validity of the main novel 
features of this instrument which was built as a full scale prototype for the proposed 
“Galileo Galilei-GG” space experiment aiming to test the equivalence principle to 10-17 
at room temperature. GGG can also aim to test the equivalence principle to 10-13 in the 
lab. The effects of terrain tilts and local horizontal disturbances are analyzed showing 
how they can be reduced below the required level.  

 
 
 

1 The GGG differential accelerometer: design and current sensitivity 
 
A fast rotating differential accelerometer made of weakly coupled concentric and self centering test 
cylinders, has been designed to be flown inside the small “Galileo Galilei”-GG 1  satellite with the purpose of 
testing the equivalence principle to 1 part in 1017 at room temperature. The accelerometer is sensitive in 2 
dimensions in the plane perpendicular to its spin/symmetry axis. Because of this feature, it has been possible 
to design a version of it (“GG on the Ground”-GGG 2) to be fully tested in the laboratory: if the 
spin/symmetry axis is used to suspend the accelerometer against local gravity, its plane of sensitivity lies in 
the horizontal plane where it could detect the signal of a possible violation of the equivalence principle (Fig. 
1). Appropriate cardanic suspensions can withstand gravity along the vertical and also weakly couple the test 
cylinders in the horizontal plane. The coupling vertical beam is enclosed inside the rotation shaft by means 
of 3 cardanic suspensions: the central one to suspend the whole system, the top and down ones for the outer 
and inner test cylinder respectively (see Fig. 1). The relative displacements between the centers of mass of 
the test cylinders are detected by a differential capacitance read-out. The system spins at frequencies of a few 
Hz, higher than its natural frequencies. This allows the construction offset errors to be reduced during 
rotation (self-centering in supercritical regime). It also makes the suspension deformations (and consequent 
losses) take place at the spin frequency; since this is large, losses are much smaller than they would 
otherwise be. In Fig. 2 we report the measured values of the quality factor inverse of losses) at the natural 
frequencies of the system. The largest measured value is Q=95000 at 1.4 Hz.  
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Figure 1:  Schematic design of the GGG apparatus (section through the spin/symmetry axis of the system.) The 
concentric, coaxial test cylinders (green and blue) weigh 10 kg each. The enclosing vacuum chamber has 1 m 
diameter. Three cardanic suspensions (in red) are shown at the center, top and bottom of the arm which couples 
the test cylinders thus forming a balance with a vertical beam. So far the spin rate has been of a few Hz with a 
natural period of oscillation of  the test cylinders relative to one another of 10 to 15 sec. 

 
 

 
Figure 2: Resulting quality factors of the GGG system at the natural frequencies (at zero spin) obtained by  
measuring the oscillation decay of the system. The blue curve is the FFT of the fitted output data.  

 
Once in supercritical rotation, the test cylinders show whirl motions at frequencies close to their natural 
frequencies (in the non rotating horizontal plane of the laboratory) and, primarily, a whirl motion relative to 
one another at the natural frequency of differential oscillations. The experimental results reported in Fig. 3 
(after coordinate transformation to the non rotating reference system) show that whirl motion can be 
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identified and separated out, so that a low frequency, smaller differential signal can be detected (a violation 
signal in the field of the Sun would follow its daily motion).  In Fig. 4 we show that low frequency residual 
noise is of  about 1.5 µm. 
 

 
Figure 3: A signal applied in the y direction at 0.01 Hz is recovered from the output data though about 400 times 
smaller than the whirl (more than 100 µm) at about 0.1 Hz (system spinning at 2 Hz). 

 
 

 
Figure 4:  Measured and fitted whirl signal. Residual noise at lower frequencies is a few 10-1 µm (2 Hz spin). 
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In more recent measurements performed with an improved and more accurate control system, the amplitude 
of whirl motion has been reduced to 0.2 µm, down from 100 µm reported in Figs. 3 and 4. According to the 
current plan of the GGG experiment as recently funded by INFN, we expect to reach a low frequency 
stability of 10-10 m by the year 2005, corresponding to a sensitivity in testing the equivalence principle in the 
field of the Sun of 1 part in 109.  
 
 
 

2 Relevance for a space test to 10-17 
 
A space version of such an instrument, to be used within the GG mission1 in low Earth orbit, would take 
advantage of the stronger driving signal (8.4 ms-2 from the Earth at 520 km altitude in GG, instead of 0.006 
ms-2 from the Sun in GGG). It would also allow much weaker suspensions due to absence of weight, and 
consequent higher sensitivity (which depends on the differential period squared) by a factor about 450. It can 
be argued that another factor of about 200 can be gained due to the absence of motor and motor/bearings 
noise, and thanks to the much higher symmetry of the space accelerometer (no 1-g preferential direction, 
hence much better rejection of common mode forces and consequent higher sensitivity to differential forces). 
Overall this amounts to about 8 orders of magnitude gain, thus making a 10-17 test in space a goal worth 
pursuing. In point of fact, the error budget of the GG space experiment, as developed within mission studies 
so far, has turned out to be compatible with this goal 1. The improvement over current best ground results 3,4  
would be of 5 orders of magnitude.  
 
 

3 Seismic noise attenuation for a ground test to 10-13 
 
Very recently, predictions of violation have been reported 5 at levels close to the current best results, so that  
even a slight improvement on those experiments on the ground (i..e. to reach the 10-13 level) would be 
significant. The GGG rotating differential accelerometer can be used to test the Equivalence Principle in the 
gravitational field of the Sun to 1 part in 1013. In GGG this goal requires to detect low frequency (24-hr) 
relative displacements of the test cylinders of 10-13 m, which in turn requires to reduce daily seismic 
disturbances below this level.  
 
If the terrain where the apparatus is located undergoes low frequency tilts of amplitude α  we need to 
evaluate the effects of such tilts on the experiment and reduce them if necessary. In the presence of a laminar 
cardanic suspension providing a stiffness k in the horizontal plane the tilt angle β at equilibrium is 
determined by the condition that the restoring force of the suspension equals the horizontal component of the 
local acceleration of gravity arising because of the tilt. The equilibrium equation is: 
 

( ) (sin , sin )mg kβ α β α α β β−! " ! ! (1)
 
from which the ratio β/α  is derived by which the original tilt angle α  is reduced because of the suspension:  
 

1

1k k
mg mg

β
α

−
 

+ 
 

" "! (2)

 
If  / 1k mg" #  so  that terms of order 2( / )k mg"  or higher can be neglected, we get that tilts are reduced by 
the factor: 
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In terms of the acceleration acting on the mass m, in absence of the cardanic suspension, the tilt angle is α  
and the mass is subject to the gravitational acceleration gα  in the horizontal plane. With the suspension and 
the tilt angle β  the corresponding acceleration is gβ  (in point of fact, there is also a vertical component, but 
it is negligible for small tilts). Therefore, the acceleration on the test mass too is reduced, in the presence of 
the suspension, by the same ratio /β α  given by Eq. 3 as the tilt angle.  
 
Let us now consider the case in which, instead of being subject to a terrain tilt, the system is subject to a 
horizontal disturbing acceleration with the same (low) frequency as the tilt, and amplitude a gα= . As a 
result, the test mass is subject to an inertial acceleration equal and opposite to the disturbing one, which 
defines the direction of a new local vertical as the vectorial sum g a−$ $  forming an angle  /a gα =  with the 
original vertical (defined by the direction of local gravity in absence of the disturbing acceleration). In the 
presence of a suspension providing a stiffness k in the horizontal plane, equilibrium is reached at a different 
angle γ  with the original vertical, where the acceleration g aγ −  acting on the test mass 
( sin , cos 1γ γ γ! ! ) is balanced by the restoring force of the suspension according to the equation: 
 

mg ma kγ γ− −! " (4)
 
The equilibrium angle with the suspension is therefore: 

 
1

1 1a k a k
g mg g mg

γ
−

   
+ −   

   

" "! ! (5)

 
And the deviation from the new local vertical is 
 

a k k
g mg mg

β α⋅ = ⋅" "! (6)

 
The effect of a suspension with horizontal stiffness k is therefore to make the test mass tilt from the new local 
vertical only by the same small angle β  as in the case of a terrain tilt by the angle /a gα =  (in the same 
approximation in which terms of the order of 2( / )k mg"  or higher are neglected). In terms of the acceleration 
acting on the test mass (in the horizontal, sensitivity plane), this is g aγ −  which, in the presence of the 
suspension, amounts to ( / )a k mg" . This means a reduction, with respect to the local disturbing acceleration 
a  acting at the top of the system, by the ratio / 1k mg" # , just as in the case of the terrain tilts. Therefore,  
because of the equivalence between inertial and gravitational mass which at this level can be assumed to be 
valid, local terrain tilts cannot be distinguished from horizontal disturbing accelerations. Since in GGG the 
signal is a relative displacement of the test cylinders around the local vertical, as its direction changes 
because of horizontal seismic accelerations the beam of the balance will follow it, but these absolute 
displacements are not relevant for the GGG measurements while those relative to it are reduced by the 
suspension just like tilts. 
 
Low frequency tilts in the vicinity of the GGG apparatus have been monitored with the ISA 
tiltmeter/accelerometer. Daily effects turn out to have an amplitude of about 10-6 rad (corresponding to 
horizontal accelerations of about 10-6 g). The resulting effect on the GGG test cylinders is to give rise to 
relative displacements (in the horizontal plane of the laboratory) at the same frequency and with an 
amplitude of about 4⋅10-7 m (the suspension arm relevant for the relative displacements of the test cylinders 
being about 0.4 m long). The goal of testing the Equivalence Principle to 10-13 with GGG requires to detect 
low frequency (24-hr) relative displacements of the test cylinders of 10-13 m, which in turn requires daily 
seismic disturbances to be reduced below this level.  This can be done partly actively and partly passively. 
Active reduction is done using as sensor a tiltmeter placed inside the vacuum chamber at the top of the GGG 
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frame (not rotating), and as actuators a set of PZTs (also not rotating, at 120° in the horizontal plane around 
the symmetry axis, providing tilts of the apparatus through vertical displacements). The tiltmeter currently 
installed can detect tilts of  10-9 rad. At the location of the PZTs the arm length with respect to the symmetry 
axis is about 0.1 m, and therefore the vertical effect of such tilts would be of about 10-10 m, which they can 
correct by applying a voltage of the order of a mV. If successful, this control would leave a residual relative 
displacement of the test cylinders of  about 4⋅10-10 m.  
 
A further reduction by about 4 orders of magnitude, down to 4⋅10-14 m, which would bring the effects of tilts 
and horizontal disturbances well below the target signal, can be obtained using a passive cardanic suspension 
and the lever effect. If sk  is the intrinsic elastic constant in any direction of the horizontal plane, of a laminar 
suspension with strip length λ  placed at the top of a suspension arm of length " , because of the lever effect 
the resulting elastic constant in the horizontal plane is 2( / ) sk kλ! " . With the reduction factor in the tilt 
angle as given by Eq. 3, it follows that, with 3 25 10 m , 0.5m , 40 kg , 8 10 N/msm kλ −⋅ ⋅! " ! ! ! , the 
reduction is 4/ 10β α −! , as required. The laminar suspensions currently used in GGG have 

3 35 10 m , 10 N/mGGG sGGGkλ −⋅! ! , thus indicating that it is possible to achieve the required passive 
attenuation so that, overall, seismic disturbances would not impair a 10-13 test of the equivalence principle on 
the ground with the GGG differential accelerometer.  
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Recent theoretical work suggests that violation of the equivalence principle might be revealed in a
measurement of the fractional differential acceleration � between two test bodies—of different
compositions, falling in the gravitational field of a source mass—if the measurement is made to the
level of ��10−13 or better. This being within the reach of ground based experiments gives them a
new impetus. However, while slowly rotating torsion balances in ground laboratories are close to
reaching this level, only an experiment performed in a low orbit around the Earth is likely to provide
a much better accuracy. We report on the progress made with the “Galileo Galilei on the ground”
�GGG� experiment, which aims to compete with torsion balances using an instrument design also
capable of being converted into a much higher sensitivity space test. In the present and following
articles �Part I and Part II�, we demonstrate that the dynamical response of the GGG differential
accelerometer set into supercritical rotation—in particular, its normal modes �Part I� and rejection of
common mode effects �Part II�—can be predicted by means of a simple but effective model that
embodies all the relevant physics. Analytical solutions are obtained under special limits, which
provide the theoretical understanding. A simulation environment is set up, obtaining a quantitative
agreement with the available experimental data on the frequencies of the normal modes and on the
whirling behavior. This is a needed and reliable tool for controlling and separating perturbative
effects from the expected signal, as well as for planning the optimization of the apparatus. © 2006
American Institute of Physics. �DOI: 10.1063/1.2173075�
I. INTRODUCTION

Experimental tests of the equivalence principle �EP� are
of seminal relevance as probes of general relativity. The
equivalence principle is tested by observing its consequence,
namely, the universality of free fall, whereby in a gravita-
tional field all bodies fall with the same acceleration regard-
less of their mass and composition. They therefore require
two masses of different compositions, falling in the field of
another “source” mass and a readout system to detect their
motions relative to one another. An EP violation would result
in a differential displacement of the masses in the direction
of the source mass, which cannot be explained on the basis
of known, classical phenomena �e.g., tidal effects�.

The landmark experiment by Eötvös et al.1 has estab-
lished that a torsion balance is most well suited for the
ground tests of the EP, thanks to its inherently differential
nature. With the test masses suspended on a torsion balance

they improved previous pendulum experiments by almost
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four-orders of magnitude, showing no violation for � larger
than a few 10−9.1 Several decades later, by exploiting the
24 h modulation of the signal in the gravitational field of the
Sun, torsion balance tests have improved to 10−11 �Ref. 2�
and then to 10−12.3 More recently, systematic and very care-
ful tests carried out by Su et al.4 and Adelberger et al.5 using
rotating torsion balances have provided even more firm evi-
dence that no violation occurs to the level of 10−12.

The relevant theoretical question for equivalence prin-
ciple tests is at which accuracy level a violation, if any, is to
be expected? In an earlier work by Damour and Polyakov,
based on string theory and the existence of the dilaton,6 �
values at which a violation might be observed have been
determined to be in the range 10−18���10−13. Fischbach
et al.7 have derived a nonperturbative rigorous result, accord-
ing to which a violation must occur at the level of �
�10−17, due to the coupling between gravity and processes

¯
of �-� exchange which should differently affect masses with

© 2006 American Institute of Physics1-1
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different nuclei. More recent work8 suggests, in a new theo-
retical framework for the dilaton, that a violation might oc-
cur already at the level of ��10−12−10−13, depending on the
composition of the masses.

While an ��10−13, and perhaps smaller, should be ac-
cessible with rotating torsion balance experiments on the
ground, a sensitivity as high as ��10−17 could be achieved
only by an experiment flying in a low Earth orbit, where the
driving acceleration is up to three orders of magnitude larger.
Specific instruments have been designed to carry out such an
experiment in space: satellite test of the equivalence prin-
ciple �STEP� microscope, and “Galileo Galilei” �GG�.9–12

They share two features: that the test masses are concentric
cylinders and that rotation of the spacecraft provides signal
modulation at frequencies higher than the orbital one.

GG is peculiar in that it spins around the symmetry axis
and is sensitive to the relative displacements in the plane
perpendicular to it: the cylindrical symmetry of the whole
system and rotation around the symmetry axis allow a pas-
sive attitude stabilization of the spacecraft with no need of a
motor after an initial spin up to the nominal frequency �typi-
cally 2 Hz�. The planar �instead of linear� sensitivity of the
instrument is also a crucial feature for allowing us to rotate at
supercritical speeds, i.e., faster than the natural frequencies
of the system. Faster rotation means modulation of the signal
at higher frequency and therefore a reduced 1/ f noise �for
1 / f noise see, e.g., the website maintained by Li13�. GG dif-
fers from the other proposed space experiments also in that
the test masses are suspended mechanically. We find that in
the absence of weight, as it is the case in space, mechanical
suspensions too can provide extremely weak coupling, with
the additional advantage to electrically ground the test
masses.

The GG design naturally allows us to build and test a
full scale 1 g version of the apparatus: by suspending the
instrument on a rotating platform through its spin/symmetry
axis, the sensitive plane lies in the horizontal plane of the
laboratory where a component of an EP violation signal
might be detected, similarly to a torsion balance experiment.
“Galileo Galilei on the ground”14,15 �GGG� is primarily a
prototype for testing the main novel features of the experi-
ment proposed for flight. It is also an EP experiment in its
own right aiming to compete with torsion balance tests.4,5 In
this effort, motor noise, low-frequency terrain tilts,16 and
tidal perturbations17 are the main issues to be addressed.

A full knowledge of the dynamical response of the GGG
rotor is needed, especially in view of its condition of super-
critical rotation and of its common mode rejection behavior.
The theoretical understanding of the dynamical properties of
the rotor, together with the construction of a full simulation
facility, would allow us to predict and interpret the collected
experimental data; they also provide a virtual environment
for planning the experiment and optimizing its performance.

With these motivations in mind, we demonstrate that a
simple but very effective mathematical model can be set up
to quantitatively describe the dynamical properties of the
GGG rotor. In this article �Part I�, we determine the normal
modes in all regimes, from subcritical to supercritical rota-

tion, and address the issue of self-centering in the super-
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critical rotation. In the following article �Part II�, we provide
the dependence of the common mode rejection ratio on
various system parameters which govern the design of the
instrument.

The differential equations in the model are solved by
means of a user-friendly simulation program and the numeri-
cal solutions are tested against the data available from the
experiment. The physical content of the model is also dis-
cussed by means of approximate analytical solutions, which
provide useful physical insight.

This article is organized as follows: Sec. II describes the
main features of the experimental apparatus, Sec. III presents
the dynamical model of the system, referring to specific ap-
pendixes for details, Sec. IV reports on the numerical method
that we have implemented, and Sec. V gives the results ob-
tained on the determination of the normal modes of the sys-
tem, showing an excellent agreement between the theoretical
predictions and experimental data. The details of the calcu-
lations are contained in two appendixes, while the third one
is specifically devoted to the important concept of self-
centering. Concluding remarks are discussed in Sec. VI.

II. THE GGG ROTOR: OVERVIEW
OF THE EXPERIMENT

GGG is a rotating differential accelerometer operated in
a vacuum chamber �see Fig. 1�. It is made of two concentric
hollow test cylinders, 10 kg each, weakly coupled by means
of a vertical arm—a tube located along the axis of the
cylinders—to form a vertical beam balance �from now on we
shall always omit the term “hollow” when referring to the
test cylinders�. The coupling arm is suspended at its midpoint
from a rotating vertical shaft in the shape of a tube enclosing
it �see Figs. 1 and 2, right hand side�. A total of three sus-
pensions are needed �drawn in red in Fig. 1�: a central one
�see Fig. 2, left hand side� to suspend the coupling arm from
the rotating shaft and one for each test cylinder to suspend
each of them from the top and bottom ends of the vertical
coupling arm.

The suspensions are cardanic laminar suspensions manu-

factured in CuBe which are stiff in the axial direction Ẑ,

against local gravity, and soft in the plane X̂-Ŷ orthogonal to
the axis so that the geometry is naturally two dimensional,
the horizontal plane being sensitive to differential accelera-
tions acting between the test cylinders. In the normal opera-
tion mode, the modulation of such a signal is provided by
setting the whole system in rotation around the vertical axis
in the supercritical regime, namely, at frequencies �s larger
than the natural differential frequencies of the rotor, typically
�s�1.5 Hz. The differential character of the instrument is
strengthened by two differential readout systems made of
four capacitance plates �indicated as IP, internal plates, in
Fig. 1� located in between the test cylinders and which are
part of two capacitance bridges in two orthogonal directions

of the sensitive plane.
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A. Description of the mechanical structure
of the apparatus

The GGG apparatus is schematically presented in Fig. 1,

where a section through the spin-symmetry axis Ẑ is shown
inside the vacuum chamber C. At the top center of the frame
is the motor M whose shaft is connected to the suspension
tube of the rotor ST �drawn in yellow� by means of an ap-
propriate motor-rotor joint and turns in the vertical direction
inside ball bearings, indicated by x symbols in the figure.
From the suspension tube ST rotation is then transmitted to a
tube located inside it which constitutes the vertical beam of
the balance �also referred to as the coupling arm, Fig. 2, right
hand side�, the connection between the two being provided at
the midpoint of the arm by the central laminar cardanic sus-
pension �see Fig. 2, left hand side�.

The coupling arm in its turn transmits rotation to both

the test cylinders, since they are suspended �by means of two
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laminar cardanic suspensions similar to the central one� from
its two ends. More precisely, the inner test cylinder �shown
in green� is suspended from the bottom of the coupling arm
at a distance Li from the cylinder’s center of mass, while the
outer one �shown in blue� is suspended from the top of the
coupling arm, at a distance Lo from the cylinder’s center of
mass. In Fig. 1 the three suspensions are drawn in red. It is
apparent that the central suspension carries the whole weight
of the rotor, mostly the weight of the two test cylinders
�10 kg each� plus the small weight of the coupling arm. It is
worth noting that the metallic suspensions provide a passive
electrostatic discharging of the test masses.

In this way, the symmetry of the whole apparatus is cy-
lindrical, its axis being both the vertical beam of the balance
and the axis of rotation, the balance is sensitive in the hori-

FIG. 1. �Color� Section through the spin axis Ẑ of the
differential accelerometer inside the vacuum chamber.
C, vacuum chamber; M, motor; OD, optical device �see
Sec. II B�; x, ball bearings; ST, suspension tube; A, cou-
pling �balance� arm, located inside the suspension tube,
with its three laminar cardanic suspensions �in red�; and
G, center of mass of the two cylinder’s system �in blue
the outer cylinder, in green the inner one, 10 kg each�.
IP are the internal capacitance plates of the differential
motion detector �Sec. II B�, OP are the outer ones for
whirl control �Sec. II C 2�, and PC is the contactless
inductive power coupler providing power to the elec-
tronics inside the rotor. The relevant distances, Li and
Lo, of the centers of mass of the inner and outer bodies
from their suspension points are also sketched, along
with the arm length 2La+�L. T and P, at the top of the
rotor, are the tiltmeter and three-PZTs �at 120° from one
another—only one shown� for automated control of low
frequency terrain tilts. The drawing is to scale and the
inner diameter of the vacuum chamber is 1 m.
zontal plane, and the test masses are concentric.
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B. The differential motion detector system

The differential motion detector �DMD� reflects the cy-
lindrical symmetry of the system and is composed of the
following three parts.

�1� Two capacitance plates IP working as DMD�x� sensors
�drawn as vertical lines in between the cylinders in Fig.
1� are located halfway in between the test cylinders in
correspondence to the X direction with a clear gap of
5 mm on either side and are connected to the suspension
tube by means of an insulating frame. A similar pair of
capacitances forming a DMD�y� is placed in the Y di-
rection. A voltage signal is applied to each capacitance
bridge in order to shift the signal of interest to a high-
frequency band with reduced 1/ f noise �with phase
locked detection�. The filtered signal is digitized by an
analog-to-digital converter �ADC� before transmission
to the nonrotating �laboratory� frame. Calibration and
balancing of the capacitance bridge are performed by
means of the procedures outlined in Ref. 14. The best
sensitivity achieved in bench tests corresponds to me-
chanical displacements of 5 pm in 1 s of integration
time.11,14 Presently, the sensitivity of the readout system
during normal operation is �10−9 m.

�2� An optical device OD located below the motor and
above the ball bearings, utilizing a disk with 32 holes
and an infrared emitter-detector pair, provides a refer-
ence signal for the angular position of the rotor. The
reference signal is combined with the X and Y channel
data from the DMD and encoded into RS232 format for
transmission to a computer. Then a second emitter-
detector pair located at the very bottom of the rotor �us-
ing a hole along the axis of the power coupler PC, see
Fig. 1� transmits the digital signal from the rotor to the
nonrotating frame from where it is taken out of the

FIG. 2. Left hand side: the central laminar cardanic suspension of the GGG
rotor, located at the midpoint to the coupling arm in order to suspend it from
the suspension tube �shaft�. Right hand side: the coupling arm inside the
suspension tube �shaft� as seen from the top. Two cardanic laminar suspen-
sions are located at its top and bottom ends. They suspend the test cylinders
�not shown here� through two metal rings. The dimensions of the rings
depend on the dimensions of the concentric cylinders, which have equal
mass �10 kg� and therefore different sizes. The top and bottom rings refer to
outer and inner test cylinders, respectively.
vacuum chamber through electrical feedthroughs.
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�3� An annular disk, in two semicircular parts, is mounted
around the upper half of the suspension tube and con-
tains the two capacitance-bridge circuits and their
preamplifiers �see Fig. 1�. The necessary electronics to
demodulate the signal and convert it from an analog to
digital form as well as the drivers for the optical emitter
are also located here.

C. Principle of operation

For detecting an EP violation signal the instrument relies
on its sensitivity to the relative displacement of the two test
masses, which in the final design will be made of different
materials. An acceleration in the horizontal plane of the labo-
ratory acting differently between the test cylinders gives rise
to a relative displacement of the two in the direction of the
acceleration. This displacement unbalances the capacitance
bridges and gives rise to an electric voltage proportional to it.

A modulation of the displacement, as seen by the capaci-
tance plates, is achieved by setting the whole system in ro-
tation around the vertical axis of symmetry passing through
the shaft, as shown in Fig. 1. Note that the signal modulation
obtained in this way does not affect the centers of mass of
the test cylinders; hence, it does not affect their relative dis-
placement, which is the physical quantity measured in the
experiment. As a result, this type of modulation reduces the
noise but not the signal.

In fact, this signal modulation could be achieved by
keeping the test cylinders stationary and rotating only the
capacitance plates �located in between the two, indicated as
IP in Fig. 1� which form the differential motion detector
system described above. However, by rotating the test cylin-
ders together with the capacitors, any irregularity in their
mass distribution averages out; moreover, the supercritical
regime can be exploited to reduce the rotation noise for all
parts of the apparatus �see Sec. II C 2 and Appendix C�. As
for the experiment in space, the rotation of the whole space-
craft has two more very important advantages. In the first
place, it eliminates the need for motor and ball bearings al-
together, which are a considerable source of noise in the
ground experiment. Secondly, by rotating around the axis of
maximum moment of inertia, the spacecraft is passively sta-
bilized, thus reducing its weight, cost, and complexity, as
well as disturbances on the EP experiment.

An EP violation signal in the gravitational field of either
the Earth or the Sun would have a component in the hori-
zontal plane of the laboratory which could be detected by the
instrument. Since the test bodies are rotors suspended on the
Earth and the Earth rotates around its axis, this diurnal rota-
tion gives rise to large gyroscopic effects on the test bodies
resulting in a nonzero differential acceleration which would
mask an EP violation signal in the field of the Earth itself.
The measurements of such gyroscopic effects have been re-
ported in Ref. 14 �Sec. V, Fig. 12�. The instrument—in this
ground based version—is therefore used for two purposes:
�i� to establish its sensitivity as a prototype of the flight in-
strument, namely, for an expected signal at the orbital fre-
quency of the satellite ��1.75�10−4 Hz, i.e., about 1 1

2 h

period, at an Earth orbiting altitude of �520 km� and �ii� to
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look for an EP violation in the gravitational field of the Sun,
in which case the signature of the signal �see Ref. 12, Sec. II�
would have a dominant Fourier component of a 24 h period
due to the diurnal rotation of the Earth.

1. Differential character and common mode rejection
The differential character of the whole instrument,

namely, its capability to reject accelerations which are com-
mon to both test masses, is in principle ensured by the ge-
ometry and mounting of the test masses. It is further aug-
mented by the differential nature of the DMD system.

�i� The sensitivity of the instrument to differential accel-
erations of the test masses depends on the softness of
the laminar suspensions and on the uniform distribu-
tion of mass around the spin axis. Soft suspensions
and a good balancing of the rotor provide long natural
periods for differential oscillations of the test masses
relative to each other, giving rise to larger relative
displacements between the two and, in turn, to stron-
ger output voltage signals.

The tuning of the natural differential period TD of
the test cylinders is made possible by changing a mo-
ment arm in the beam balance. This is accomplished
by moving a small solid ring mounted at the lower
end of the balance �coupling� arm. Moving this ring

vertically along the arm, in the Ẑ direction, displaces
the center of mass of the balance arm from its suspen-
sion point by a quantity �L. If �L=0 the center of
mass of the balance arm is coincident with its suspen-
sion point. �L can be adjusted to be either slightly
positive or negative, resulting in a longer or shorter
TD. However, there is a maximum positive value that
�L can assume before the system becomes unstable
�see Eq. �39� below�.

Asymmetric distribution of mass of the rotor in the
horizontal plane, resulting in a nonzero inclination of
the coupling arm in the rotating reference frame, may
also be corrected by two small masses mounted inside
the coupling arm itself, one of which is movable in
the X direction and the other in the Y.

The tilt of the spin axis with respect to the nonro-
tating laboratory frame is controlled by 3 �m screws
which support the plate on which the rotor shaft is
mounted. In addition the tilt can be finely adjusted
using piezoelectric actuators �P� attached to the tips
of the micrometer screws �see Fig. 1�.

�ii� As to the DMD system, a nonzero off centering of the
capacitor plates IP located in between the test
cylinders—measured by the ratio �a−b� /a where a�b�
is the nominal gap between the inner �outer� mass and
any one of the capacitance plates—would make a
common mode displacement �xC of the test masses to
produce a differential output signal in addition to that
produced by a real differential displacement �xD. The
larger this off centering, the larger the fraction of the
common mode displacement which is turned into a
“fake” differential signal, i.e., which contributes to the

11
total unbalance �C of the capacitance bridge �GG
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Phase A Report, Sec. 2.1.3� from the original capaci-
tance value Co,

�C

2C0
�

a − b

a2 �xC −
1

a
�xD. �1�

2. Signal modulation and whirl motions
Signal modulation in testing the equivalence principle

has been first proposed in Ref. 2 in order to improve the
experiments of Eötvös et al.. By referring to the Sun rather
than the Earth as the source mass of the gravitational field,
the diurnal rotation of the Earth itself on which the test
masses are suspended provides a 24 h modulation with no
need to rotate the experimental apparatus, an operation
which gives rise to relevant disturbances in such small force
experiments. However, higher modulation frequencies are
desirable in order to reduce the 1/ f noise and, in fact, excel-
lent results have been obtained by Refs. 4 and 5 with torsion
balances placed on a turntable rotating faster than the Earth.
In GGG we try to spin the test masses much faster, at fre-
quencies �typically a few hertz� higher than the natural fre-
quencies �n of the system, a condition known as supercritical
rotation.

The GGG apparatus has three natural frequencies. The
differential frequency �D of the oscillations of the test bodies
relative to one another and two common mode frequencies,
�C1 and �C2, of both test masses together. In the GGG setting
reported here their values are �D=0.09 Hz, �C1

=0.91 Hz,
and �C2

=1.26 Hz.
It is well known18–20 that in supercritical rotation the

masses are able to self-center and greatly reduce the original
offsets of their centers of mass with respect to their own
rotation axes. Any initial offset, which inevitably results
from construction and mounting errors, is, in fact, reduced
by a factor ��D /�s�2. Such self-centering is a very essential
requirement when using fast rotating macroscopic test bodies
for the purpose of detecting the effects of extremely small
forces between them.

It is also well known that in supercritical rotation, dissi-
pation in the system gives rise to destabilizing whirl motions
at frequencies �w equal �or close� to the natural frequencies
of the system, whose amplitude increases with time at a rate
1 /�w=	�w /Q��s� scaling as the whirl frequency �w and the
inverse of the quality factor Q at the spin frequency �s.

20–22

Whirls can be stabilized by passive and active methods.
Passive stabilization is typically used in engineering applica-
tions of supercritical rotors, but it produces too large distur-
bances for our purposes. We have used a passive damper in
the past only to stabilize the rotor during resonance crossing
�see Ref. 14, Sec. III�. With the current improved apparatus,
damping at resonance crossing is no longer needed. A much
finer whirl stabilization can be performed actively by means
of eight small capacitance sensors/actuators �indicated as OP,
outer plates, in Fig. 1� placed close to the outside surface of
the outer test cylinder, four of them used as sensors and four
as actuators in two orthogonal directions of the horizontal
plane.15 In the GGG experiment performed at supercritical

speed the relevant Q value is determined by losses due to
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deformations of the laminar suspensions at the spin fre-
quency. Experimental measurements of Q are reported in
Ref. 14 and, more recently, in Ref. 23.

III. THE MODEL

Having described the real instrument, we are now in a
position to outline the minimal model used to describe its
dynamical behavior. Figure 3 displays a schematic represen-
tation of the model in the reference frame �X�Y�Z�� rotating
with the shaft at an angular velocity 
s=2	�s around the Z�

axis ��s=
sẐ��. The relevant parts of the instrument de-
picted in Fig. 1 are sketched in Fig. 3 with the same colors.
The coupling arm, with mass ma �drawn in cyan as in Fig. 1�
and length 2La+�L, is suspended at its midpoint MP from
the rotating shaft and suspension tube ST �yellow� by means
of the central laminar suspension LS �red� with elastic con-
stant K. The vector � is the offset of the arm center of mass
from the axis, which is unavoidable because of construction
and mounting errors. Variations of �L, as we have already
discussed, produce a change of the mass distribution, hence
of the natural differential period of the test masses, TD. Here,
and with no loss of generality, � is placed along the X� axis.

The outer test cylinder, of mass mo �blue�, is suspended
from the top of the coupling arm by means of the laminar
suspension with elastic constant Ko and its center of mass is
at a distance Lo from the suspension. In a similar manner, the
inner test mass mi �green� is suspended from the bottom of
the arm, Ki and Li being the corresponding parameters. From
now on, the label �= i ,o ,a will be used to refer to the pa-
rameters of the inner mass, outer mass, and coupling arm,
respectively. The three bodies have moments of inertia I��

= I��=m��3R�I
2 +3R�E

2 +R�H
2 � /12 and I�=m��R�I

2 +R�E
2 � /2

along their principal axes ��, �, and �, R�I and R�E being the
internal and external radii of the cylinder �, and R�H its
height.

The laminar suspensions have length l, the central one is
slightly stiffer than the other two and we assume Ki=Ko

�K. In a refined version of the model, and whenever speci-
fied, we also consider an anisotropic central suspension by
introducing the parameter � such that KY���KX�.

By defining the unit vector L̂a of the coupling arm as

pointing from its midpoint towards the bottom suspension,
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and the unit vectors L̂o and L̂i of the test cylinders each
pointing from the suspension to the center of mass of the
body �see Fig. 3�, the corresponding position vectors in the
rotating reference frame �X�Y�Z�� of Fig. 3 are

Ra = � − 0.5�LL̂a,

Ro = � − �La + �L�L̂a + LoL̂o, �2�

Ri = � + LaL̂a + LiL̂i.

A. The Lagrangian

The Lagrangian L in the rotating reference frame
�X�Y�Z�� can be written as

L = T − U , �3�

where the kinetic term can be very generally written as

T =
1

2 	
�=a,o,i



��

��
2dm�, �4�

after defining the velocity �� of the mass element dm� in
body � with volume ��. Then, U includes the potential ener-
gies associated with gravity and with the elastic forces,
namely,

U = Ug + Uel, �5�

where

Ug = 	
�=a,o,i

− m�g · R� with g � − gẐ�, �6�

Uel = 	
�=o,i

1

2
K�l2�R̂a � R̂��2

+
1

2
La

2�KX��R̂aX̂
˙
��2

+ KY��R̂aẎ��2� . �7�

For the expression of Uel we refer to the small figure at the
bottom right of Fig. 3, sketching the laminar suspension and
its orientation.

We proceed along the main steps to derive the opera-

FIG. 3. �Color� Minimal model for the real instrument
sketched in Fig. 1 �see text for details�. On the left hand
side the various parts are drawn with the same colors
and labels as in Fig. 1. Here the midpoint of the cou-
pling arm is indicated as MP. La, Lo, and Li refer to the
dimensions of the coupling arm and the outer mass and

inner mass suspension arms, respectively. L̂a, L̂o, and L̂i

are the unit vectors of the corresponding beams. The
offset vector �, due to construction and mounting im-
perfections, is also indicated. On the right hand side we
sketch one of the cylinders in the rotating reference
frame �X�Y�Z��, showing its principal axes of inertia
�� ,� ,�, the position vector R� ��=a ,o , i� of its center
of mass, and the angles �� ,��, which are not the usual
Euler angles, as discussed in the text. Below this figure,
the small one to the right shows a typical deformation
of one of the laminar suspensions of length l, for in-
stance, the central one. None of these figures is to scale.
tional expression for L. The bodies are rotating around their
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own axis with angular velocity 
s in a reference frame which
is rotating as well, as sketched in Fig. 3, right hand side.
Thus, we define as �� the angular-velocity vector of the

element dm� in the �X�Y�Z�� frame and �s=
sẐ�, so that

�� = V� + �� � r� = V� + �� � �R� + ��� , �8�

where V� is the velocity of the center of mass of body � and
r� is the vector pointing to the element dm�, composed by
R� and ��, as drawn in Fig. 3. By inserting Eq. �8� into Eq.
�4�, we can write T as

T = Tkin + Tcor + Ucor + Uc, �9�

where the only nonzero terms are �see Appendix A for de-
tails�

Tkin =
1

2	
�
�m�V�

2 + 	
�=�,�,

I�����
2 , �10�

Tcor + Ucor = 	
�

m�V� · ��s � R��

+ 	
�



��

��� � ��� · ��s � ���dm�, �11�

Uc =
1

2	
�



��

��s � �R� + ����2dm�. �12�

In Eq. �11� the terms coming from Coriolis forces have
been split into the UCor potential energy, which contains only
the position vectors, and TCor which contains also the veloci-
ties. The centrifugal part Uc has been indicated as a potential
energy. To proceed further, we now have to specify the
choice of the generalized coordinates.

B. Choice of the generalized coordinates

The GGG rotor model shown in Fig. 3 is composed of
nb=3 coupled bodies, for a total of 18 degrees of freedom.
However, the central suspension prevents them from per-
forming translational motions, thereby reducing the degrees
of freedom to 9. In addition, the motor forces the three bod-
ies to rotate at a constant angular velocity, so that the number
of degrees of freedom for the model is n=6.

We have chosen as generalized coordinates for each
body the two angles �� and �� �see Fig. 3, right hand side�.
These angles are defined slightly differently from the usual

Euler angles: �� is the angle between R� and the axis −Ẑ�

and runs in the interval �0,	�; �� is the angle from the X̂�
axis to the projection of R� on the X�Y� plane and runs in the
interval �0,2	�. We thus define the vector Q of the general-

ized coordinates and the corresponding velocities Q̇

Q = �q1,q2,q3,q4,q5,q6� = ��a,�a,�o,�o,�i,�i� . �13�

With these definitions in hand, we have that

L̂a = �sin �a cos �a, sin �a sin �a,− cos �a� , �14�

and similar expressions for L̂o and L̂i. Equation �14� turns
Eqs. �2� into expressions for the R��Q� and the correspond-

ing velocities V�= Ṙ��Q , Q̇�. We then conveniently write

all the vectors in the �X�Y�Z�� reference frame in terms of
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their components in the ���� frame by means of the

rotation matrix M �Eq. �A2��, namely, ��=MJ ��,�� and

��=MJ ��,��.

After noting that ��,��= �−�̇� , �̇� sin �� ,
s� and per-
forming all the integrals over the three bodies, we finally

obtain �Appendix A� the operative expression for L�Q , Q̇� in
the rotating reference frame,

L�Q,Q̇� = T�Q,Q̇� − U�Q� , �15�

where we have defined

T�Q,Q̇� � Tkin�Q,Q̇� + TCor�Q,Q̇� , �16�

U�Q� � Ug�Q� + Uel�Q� − UCor�Q� − Uc�Q� . �17�

The terms entering �15� and �17� are

Tkin =
1

2	
�

�m�V��Q,Q̇�2 + I����̇�
2 sin2 �� + �̇�

2�� ,

TCor = 	
�

m�V��Q,Q̇� · ��s � R��Q��

+ 	
�

I��
s�̇� sin2 ��, �18�

UCor = − 	
�

I�
s
2 cos ��,

and

Uc =
1

2	
�

m���s � R��Q��2 +
1

2	
�

�I�� sin2 ��

+ I� cos2 ���
s
2. �19�

To these equations we have to add the expressions �6� and
�7� written in terms of R��Q� through �2� and �14�.

Equation �15� together with Eqs. �17�–�19� yield the
Lagrange function of the model in Fig. 3.

C. Equilibrium positions and second-order expansion

During normal and successful operation of the GGG ro-
tor only very small amplitude motions take place. The
Lagrange function �15� can thus be expanded to second order

in �Q , Q̇� around the equilibrium solution �Q0 , Q̇=0�, Q0

= �q1
0 , . . . ,q6

0� to derive linearized equations of motion.
In order to do this, we first determine the equilibrium

positions from the equation

� �U

�qj
�

qj=qj
0

= 0, j = 1, . . . ,n . �20�

We then use the physical assumption that during the mo-
tion, the Q’s are slightly perturbed from their equilibrium
values Q0. This results in the substitutions

Q → Q0 + Q , �21�

Q̇ → Q̇ , �22�

into �15� to obtain a linearized version of the Lagrange func-
˙
tion. L�Q ,Q� can now be expanded to second order, namely,
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L�Q,Q̇� = a0 + 	
j�k

n

ajkqjqk + 	
j�k

n

bjkq̇jq̇k + 	
j,k=1

n

cjkqjq̇k

+ 	
j=1

n

djq̇j + O�qj, q̇k�4, �23�

where we remark that now the qj’s are small according to the
substitutions �21� and �22�, and that the linear terms have
canceled out because of �20�. The matrix coefficients ajk, bjk,
and cjk are known functions of the Q0 and of the governing
parameters of the system and, in general, are to be numeri-
cally evaluated.

D. Linearized equations of motion

The equations of motion in terms of the known ajk, bjk,
and cjk coefficients are

d

dt

�L
�q̇j

−
�L
�qj

= F j, j = 1, . . . ,n , �24�

where we have introduced the generalized forces

F j = 	
d=1

3

F�d
�R�d

�qj
, �25�

starting from the Cartesian components F�d of the forces
acting on each body. The F j are to be consistently expanded
to first order, namely,

F j = 	
k=1

6

� jkqk + 	
k=1

6

� jkq̇k. �26�

By combining Eqs. �23�–�26� together, the equations of
motion can be written in a compact matrix form as

MQ̈ = S�Q

Q̇
 , �27�

with the obvious notation Q̈= �q̈1 , . . . , q̈6�. In Eq. �27�, M is
the n�n�n=6� “mass-matrix” composed by the bjk coeffi-
cients

M jk = 2bjk� jk + bjk�1 − � jk� , �28�

where the factor of 2 on the diagonal elements is a conse-
quence of the restricted j�k sum in the expansion �25�. S is
a n�2n matrix containing the ajk, cjk, � jk, and � jk coeffi-
cients,

S = A2 + C2 + A1 + B1, �29�

with

A2jk = A2kj = 2ajk� jk + ajk�1 − � jk� , k � n

�30�
=0, n � k � 2n ,

C2jk = 0, k � n

�31�
=− C2kj = cjk − ckj , n � k � 2n ,

A1jk = A1kj = � jk, k � n

�32�
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=0, n � k � 2n ,

and

B1jk = 0, k � n

�33�
=B1kj = � jk, n � k � 2n .

Note that while M and the submatrix defined by the first n
=6 columns of A2 are symmetric, the submatrix defined by
the second n=6 columns of C2 is antisymmetric, as expected
after inspection of the expansion �23�.

For all practical purposes, it is convenient to turn �27�
into a more symmetric form involving only first-order time
derivatives. To this aim, we define the 2n=12-component
vector X as

X2j−1 = qj ,

X2j = q̇j ,
j = 1, . . . ,n = 6. �34�

By inserting the definition �34� into �27�, we finally ob-
tain

Ẋ = AX , �35�

where A is now the square 2n�2n dynamical matrix defined
from M−1 and S after inserting rows of zeros.

Ajk�
�M−1S� j1+k−1/2, j even and k odd

�M−1S� j7+k−2/2, j even and k even

1, j odd and k = j + 1

0, j odd and k � j + 1.
� �36�

The relations �35� and �36� are central equations, written
in a form amenable for numerical evaluation. The eigenval-
ues of the A matrix �36� correspond to the normal modes of
the rotor and the solution of the set of differential equations
�35� completely determines the small-amplitude dynamical
behavior of the rotor modeled in Fig. 3. Before turning to the
description of the numerical method, we introduce rotating
and nonrotating dampings.

1. Rotating and nonrotating dampings
By means of �25� and �26� we can in principle introduce

any known force determining the dynamical behavior of the
rotor. In the following we include dissipative forces RR and
RNR due to rotating and nonrotating damping mechanisms
respectively, �see Refs. 19 and 20�. The rotating part of the
dissipative force is to be ascribed to dissipation of the lami-
nar suspensions. In supercritical rotation, this kind of dissi-
pation is known to destabilize the system, generating whirl
motions. It can be expressed as

RR�Q,Q̇� = − �Ra�L̂˙ a − �L̂˙ a · Ẑ�� · Ẑ��

− 	
�=o,i

�R��L̂˙ � − �L̂˙ � · R̂a�Q����R̂a�Q�� , �37�

where the velocities L̂
˙

� are functions of �Q , Q̇�. Instead, non-
rotating damping has the effect of stabilizing a system in
supercritical rotation and can be written as

˙ ˙
RNR�Q,Q� = − �NR�Vi�Q,Q� + �s � Ri�Q�� . �38�
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Other forces acting on the rotor, such as external distur-
bances due—for instance—to tides and seismic noise, or
control forces applied in order to control the rotor dynamics,
can also be included, as described in Sec. IV.

IV. THE NUMERICAL METHOD

A. General considerations

The simulation method that we have implemented rigor-
ously follows the derivation outlined in Sec. III. We have
found very convenient to use the MATLAB environment, with
SYMBOLIC TOOLBOX and SIMULINK packages, as it allows us
to perform all the needed symbolic calculations and numeri-
cal evaluations, together with the analysis of experimental
data.

We start from the formal Lagrange function written in a
user-friendly way as in �3�–�7� and �10�–�12� by means of
symbolic vector operations. We specify the choice �13� for
the generalized coordinates with respect to the �X�Y�Z�� ref-
erence frame and define accordingly all the vectors entering
L. We then move on to the symbolic computation by linear-
izing and expanding the Lagrange function as in �23� and
define the matrices M, A2, C2, A1, B1, and A.

Once the system parameters are fixed �see below�, the
numerical computation is carried out using standard pack-
ages to find eigenvalues and eigenvectors of the A matrix,
which are the normal frequencies and modes of the spinning
rotor. The A matrix is then inserted as input to perform the
dynamical simulation within standard transfer-function
method used in the SIMULINK toolbox.

The advantage of this strategy is apparent, in that it eas-
ily allows us to make any changes in the model that corre-
spond to changes in the experiment we would like to test
before implementation. Since the number of bodies nb and of
the generalized coordinates n are symbolically defined and
specified only once, all what is to be done in order to intro-
duce any changes or new features amounts to modification or
addition of pieces of the Lagrangian after having symboli-
cally written them in terms of vector operations.

The description of the method used to introduce external
forces is postponed to Part II of this work, where it is used to
evaluate the common mode rejection function. We now turn
to listing the system parameters.

B. System parameters

The parameters which govern the physics of the GGG
rotor are the geometrical dimensions of the three bodies,
their weight, the mounting error �, the elastic constants,
length and anisotropy factor � of the three laminar suspen-
sions, and the quality factor Q. To these parameters—which
are fixed after construction—we must add the spin frequency
�s=
s /2	 that can be varied in the course of the experiment.
The balancing of the beams and the natural period TD of
oscillation of the test cylinders relative to one another can
also be adjusted, as discussed earlier by moving small
masses along the balance �coupling� arm.

We have inserted as inputs to the numerical calculation
all the above parameters as determined in the real GGG in-

strument. They are listed in Tables I and II. As for the spin
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frequency, in the experiment it varies in the range �0��s

�3.9� Hz, while in the model calculations it can be assumed
in a wider range �0��s�10� Hz.

The differential periods TD corresponding to the value
�L listed in Table I are measured to be 11.7 and 10.8 s in the
X and Y directions, respectively. These values are in reason-
able agreement with the following simple formula:

TD =
2	

��K + Ki + Ko�l2/�mi + mo�La
2 − �g/2La���L/La�

,

�39�

which can be derived from the general equations of motion
�24� describing the small oscillations of the �� angles, in the
very simplified case in which the bodies are neither rotating
nor subjected to any dissipative or other external forces, ex-
cept gravity, and under the reasonable assumption that �i

=�o=0 and that ��’s are constant, e.g., ��=0.
Of the whole set of parameters used, only the anisotropy

factor � of the suspensions and the construction and mount-
ing error � are not measured from the instrument. � is tuned,
together with the balancing �L, so as to reproduce the natu-
ral frequencies of the nonspinning instrument. A conserva-
tive value �=20 �m is assumed for the offset, and it is
checked a posteriori not to have any sizable effect on these
results.

V. RESULTS: THE NORMAL MODES

We have solved for the eigenvalues �n of the matrix A in
�35�, using the system parameters listed in Sec. IV B.

Figure 4 summarizes our results by plotting the normal
modes of the system ��n in the nonrotating frame� as func-
tions of the spin frequency �s=
s /2	 of the rotor. In this
figure, theoretical results for �n��s�’s are displayed by the
solid lines in the case of zero rotating damping �i.e., no dis-
sipation in the suspensions� and by the open circles in the
case of nonzero rotating damping �Q��s�=510�. At zero
damping there are 12 lines, 6 horizontal and 6 inclined; start-

TABLE I. Input parameters for the numerical calculations: geometrical
dimensions of the real bodies. �A mounting error of �=20 �m has also been
used.�

Body
m�

�kg�
R�I

�cm�
R�E

�cm�
L�

�cm�
R�H

�cm�

Arm �a� 0.3 3.3 3.5 19 2La+�L
��L=−0.1353�

Outer cyl. �o� 10 12.1 13.1 2La+Li+�L 29.8
Inner cyl. �i� 10 8.0 10.9 4.5 21.0

TABLE II. Input parameters for the numerical calculations: laminar suspen-
sions data. In addition, a conservative value Q��s�=510 has been used taken
from previous measurements of whirl growth �Ref. 14, Fig. 7�.

Suspension l
�cm�

K
�dyn/cm�

Anisotropy
��=KY� /KX��

Central 0.5 106�l /La�2 2.6
Outer cyl. �o� 0.5 106 1.0
Inner cyl. �i� 0.5 106 1.0
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ing from the three natural frequencies �Sec. II C 2� of the
system, we get 3�2�2=12 normal mode lines, a factor of
2 being due to anisotropy of the suspensions in the two or-
thogonal directions of the plane, and the other to the positive
and negative signs �i.e., counterclockwise or clockwise whirl
motion�. For the nonzero damping case �open circles� a con-
servative low value Q��s�=510 has been assumed �see Table
II�, referring to a comparatively large dissipation. This value
has been obtained from previous not so favorable measure-
ments of whirl growth, while much higher Q values �namely,
much smaller dissipations� are expected �see discussion on
this issue in Ref. �15�, Sec. III�. In Fig. 4, to be compared
with the above theoretical results, we plot, as filled circles,
the experimental results too, finding an excellent agreement
between theory and experiments. Since Fig. 4 contains the
crucial results of this work, it is worth discussing its main
features in detail. The main features are the comparison with
the experiment, the role of damping, the behavior at low spin
frequencies, the so-called scissors’s shape, the splitting of the
normal modes, and the presence of three instability regions.

A. Comparison with the experiment

In the experiment, the rotor is first accelerated to spin at
a given frequency �s. Then, the natural modes are excited by
means of capacitance actuators �indicated as OP in Fig. 1� in
the X� or Y� directions at frequencies close to the natural
frequencies �n

0��n��s=0� of the system at zero spin. The
excitation is performed for several �typically ten� fundamen-
tal cycles 1 /�n

0 by means of voltages applied to four of the
eight outer plates �OP in Fig. 1�. The actuators are then
switched off and the bodies’s displacements are recorded as

FIG. 4. Normal modes of the GGG rotor: the frequencies of the normal
modes are plotted as functions of the spin frequency �s. The normal modes
as predicted theoretically assuming anisotropic suspensions are shown as 12
solid lines in the case of zero rotating damping and as open circles in the
case of nonzero damping �see text�. The experimental results are plotted as
filled circles and clearly agree with the theoretical predictions. The bisecting
dot-dashed line �=�s separates the supercritical ��s��� from the subcritical
��s��� region. Three vertical thick lines are plotted in correspondence of
three instability regions, their thickness referring to the width of the regions
�see Sec. V G�.
functions of time by means of the readout described in Sec.
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II B. A standard data analysis is then performed by fitting the
measurement data to extract oscillation frequencies and
damping of the modes.

The experimental data, resulting from averaging over
several measurements, are represented as filled circles in Fig.
4. The agreement between theory and experiments is excel-
lent, thus validating the model developed in Sec. III.

In the experimental spectra as well as in the theory, it is
found that the amplitudes of the modes in the subcritical
region �s��—represented by the inclined lines, with their
open and filled circles—are quite small, while the nondisper-
sive modes �the horizontal lines, not varying with the spin
frequency� are preferably excited. When the horizontal lines
cross the inclined ones, the latter modes can also be excited.
Since the excited modes must obviously be avoided in oper-
ating the experiment, this information is very useful, in that
it is telling us that we should avoid to spin the system at
frequencies where these line crossings occur. Even more so,
spin frequencies lying in the instability regions must be
avoided �see Sec. V G�.

B. Role of damping

We have numerically checked that the dissipation
present in the system does not significantly shift the natural
mode frequencies. This is apparent in Fig. 4, where the re-
sults obtained with damping �open circles� stay on the solid
lines obtained in the absence of damping. It is worth stress-
ing that this result is especially good because, as discussed
above, we have used a low value Q��s�=510, corresponding
to comparatively large dissipations. As expected, the dissipa-
tion affects the line shape of the peaks, making them wider
than in the absence of damping.

C. Low-frequency limit

At zero spin frequency we have recovered the theoretical
and experimental results previously obtained for the nonro-
tating system. On the left hand side of Fig. 5, a zoom from
Fig. 4 at very low spin frequencies, we can see that the
nonspinning rotor is characterized by three natural frequen-
cies for the instrument with ideally isotropic springs, the
three bodies oscillating in a vertical plane. The frequency
�0=0.09 Hz corresponds to the differential mode, where the
centers of mass of the two test bodies oscillate in opposition
of phase; the frequencies �0=0.91 Hz and �0=1.26 Hz cor-
respond to common modes, in which the common center of
mass of the two test bodies is displaced from the vertical.
During rotation, the number of degrees of freedom increases
to six, as discussed in Sec. III B, leading to the six lines
plotted in the same figure.

We may get a flavor of the �s dependence of the modes
in the �s��n limit, by evaluating the natural frequencies of
only one spinning cylinder with mass m and moments of
inertia I� and I. The cylinder is suspended at distance L and
with offset � from a fixed frame by means of a cardanic
suspension with isotropic elastic constant K and length l. The

calculation is performed by following the steps outlined in
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Sec. III with nb=1 and thus n=4. After evaluating the A
matrix �Appendix B, see Eq. �B10�� and solving det�A−sI�
=0, we obtain the two double solutions

�n1,2,3,4 = ± �̃n
0 L

L�
, �40�

for the four �n��s /�n→0� in the nonrotating frame. In Eq.
�40�, �̃n

0= �2	�−1�g /L+Kl2 /mL2 is the natural frequency for
the nonspinning pointlike mass. L�=�L2+ �I�−2I� /m �with
I�0.5mL2+ I�, see Appendix B� takes into account the ex-
tended nature of the body and the ratio L /L� modifies �n with
respect to �̃n

0.

D. Anisotropy

If the suspensions are not isotropic in the two orthogonal
directions, as it is indeed the case for our real cardanic sus-
pensions, each natural frequency is expected to split up. This
is clearly shown on the right hand side of Fig. 5. It is worth
noting that the splitting is larger for the lowest-frequency
mode.

E. Scissors’s shape

Figure 4 shows that each natural frequency of the non-
spinning system splits up into two branches at �s�0, a lower
branch remaining approximately constant and an upper
branch increasing with 2�s.

This characteristic scissors’s shape can be traced back to
the general properties of spinning bodies �see also Part II�.
We again use the one-cylinder simple case �see Appendix B�
to prove this statement. By following the same procedure
which has led to Eq. �40� we obtain �see Eq. �B9��

�1,2 = ±��s
2 − 2�n�s

L

L�
� ± �s�1 −

�n

�s

L

L�
 , �41�

�3,4 = ±��s
2 + 2�n�s

L

L�
� ± �s�1 +

�n

�s

L

L�
 , �42�

showing that in the rotating frame �n��s to zeroth order.
After taking the �s /�n→� limit and tranforming back to the
nonrotating frame by means of the substitution sn=2	i�n
→2	�i�n+ i�s�, we finally have
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�1,3 � ± �n
L

L�
, �43�

�2,4 � 2�s. �44�

F. Mode splitting

The two branches may cross at selected frequencies.
Crossing and anticrossing of degenerate modes are a very
general concept, which applies to a variety of physical sys-
tems, from classical to quantum mechanics, from single to
many-particle physics. As it is well known,24 splitting of the
modes is expected in correspondence of such crossings. In
our numerical results we have found all the 15 splittings
expected for our system �see Fig. 4�. Figure 6 shows a par-
ticular case of anticrossing of two modes.

G. Instability regions

Dynamical instability may occur whenever the values of
the natural frequencies are in proximity of the spin fre-
quency. In such regions the oscillation amplitude grows ex-
ponentially.

This is a well-known characteristic of rotating machines;
in engineering books it is usually described within the simple
model of the so-called Jeffcott rotor.21 The number of insta-
bility regions can be predicted from Fig. 4 after drawing the
dotted-dashed line �=�s. We have found indeed three insta-

FIG. 5. Normal modes of the GGG ro-
tor. On the left hand side we show a
zoom from Fig. 4 in the very low spin
frequency region, showing, in particu-
lar, the three-natural frequencies of the
system in the zero spin case. On the
right hand side, we plot a zoom from
Fig. 4 in the small frequency region of
both axes, showing the splitting into
two lines of the low frequency mode
because of anisotropy of the suspen-
sions �the dashed line is the �s=� line
as in Fig. 4�.

FIG. 6. Normal modes of the GGG rotor. A zoom from Fig. 4 showing one

particular case of anticrossing of two modes.
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bility regions. Figure 7 displays in detail the one at the low-
est frequency; as shown in Fig. 4, the two at higher frequen-
cies are found to be wider and closer to each other. These
theoretical results do explain why in the experiment we can
increase the spin frequency and cross the low-frequency in-
stability region easily, while it is much more difficult to cross
the frequency range 0.9→1.3 Hz. In the past we solved this
problem by designing and installing passive dampers to be
switched on from remote just before resonance crossing, and
then turned off at higher spin frequencies; the least noisy was
a special, no oil damper described in Ref. 25, p. 45. Later on
the GGG rotor imperfections have been reduced so that all
instability regions can now be crossed, if the crossing is suf-
ficiently fast, without producing any relevant disturbances
even in absence of a passive damper. The physical space
previously occupied in the vacuum chamber by the passive
damper is now used for the inductive power coupler, indi-
cated as PC in Fig. 1, which provides the necessary power to
the rotating electronics and has allowed us to avoid noisy
sliding contacts.

VI. CONCLUDING REMARKS

We have demonstrated that the linearized model set up in
Sec. III can quantitatively account for the dynamical re-
sponse of the GGG rotor, an apparatus designed to test the
equivalence principle with fast rotating, weakly coupled,
macroscopic, concentric cylinders �Sec. II�. The model de-
veloped here can be expanded to include external distur-
bances whose effects need to be taken into account in testing
the equivalence principle. A qualitative understanding has
been provided, by means of helpful analytical solutions of
the simplified model under special limits, of relevant features
observed in the simulations as well as in the experimental
data.

We have acquired a detailed knowledge of the instru-
ment’s features and the way it works, the main feature being
the normal modes of the system �Sec. V� in the whole range
of spin frequencies, from subcritical to supercritical regime,
and as functions of the governing parameters �see Sec. IV B�.

In particular, we have established the location and char-

FIG. 7. Normal modes of the GGG rotor. The lowest-frequency instability
region is zoomed in from Fig. 4.
acteristics of the instability regions; we have verified quan-
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titatively the effects of dissipation in the system, showing
that losses can be dealt with and are not a matter of concern
for the experiment; we have established the split up of the
normal modes into two scissorlike branches, distinguishing
modes which are preferentially excited �the horizontal lines�
from those whose spectral amplitudes are typically small �the
inclined lines�, thus learning how to avoid the spin frequen-
cies corresponding to their crossings, in order not to excite
the quiet modes too by exchange of energy; we have inves-
tigated the self-centering characteristic of the GGG rotor
when in the supercritical rotation regime, gaining insight on
how to exploit this very important physical property for im-
proving the quality of the rotor, hence its sensitivity as a
differential accelerometer.

In the following Part II of this work we apply the same
model and methods developed here to investigate the com-
mon mode rejection behavior of the GGG rotor, a crucial
feature of this instrument devoted to detect extremely small
differential effects.
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APPENDIX A: THE LAGRANGE FUNCTION
IN THE ROTATING REFERENCE FRAME

In the following, in order to simplify the notation we
drop the � indices everywhere and restrict our reasoning to
only one body. Let us begin with the expression �4�. After
using Eq. �8� into �4�, we have

T =
1

2



�i

�V2 + �� � ��2 + 2V · �� � ���dm . �A1�

We conveniently represent the vectors �=MJ ��� and

�=MJ ��� in the ���� frame by means of the rotation ma-
trix

MJ = �sin � cos � cos � − sin � cos �

− cos � cos � sin � − sin � sin �

0 sin � cos �
� , �A2�

with respect to the �X�Y�Z�� reference system.
Thus, by exploiting the properties of the vectorial prod-

uct and the definition of center of mass, namely, ��i
��

=��i
��=��i

�=0, we find the following results for the inte-
grals appearing in Eq. �A1�:

1

2



�i

V2dm =
1

2
mV2,

1

2



�i

�� � ��2dm =
1

2	
�

I����
2 ,

1

2	 I����
2 =

1

2
I���̇2 sin2 � + �̇2� ,
�
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�i

V · �� � ��dm = �V � �� · 

�i

�dm = 0,



�i

V · ��s � R�dm = mV · ��s � R� ,



�i

V · ��s � ��dm = �V � �s� · 

�i

�dm = 0,



�i

�� � �� · ��s � R�dm = ��s � R� · 

�i

�� � �� = 0,



�i

�� � �� · ��s � ��dm = I�
s�̇ sin2 � + I
s
2 cos � ,

1

2



�i

��s � R�2dm =
1

2
m��s � R�2,

1

2



�i

��s � ��2dm =
1

2
�I� sin2 � + I cos2 ��
s

2,



�i

��s � R� · ��s � ��dm = ��s � R� · 

�i

��s � ��dm

= 0.

By collecting all these results, one ends up with the final
forms �17�–�19� for the original T function �4�.

APPENDIX B: THE ONE-CYLINDER SOLUTION

It is useful to study �along the lines of Sec. III� the
simplified case of only one spinning cylinder with mass m
and moments of inertia I� and I. This amounts to setting
nb=1 and thus n=4 for the number of generalized coordi-
nates.

The A matrix turns out to be

A =�
0 1 0 0

L11/L22 R12/L22 R13/L22 �L14 − L23�/L22

0 0 0 1

Q31/L44 �L23 − L14�/L44 L33/L44 R34/L44

� ,

�B1�

where the coefficients of L and R are defined in terms of the
system parameters and of the equilibrium positions �0 and �0

as

L11 = m
s
2L�L cos 2�0 + � sin �0� − mgL cos �0

− Kl2 cos 2�0 + �I� − I�
s
2 cos 2�0 − I
s

2 cos �0,

�B2�

L22 = mL2 + I�,

L33 = m
s
2�L sin �0,

2 2
L44 = �mL + I��sin �0, �B3�
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L14 = L41 = I
s sin 2�0 − m
s�L cos �0

+ m
s
2L2 sin 2�0,

L23 = L32 = − m
s�L cos �0,

and

R12 = − ��R + �NR�L2,

�B4�
R13 = − �NR
sL� cos �0,

R31 = − �NR
sL�L sin 2�0 + ��
�B5�

R34 = − ��R + �NR�L2 sin2 �0.

In the case of negligible dissipation, the eigenvalue
equation det�A−sI� for s=2	i� reads

s4 − s2�a21 + a43 + a24a42� + a21a43 = 0. �B6�

In the 
s�
n limit, the equilibrium solutions are

�0 �
�L

L�2�1 + � L

L�
2� 
̃n

0


s
2�, �0 = 0, �B7�

where L�=�L2+ �I�−2I� /m, I�0.5mL2+ I�, and


̃n
0 =�g

L
+

Kl2

mL2 �B8�

is the natural frequency of the pointlike mass. Equation �B6�
becomes then

s4 + 2s2
s
2�1 + �
n

0


s
2� + 
s

4�1 − 2�
n
0


s
2� = 0, �B9�

where we have defined the natural frequency of the cylinder
mass as 
n

0��L /L��
̃n
0.

In the 
s�
n limit, the eigenvalue equation becomes
instead

s4 + 2s2� L

L�
2


̃n
02 + � L

L�
4


̃n
04 = 0. �B10�

Equations �B9� and �B10� are used to derive the results
�40�–�44� in the main text.

APPENDIX C: THE SELF-CENTERING

This appendix is devoted to a key feature of the GGG
experiment, namely, the concept of self-centering of the rotor
in supercritical rotation. Let us analyze the one-cylinder case,
by numerically integrating the equations of motion in the
presence of nonrotating damping, to make the rotor asymp-
totically stable �Sec. III D 1�. Figure 8 shows the resulting
motion of the cylinder in the horizontal plane of the rotating
reference frame: its center-of-mass spirals inward towards an
equilibrium position much closer to the origin, i.e., to the
rotation axis. The equilibrium position always lies in the
same direction as the initial offset vector �, which in this
simulation was assumed to be in the X� direction. The center
of mass of the cylinder will eventually perform small-
amplitude oscillations around the asymptotic value �X0�
=�−L sin �0 ,Y0�=0�.
In the limit of small angles we obtain
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�0 � ±
�

L
� 1

�L�/L�2 − �
n/
s�2� , �C1�

with

�0 = 0�	� , �C2�

in the case of the lower �upper� sign in Eq. �C1�, respectively
�angles defined as in Fig. 3�. The cylinder’s center of mass is
eventually located at a distance

�X � � ± L�0 = � − � �

�L�/L�2 − �
n/
s�2� , �C3�

from the rotation axis.
In Fig. 9 we plot, as function of the spin frequency �s,

the self-centering distance �X in the one-cylinder case dis-
cussed above and in the point masss case. According to the
previous appendix, if L��L we have the cylinder, while if
L=L� we have the point mass. The two curves are worth
comparing. They have a similar behavior till the resonance
peak �in this case, at about �s�1 Hz�; the distance from the
rotation axis remains constant till, at spin frequencies slightly
below the natural one, it starts increasing showing a typical
peak at the resonance. For the cylinder and the point mass

FIG. 8. �Color� Self-centering of one cylinder in the presence of nonrotating
damping. Simulated X��t�-Y��t� plot showing the motion of the center of
mass of the cylinder in the rotating reference frame �one cylinder model,
�s=5 Hz�. The center of mass spirals inward from the initial offset value and
large initial oscillations to a final value, much closer to the rotation axis.

FIG. 9. Self-centering of one cylinder in the presence of nonrotating damp-
ing. The distance �X of the center of mass of the cylinder from the rotation
axis is plotted as function of the spin frequency �s, in agreement with Eq.
�C3�. The same distance in the case of a point mass is plotted as a dashed

line. See text for comments on their comparison.
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the peaks are slightly shifted. The constant value can be ob-
tained from Eq. �C3� in the limit of small spin frequencies

s�
n, finding

�X � � . �C4�

We can also recover the position and relative shift of the
resonance peaks in the two cases from the values �s

p �the spin
frequency at the peak� taken by the poles of �X in Eq. �C3�,
namely,

�s
p = ±

L

L�
�n. �C5�

Thus, the position of the peaks is dictated by the natural
frequency �n, while the shift is due to the difference between
L and L�.

At rotation speeds above the resonance and in the highly
supercritical regime 
s�
n, the behavior of the cylinder and
that of the point mass are remarkably different.

For the cylinder, �X drops to a minimum and then satu-
rates at a constant value, while for the point mass it keeps
decreasing monotonically. The minimum for the cylinder is
related to the presence of a zero in Eq. �C3�, namely,

�s
z = ±

L
�L�2 − L2

�n, �C6�

which is valid only if L��L. Instead, for the point mass we
have the finite value �X=� / �1−
s

2 /
n
2�. Note that the posi-

tion of the minimum shifts towards higher spin frequencies
as L�→L, namely, as the finite cylinder case approaches a
point mass. In the limit 
s�
n �i.e., highly supercritical
speeds� Eq. �C3� yields

�X � ��1 − � L

L�
2� , �C7�

which explains the saturation to a constant self-centering
value in the case of a finite cylinder, whereas a point mass
would monotonically approach perfect centering �i.e., �X
=0�.

In fact, it is very interesting to note that �X depends
slightly on the point that we are considering along the cylin-
der’s axis. In particular, in the limit 
s→�, where �X of the

cylinder’s center of mass saturates, the point at distance L̃
=L�2 /L from the suspension point along the axis has instead
perfect self-centering, namely, �X=0. This is easily seen

from Eq. �C3� after substituting �±L�0 with �± L̃�0 and im-
posing �X=0. We plan to exploit this property in order to
obtain better self-centering, though it needs further investi-
gation in the actual GGG rotor.

We can consider a plot similar to that of Fig. 9 in the
GGG case with two concentric cylinders and a coupling arm,
where there are three natural frequencies �one differential
and two common modes�.

It happens that the common mode behavior is similar to
that of the one-cylinder case �shown as a solid line in Fig. 9�;
namely, for each common mode frequency there is a reso-
nance peak and a minimum peak. Instead, the differential
frequency behavior is similar to that of a point mass �shown

as a dashed line in Fig. 9�. This latter fact is because in the
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differential mode the coupling arm oscillates and the cylin-
ders’s centers of mass move in the horizontal plane with the
opposite phase, while �i,o=0; under these conditions, their
moment of inertia is irrelevant in determining the dynamics,
which therefore is very much alike the case of a point mass.
As a result, the �X of the GGG rotor for intermediate values
of the spin frequency is characterized by one peak at low
frequency, in correspondence to the differential mode, and
two peaks and two minima, in correspondence to the com-
mon modes. Instead, in the limit of very low and very high
spin frequencies, it has a behavior similar to that displayed in
Fig. 9, depending on the values and directions assumed for
the initial offsets of the three bodies.

Thus, in order to obtain the best possible centering of the
test cylinders in the GGG rotor, one can either spin at a
frequency close to the minima of the common modes, or
above both of them, in such a condition that the two cylin-
ders are better centered on their own rotation axes than both
of them are, together, in a common mode. Self-centering on
the rotation axes is very important in order to reduce rotation
noise, because we are dealing with rapidly spinning macro-
scopic bodies and aiming at measuring extremely small ef-
fects. The issue therefore needs a careful investigation, and
to this end realistic numerical simulations of the apparatus
are an essential tool.

Finally, concerning the use of supercritical rotors for EP
testing, it is worth mentioning a frequently asked question:
Would a relative displacement of the test bodies caused
by an external force—such as that resulting from an EP
violation—be reduced by self-centering in supercritical rota-
tion as it happens for the original offset �? The answer is
“no” because the offset vector is fixed in the rotating frame
of the system, while an external force gives rise to a dis-
placement of the equilibrium position of the bodies in the
nonrotating reference frame. In the presence of such a force,
whirl motion will take place around the displaced position of
equilibrium. A numerical simulation, showing this important
feature is reported and discussed in Ref. 11, PLA paper,
p. 176.
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“Galileo Galilei on the ground” �GGG� is a fast rotating differential accelerometer designed to test
the equivalence principle �EP�. Its sensitivity to differential effects, such as the effect of an EP
violation, depends crucially on the capability of the accelerometer to reject all effects acting in
common mode. By applying the theoretical and simulation methods reported in Part I of this work,
and tested therein against experimental data, we predict the occurrence of an enhanced common
mode rejection of the GGG accelerometer. We demonstrate that the best rejection of common mode
disturbances can be tuned in a controlled way by varying the spin frequency of the GGG rotor.

© 2006 American Institute of Physics. �DOI: 10.1063/1.2173076�
I. INTRODUCTION ment. This study naturally provides an effective tool to opti-
The relevance of equivalence principle �EP� tests as the
most sensitive probe of general relativity has been strongly
motivated from a theoretical point of view.1,2 In Part I of this
work we have discussed the motivation behind the Galileo
Galilei on the ground �GGG� experiment for testing the EP at
1 g with macroscopic �10 kg� concentric test cylinders in
rapid rotation. The instruments which have provided the best
EP tests to date are rotating torsion balances,3,4 their essential
features being the differential nature of the instrument �i.e.,
its capability to reject common mode effects� and the modu-
lation of the signal through rotation. It has also been estab-
lished that very high accuracy tests can be achieved only by
performing an experiment in space, inside a spacecraft orbit-
ing the Earth at low altitude.5–7 The GGG experiment em-
bodies the key features of the rotating torsion balances, with
the addition of being suitable for flight.

The GGG experiment8,9 has been described in Part I, and
its underlying physics has been embodied in an effective
model that fully accounts for the measured normal modes of
the GGG rotor in the whole range of spin frequencies, from
subcritical to supercritical rotation.

Here, we apply the model to evaluate the common mode
rejection capability of the GGG rotor as determined by all

the system parameters which govern the design of the instru-

0034-6748/2006/77�3�/034502/10/$23.00 77, 03450
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mize the real instrument in response to external disturbances
such as tidal forces10 and seismic noises.11

We refer to Part I for all the definitions and the descrip-
tion of the experiment, as well as of the model. This Part II is
organized as follows. In Sec. II the numerical method devel-
oped in Part I is completed by including external forces, in
common mode and in differential mode. In Sec. III, we com-
pute the common mode rejection factor, first at zero spin,
through an analytical solution depending on one scaling pa-
rameter, and then in rotation, through our numerical simula-
tion model; numerical simulations show the relevance—in
wide ranges of the spin frequency—of the analytical scaling
parameter and demonstrate the existence of an enhanced
common mode rejection. In Sec. IV we apply these results to
the realistic range of parameters of the GGG rotor and dis-
cuss how the enhanced rejection of common mode effects
can be exploited for optimizing the performance of the in-
strument in testing the equivalence principle. Concluding re-
marks and perspectives after both Parts I and II are given in
Sec. V.

II. THE NUMERICAL METHOD

A. Dynamical equations: External forces
and transfer function

In Sec. IV of Part I we have discussed the numerical

simulation method of the model used to describe the GGG

© 2006 American Institute of Physics2-1
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instrument and the parameters of the system �see Figs. 1 and
3 of Part I for the GGG instrument and its model�. Here we
describe the transfer matrix method, in the presence of exter-
nal forces—acting on the system in common mode as well as
in differential mode—which determine the dynamical behav-
ior of the rotor. External forces are added to the right-hand
side of the equations of motion, written as in Eq. �37� of Part
I, which now becomes

Ẋ = AX + BU , �1�

where A is the 2n�2n dynamical matrix already appearing
in Eq. �38� of Part I, X is the vector of generalized coordi-
nates and velocities defined in Eq. �36� of Part I, while the
2n�m input matrix B and the input vector U have been
added, the m components of U representing the external
forces. The definition of the problem is completed after
specifying the p component output vector Y by means of the
general relationship

Y = CX + DU , �2�

where C is the p�2n output matrix and D is the p�m
input-output coupling matrix. In our problem, D=0 and the
Y’s are the displacements of the masses from their equilib-
rium positions.

Equations �1� and �2� are solved in the frequency do-
main, after Laplace transform to the variable s= i�. By com-
bining them into a single equation, we have the direct link
between the output vector and the input forces,

Y�s� = C�sI − A�−1BU�s� � H�s�U�s� . �3�

Equation �3� defines the p�m transfer matrix H, in the ro-
tating reference frame, in terms of the matrices A, B, and C
�I is the identity matrix�. The derivation of matrices C and B
is given in the Appendix.

The poles pr and the zeros zr of the transfer matrix fully
determine the dynamical response of the rotor: the poles are
located at the excitation energies, and the zeros tell us where
external effects are suppressed.

The signal of an EP violation would be a relative dis-
placement of the GGG test cylinders in the nonrotating ref-
erence frame of the laboratory. Therefore, we need to trans-
form the output vector given by �3� in the rotating frame into
the YNR�s� displacement vector in the nonrotating laboratory
frame. We show in the Appendix how the transfer matrix and
thus the output are transformed into the nonrotating frame.
This obviously results into shifting the poles from pr± i�s to
pr and pr+2i�s, namely, to zero and twice the angular spin
frequency �s. The latter behavior, expected in the nonrotat-
ing frame, has already been outlined in Fig. 4 of Part I �also
reported in Fig. 3 of Ref. 8� where the normal modes of the
GGG rotor are given as functions of the spin frequency �s

=�s /2�, showing the existence of horizontal normal mode
branches and of inclined ones �at 2�s angle�, as well as the
presence of three instability regions at values of the spin
frequency which are resonant with the three natural frequen-
cies of the GGG system.

In the GGG setting reported here the values of the natu-
ral frequencies are �D�0.09 Hz for the differential one and

�C1�0.9 Hz and �C2�1.26 Hz for the two common mode
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ones. The normal mode behavior defines two main spin fre-
quency regions. One region—that we call the region of “in-
termediate spin frequencies”—is where �pr±2i�s�� �pr� or
�zr±2i�s�� �zr� �i.e., 0.09�2�s�1.26 Hz in our case�. The
other region—that we call the region of “low and very high
spin frequencies”—is where �pr±2i�s�� �pr� and �zr±2i�s�
� �zr�, namely, on either side of the intermediate frequency
region. As we have seen in Part I, the intermediate frequency
region is where mode crossings occur; we therefore expect
that in this region the rejection of common mode forces will
depend very much on the particular frequency at which the
system is spinning, while it should not be so in the region of
low and high frequencies. The rejection of common mode
forces will depend on the frequency region.

III. RESULTS

A. The common mode rejection factor

In this section we define and evaluate the common mode
rejection factor � which describes the rotor’s capability, as a
differential instrument, to reject common accelerations as
compared to those acting in a differential manner on the test
bodies. The smaller the rejection factor �, the better the per-
formance of the instrument. The rejection is a function of the
frequency � of the external force applied, as it is the dynami-
cal response of the system.

We have proceeded to evaluate numerically ���� by first
determining the transfer function in the rotating reference
frame for the two cases of common and differential accelera-
tions acting on the test cylinders. The common HC

NR and
differential HD

NR transfer functions are then calculated in the
nonrotating frame, yielding the corresponding relative dis-
placements ��xC

NR,�yC
NR	 and ��xD

NR,�yD
NR	 in the X� and Y�

directions of the nonrotating, horizontal plane of the labora-
tory. It is worth stressing that we are always computing dis-
placements of the test cylinders relative to one another, also
in response to an external force acting in common mode; this
is precisely because we wish to quantitatively establish how
far is our actual instrument from being an ideal differential
accelerometer which would give no relative displacement of
the test cylinders in response to common mode forces. The
relative displacements resulting in both directions of the
horizontal plane and depending on the nature of the applied
force �either common mode or differential mode� are


�xC
NR�s�

�yC
NR�s�

� = HC
NR�s − i�s�

1

mi

FX�s�

FY�s� � , �4�


�xD
NR�s�

�yD
NR�s�

� = HD
NR�s − i�s�

1

2mi

FX�s�

FY�s� � . �5�

The factor 1 /2 in �5� is introduced because in this way, if
aC=F /mi=F /mo is the acceleration acting in a common
manner on the two masses, the differential accelerations are
aDi=F / �2mi� and aDo=−F / �2mo�=−aDi, and then �a�ai

−ao=F /mi.
The rejection factors along the X� and Y� directions of
the plane �not rotating� are therefore defined as follows:
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�X��s� =
�xC

NR�s�
�xD

NR�s�
, �6�

�Y��s� =
�yC

NR�s�
�yD

NR�s�
. �7�

As discussed in Sec. II C of Part I, the GGG instrument
must be as sensitive as possible to low frequency effects
�between 10−5 and 10−4 Hz�. For this reason, in the following
we shall focus on the ��s→0���0 behavior of the rejection
factor for different values of the spin frequency �s of the
GGG rotor.

B. Nonspinning rotor: Analytical solution and scaling
parameter

We first compute the rejection factor in the particular
case of zero spin rate, i.e., for the nonspinning GGG appa-
ratus, showing that the capability of the system to reject
common mode forces can be predicted analytically, and that
rejection is quantitatively expressed by a simple scale param-
eter. The model we use to describe the GGG apparatus is the
same as in Fig. 3 of Part. I

The relative displacement �xD of the test cylinders in
response to an external acceleration aD, acting in differential
mode, can be written as

�xD =
aDTD

2

�2��2 =
aDmtLa

2

Ktl
2 − gmt�L/2

, �8�

where the second equality is obtained by using the expres-
sion for the natural period of differential oscillation of the
test cylinders TD as computed in Part I, Eq. �41�, namely,

TD =
2�

���K + Ki + Ko�l2/�mi + mo�La
2� − �g/2La���L/La�

,

�9�

and introducing the total mass of the test bodies mt=mi

+mo and the total elastic constant Kt=K+Ki+Ko �assuming
isotropic suspensions�.

Let us now see how an external acceleration aC, albeit
applied in common mode �i.e., the same on both test cylin-
ders�, will nevertheless affect their relative position giving
rise to a relative displacement �xC. Note that the system is at
equilibrium, it is not rotating, and we are limiting the calcu-
lation to small angles and to constant applied forces �i.e., to
forces which are dc in the nonrotating laboratory frame�. We
then have

�xC = Lo	o − Li	i − �2La + �L�	a. �10�

We now need the values of 	
 in the presence of a common
mode force �the label 
= i ,o ,a refers to the inner mass, outer
mass, and coupling arm, respectively, as in Part I�. They can
be obtained from the equation

 �U

�qj


qj=qj
0

= 0, j = 1, . . . ,n , �11�

�already given as Eq. �22� in Part I� in the limit of small

angles, having added to the potential energy U, the work
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done by the external forces. After some algebra, this proce-
dure leads to the following equations:

migLi	i − Kil
2�	a − 	i� − miaCLi = 0,

mogLo	o − Kol2�	a − 	o� − moaCLo = 0, �12�


Ktl
2 −

1

2
�mt + ma�g�L�	a − Kil

2	i − Kol2	o +
1

2
�mt

+ ma�aC�L = 0.

After some additional manipulations, Eqs. �12� yield the ap-
proximated values of the angles as

	i �
mLi

Kil
2 + mgLi

aC,

	o �
mLo

Kol2 + mgLo
aC, �13�

	a � −
�1/2�mt�L − �
=i,o

K
l2�mL
/K
l2 + mgL
�

Ktl
2 − �1/2�mtg�L

aC.

After expanding Eqs. �13� in the small parameters
K
l2 /m
gL
 and substituting the resulting equations into �10�
using the relation Lo=2La+�L+Li, we eventually obtain

�xC �
�2La + �L�Kl2

�Ktl
2 − �1/2�mtg�L�g

aC. �14�

The ratio of the relative displacement �XD caused by a
differential force, over the relative displacement �XC caused
by a common mode force �along the X� direction of the non
rotating frame�, is therefore

�XD

�XC
=

mtgLa
2

�2La + �L�Kl2

aD

aC
, �15�

which, for aD=aC, gives us the inverse of the rejection factor
along the same direction of the horizontal plane,

1

�0
=

mtgLa
2

�2La + �L�Kl2 , �16�

that is, an external acceleration acting on the GGG test cyl-
inders in common mode would produce a relative displace-
ment of the cylinders with respect to one another 1 /�0 times
smaller than the same acceleration would produce if acting in
differential mode. For a perfectly differential instrument,
1 /�0 would be infinite, namely, a common mode force would
not produce any relative displacement of the test masses.
Here we indicate the rejection factor with the subscript zero
because this analytical calculation refers to the rejection of
dc external forces �i.e., of forces which act at zero frequency
in the laboratory frame�. In the following numerical compu-
tation we will also show the dependence of the rejection
factor on the frequency of the applied force, as well as on the
rotation speed of the GGG rotor.

The rejection factor �16� takes a very simple form in the
limits �L /La→0 and ma /mi,o→0, that are verified in our

experiment. This is
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1

�0
�

mi,ogLa

Kl2 . �17�

Thus, at zero spin, the inverse of the common mode rejection
factor 1 /�0 is given by the simple scaling parameter �17�,
where the relevant energy scales are the gravitational energy
of the inner and outer test cylinders �at the numerator� and
the elastic energy stored by the central suspension �at the
denominator�. The larger is this ratio, the better the instru-
ment will reject common mode forces, the more suitable it
will be to detect differential effects such as that of an equiva-
lence principle violation. In the following we show that, far
from being limited to the very particular case of zero spin
rate, this result holds also for the spinning rotor in the region
of low and high spin frequencies, as defined in Sec. II A.

C. Region of low and high spin frequencies

Expression �17�, for the rejection factor of dc common
mode forces, results from a number of approximations per-
formed in describing the system in the case of zero spin rate.
We devote this section to evaluate numerically to which ex-
tent it is valid also in the low and high spin frequency re-
gions �see Sec. II A�. The more complex case of the rejection
behavior, when the rotor is spinning at intermediate frequen-
cies, will be addressed in Sec. III D.

1. The differential period TD

In order to calculate the dependence of the rejection on
the scaling parameter Kl2 /mi,ogLa, we proceed by varying
one at a time its governing parameters. We do that while
keeping the differential period TD fixed, by also varying �L
�see Fig. 1, where TD vs �L is displayed under the different
experimental conditions listed in Table I�. TD must be kept
fixed because its variation would mean a variation of the
stiffness of the coupling between the test cylinders, and
therefore a different response, in terms of relative displace-

FIG. 1. Differential period TD as a function of the balancing parameter �L.
The various curves refer to different values of the other parameters of the
system, as given in Table I �all simulations were performed with the rotor
spinning at �s=2.5 Hz�.
ment, under the action of a given external force. The softer
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the coupling, the longer the differential period, the larger the
relative displacement between the test cylinders in response
to a given force.

2. Spectra of the test mass differential displacements
Once the differential period is fixed, we need to set the

observables that are needed in order to extract the rejection
factor. We first need to establish how the signal of the rela-
tive displacements of the test cylinders �in the nonrotating
frame� responds to the frequency of the external force ap-
plied, either in common mode or in differential mode �see
Eqs. �4� and �5��, for a given spin frequency �s of the rotor.

We evaluate numerically Eqs. �4� and �5�. Figure 2
shows the magnitude of the relative displacement resulting
from the application, along the X� direction of the nonrotat-
ing frame, of a common mode acceleration �top panel� and of
a differential one �bottom panel�, of the same intensity, vary-
ing at a frequency that ranges between 10−5 and 10 Hz, with
the rotor spinning at frequency �s=2.5 Hz. Though the force
is applied in the X� direction, there will be some effect also
in the perpendicular Y� direction, as discussed below in re-
lation to Fig. 3. Here we show only the effect in the direction
X� of the force.

In the case of common mode input accelerations �Fig. 2,
top panel�, the test masses of the rotor are seen to respond
with a relative displacement at all the natural frequencies.
The plot shows peaks at the frequencies �pole corresponding
to the differential frequency �D�0.09 Hz, to the common
ones �C1�0.9 Hz and �C2�1.26 Hz, and to their combina-
tions with 2�s, namely, 2�s±�D, 2�s±�C1, and 2�s±�C2. Two
zeros of the transfer function are also apparent, the first lo-
cated in between �D and �C1 and the second in between �C1

and �C2.
In the case of differential input accelerations �Fig. 2,

bottom panel�, no zeros are present in the transfer function,
and only the mode at frequency �D is significantly excited,
while the effect at 2�s±�D is negligible. The value of the
relative displacement for �→0 �i.e., as the applied force be-
comes almost dc� turns out to be in perfect agreement with
the value predicted by Eq. �8� for the zero spin case, though
this figure refers to the system spinning at �s=2.5 Hz.

The corresponding inverse rejection factor, as given by
Eqs. �6� and �7� for the two directions of the horizontal
plane, is displayed in Fig. 3. Even though the external forces
�both common and differential� have been applied along the
X� direction only, differential displacements occur also along

TABLE I. Legend corresponding to Fig. 1.

Curve
KX�
�dyn/cm�

�

�KY� /KX��
l

�cm�

a 106 2.58 0.5
b 106 1 0.5
c 5�105 1 0.5
d 2.5�105 1 0.5
e 1.5�105 1 0.5
f 5�104 1 0.5
g 106 1 0.15
Y�, because of losses in the test mass suspensions while ro-
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tating �as discussed in Part I, the quality factor Q is finite in
our simulations�. For this reason, the spectrum along the Y�
direction shows an additional peak at the differential mode
frequency. However, the magnitudes of both the common
and differential Y� displacements are very small, reduced by
a factor Q with respect to those along X� �their ratio remain-
ing of the same order of magnitude as that in the X� direc-
tion�.

3. Rejection of dc forces versus
the governing parameters

We now vary—one at a time—all the four governing
parameters which appear in the scaling parameter �17�, plus
the anisotropy factor � of the suspensions introduced in Part
I, Sec. IV. If �=1 the suspensions have the same stiffness in
both directions of the horizontal plane; if not, there is an
anisotropy �see Table I�. The purpose is to determine how the
rejection factor of dc common mode forces, �1/�0�, depends
on these parameters both at zero and high spin frequencies.
In doing this we need to keep the natural differential period
TD fixed, as discussed above. Figure 4 displays, in its five
panels, the dependence of �1/�0� on the five relevant param-
eters �the balancing arm length La, the mass mi,o of the sus-
pended cylinders, the elastic constant K of the central lami-
nar suspension, its length l, and the anisotropy factor ��. In
each panel, the solid lines give the value of �1/�0� for the
zero spin case, while the filled circles give its value for the
rotor spinning at 2.5 Hz. We are therefore investigating the
rejection of dc forces in what we call the very low and very
high spin frequency regions of the rotor.

As all five panels in Fig. 4 show, there is almost no
difference between the zero spin and 2.5 Hz spin frequency
cases. This result had to be expected from our analysis of the
normal modes of the GGG system developed in Part I �and
reported in Fig. 4 therein�, where it was apparent that the
horizontal branches and the inclined ones �at 2�s� of the nor-

mal modes do not cross in the low and high spin frequency
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regions. By performing a spectral analysis of the experimen-
tal data we have verified that the horizontal branches of the
normal modes are typically excited, while the inclined ones
are not. Thus, if no crossing occurs, also no energy transfer
occurs from the former to the latter.

We expect this not to be the case in the intermediate spin
frequency region, where the horizontal and the inclined
branches of the normal modes do cross �see the analysis of
this region in Sec. III D below�.

4. Validation of the scaling parameter
We can now collect all the results discussed so far in

order to quantify the validity of the scaling parameter �17� in
determining the rejection of dc common mode forces. The
results of our numerical simulations are reported in Fig. 5,
where we plot �1/�0� as a function of the scaling parameter

FIG. 3. Inverse rejection function 1/���� vs frequency in the X� �top� and
Y� �bottom� directions for the rotor spinning at �s=2.5 Hz. The other system

FIG. 2. Common mode �xC
NR �top panel� and differen-

tial mode �xD
NR �bottom panel� relative displacements,

divided by the intensity a of the acceleration applied, in
common mode or differential mode, respectively, as
functions of the frequency of the applied force. The
rotor is spinning at �s=2.5 Hz. The other parameters of
the system are typical of the present instrument: TD

=12.5 s, K=Ki=Ko=106 dyn/cm, l=0.5 cm, La

=19 cm, mi,o=10 kg, and Li=4.5 cm.
parameters are the same as in Fig. 2.
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�17�. The solid line at 45° represents �1/�0� in the case of a
nonspinning rotor with isotropic suspensions ��=1�, and it
has been found to be valid also for the isotropic spinning
rotor in the low and high spin frequency regions. If then
anisotropy is taken into account, the resulting values of
�1/�0� still lie on the 45° line as long as the spin frequency is

FIG. 5. Results from numerical simulations of the inverse rejection factor of
dc forces, 1 /�0, as a function of the scaling parameter mi,ogLa / �Kl2�. The
solid line refers to the zero spin case with isotropic suspensions ��=1�, and
also to the isotropic rotor in the low and high spin frequency regions. Once
anisotropy of the suspensions is taken into account �e.g., with �=2.58�, the
rotor spinning at low frequencies gives the results shown as filled circles,
while the one spinning at high frequencies gives the results shown as filled
triangles. The dashed line has no physical meaning; it simply shows that the
filled triangles still lie on a line, though at lower inclination. The system

2
parameters reported in Fig. 2 correspond to mi,ogLa / �Kl �=745.
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very low �filled circles�, while they lie on a lower inclination
line if the spin frequency is very high �filled triangles�. That
is, in the latter case, the inverse rejection factor of dc com-
mon mode forces �1/�0� is still proportional to the scaling
parameter �17�, but through a coefficient smaller than unity.
The amount of the deviation depends on �, as shown in the
bottom panel of Fig. 4.

D. Region of intermediate spin frequencies

We now compute the inverse rejection factor 1 /���� for
a wide range of frequency � of the applied force, in the
region of intermediate values of the spin frequency of the
rotor �as defined in Sec. II A�. The calculations are similar to
those which led to Fig. 3 in the case of high spin frequency
�2.5 Hz in that case�. Since we are interested in applied
forces of very low frequency, only the value �1/�0� of the
inverse rejection factor for a dc applied force is plotted as a
function of the spin frequency �s �Fig. 6, top panel�. This
figure shows very clearly that the best performance of the
instrument �i.e., best rejection of common mode dc forces� is
to be expected, with the current parameters of the instrument,
at the values �s�0.36 Hz��D and �s�0.6 Hz��D, where
the value of 1 /�0 is as high as 106. The difference between
the values of �1/�0� at the two ends of the spin frequency �for
�s→0 and �s→�� is due to the anisotropy of the central
suspension, as already shown in Fig. 5. We have run the
same system as in Fig. 6, but with isotropic elastic constants,
and have numerically verified that �1/�0��s=0��= �1/�0��s

=���, the positions of the peaks being slightly changed ac-
cording to the corresponding change in the differential pe-

FIG. 4. Inverse rejection factor of dc
forces, 1 /�0, as a function of various
system parameters. From top to bot-
tom, the varying parameters are La,
mi,o, K, l, and the anisotropy �. Solid
line: nonspinning rotor. Points: rotor
spinning at �s=2.5 Hz. The param-
eters are changed one at a time from
the values reported in the caption of
Fig. 2.
riod.
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The enhanced rejection behavior at intermediate spin
frequencies is related to the dependence of the zeros and of
the poles of the transfer matrix on �s, as we are going to
discuss below. As it happens in the case of the poles of the
transfer function, also the values of its zeros change with the
spin frequency, showing the typical two branch behaviors,
namely, a flat branch and an inclined one with 2�s coeffi-
cient. This is apparent in the bottom panel of Fig. 6, where
we plot the absolute values of the zeros and of the poles of
the transfer function, ��zero� and ��pole�, as dashed and solid
lines, respectively.

The nondispersive branches in Fig. 6, bottom panel,
shown as solid horizontal lines, correspond to the poles at the
differential frequencies �D �there are two of them because of
the anisotropy in the suspensions�. The zero branches, repre-
sented by dashed lines in the same figure, are characterized
by minima located at 0.5��zero��s=0�� and marked with the
numbers 1 and 5. The zero minima are shifted from the
minima of the pole branch, that are located at the points

FIG. 6. Top panel: the inverse rejection factor of common mode dc forces,
1 /�0, as a function of the spin frequency �s. The system parameters are the
same as in Fig. 2. The numbered arrows indicate crossing points and minima
�see text� and correspond to those shown in the bottom panel. Bottom panel:
absolute values of the zeros �dashed lines� and of the poles �solid lines� of
the transfer function vs �s. The horizontal branches correspond to the dif-
ferential frequencies �D, and split because of the anisotropy. For �s within
the shaded areas, the response is dominated by the zeros of the transfer
function H�s�, and therefore the relative displacement in response to com-
mon mode dc forces, �xC��→0�, is strongly suppressed.
marked as 3 and 6. At the points marked as 2 and 4, the zero
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branch with −��zero�+2�s crosses the pole branch with
−��pole�+2�s.

We thus see that there are ranges of spin frequencies for
which ��zero���D. This occurs within the shaded region of
the frequencies indicated in the bottom panel of Fig. 6,
whose width is easily evaluated to be precisely �D. When
��zero���D, the low frequency rotor response is dominated by
the position of the zero, hence the value of the relative dis-
placement �xC��→0� of the test cylinders in response to a
low frequency common mode force is strongly suppressed
�i.e., the disturbance is strongly rejected�.

In order to make the correspondence clear, we have re-
ported in the top panel of Fig. 6 the same points 1–5 marked
in the bottom one. We thus see that the peaks of �1/�0� cor-
respond to the minima 1 and 5 of the zero branches, the
valleys of �1/�0� correspond to the minima 3 and 6 of the
pole branches, and finally the saddle points of �1/�0� corre-
spond to the crossings 2 and 4 between zero and pole
branches.

The fundamental question then arises as to how we can
move the location of the peaks shown in the top panel of Fig.
6 in order to enhance the capability of the instrument to
reject common mode forces at larger supercritical values of
the spin frequency �s, since rotation provides signal modula-
tion and higher frequency modulation is preferable. We are
going to address this question in the next section.

IV. ENHANCED REJECTION BEHAVIOR
OF THE GGG ROTOR

In Sec. III C we have shown that in the region of low
and high spin frequencies the scaling parameter
mi,ogLa / �Kl2� precisely describes the rejection behavior of
the GGG rotor, the differential period being adjusted for ev-
ery set of parameters by varying �L. Then, in Sec. III D we
have investigated the region of intermediate spin frequencies
showing how the spin frequency can be tuned so as to obtain
a considerably enhanced rejection of common mode forces
in a nontrivial manner. We now need one more independent
“knob” in order to move the 1/�0 peaks towards higher spin
frequencies, where we expect a better performance of the
GGG experiment.

If we vary the scaling parameter in the region of inter-
mediate spin frequencies, the results obtained are shown in
Fig. 7: as the value of the scaling parameter increases, the
inverse rejection factor somewhat improves at the two ends
of the plot, but the position of the peaks, namely, the spin
frequencies at which rejection is strongly enhanced, is unaf-
fected.

However, we can still vary the remaining free param-
eters Li,o while keeping mi,ogLa / �Kl2� fixed. Figure 8 shows
that, as the values of Li �Ref. 12� increase in going from the
bottom to the top panel of the figure, the separation in spin
frequency between the peaks of 1 /�0 increases too.

All the cases displayed in Fig. 8 refer to a realistic GGG
apparatus. In particular, in all three panels the scaling param-
eter has always the same value mi,ogLa / �Kl2�=370 �with K
=105 dyn/cm, La=19 cm, l=1 cm, and mi,o=10 kg�. Only

the value of Li increases from 4.5 to 9.0 to 15 cm in going
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from the bottom to the top panel. At the top panel, with Li

=15 cm, the inverse rejection factor of common mode dc
forces has a peak as high as 1/�0=1.5�105 at a spin fre-
quency �s=1.12 Hz.

Figure 8 summarizes the main result of this work, as it
shows the way to perform a controlled tailoring of the rejec-
tion capability of the GGG apparatus. This can be done es-
sentially by tuning Li and �s. In the experiment, the most
convenient way is to first fix mi,ogLa / �Kl2� and Li in such a
way that ��zero��s=0���2�s

max, where �s
max is the spin fre-

quency at which the rotor is finally operated �and at which
we want the best performance�. A finer tuning is then done

FIG. 7. Inverse static rejection 1/�0 as a function of the spin frequency.
Curves of increasing thickness refer to increasing values of the scaling pa-
rameter mi,ogLa / �Kl2�=370, 745, and 2070, while keeping Li=4.5 cm fixed.
We note that 1 /���s→0��1/���s→�� because of the anisotropic central
suspension. Note that different values of mi,ogLa / �Kl2� leave the position of
the peaks unaffected.

FIG. 8. Inverse rejection factor of common mode dc forces, 1 /�0, as a
function of the spin frequency at different values of Li �with the scaling
parameter fixed at mi,ogLa / �Kl2�=370�. From bottom to top: Li=4.5 cm,
Li=9.0 cm, and Li=15.0 cm. Note the increasing separation in frequency
between the peaks from bottom to top, leading to enhanced rejection at
higher spin frequencies. For the maximum separation case �top panel� en-

hanced rejection takes place at �s=1.12 Hz.
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by adjusting �s so as to bring the first zero below the differ-
ential frequency �D, as shown in the bottom panel of Fig. 6.
This can be done in a highly controlled way, allowing us to
place the system in correspondence to the peaks of �1/�0�.

V. CONCLUDING REMARKS AND PERSPECTIVES

We have investigated the frequency-dependent response
of the GGG rotating differential accelerometer for testing the
equivalence principle using an effective physical model �Part
I, Sec. III� along with a simulation procedure �Part I, Sec. IV
and Part II, Sec. II�. This method has been demonstrated to
quantitatively account for the available experimental data
�Part I, Sec. II� and to provide analytical insights helpful for
a qualitative understanding of the underlying physics.

In Part I we have shown, among other things, the split up
of the normal modes into two scissor like branches, distin-
guishing modes which are preferentially excited from those
whose spectral amplitudes are typically small, thus learning
how to avoid the spin frequencies corresponding to their
crossings, in order not to excite the quiet modes too by ex-
change of energy. We have also investigated the self-
centering characteristic of the GGG rotor when in supercriti-
cal rotation regime, gaining insight on how to exploit this
very important physical property for improving the quality of
the rotor, hence its sensitivity as differential accelerometer.
Here we can add a major result. The rejection of common
mode dc forces is characterized by two distinct behaviors,
depending on the region of spin frequency �s at which the
rotor is operated. For low and high values of �s, the depen-
dence of the inverse rejection factor 1 /�0 is quantitatively
expressed by the scaling factor mi,ogLa / �Kl2�, with all the
relevant parameters combined in it. In the case of intermedi-
ate values of �s, 1 /�0 can reach peaks as high as 105−106,
whose positions are affected by the remaining parameters Li,o

and Ki,o. This conclusion allows us to tailor the features of
the real instrument for best performance in terms of rejection
of external disturbances such as tidal forces and seismic
noise. Future experimental tests can probe this conclusion.

Results from both Parts I and II indicate that we can aim
at a more realistic simulation model, to be used online with
the experiment, as the latter becomes more sensitive �e.g., by
reduction of the motor disturbances, by remote adjustment of
the verticality of the spin axis, by active control of low fre-
quency terrain tilt noise, etc.�. The key point is that changes
can be easily implemented in our numerical method and
simulation environment, since any modification of the model
corresponds to modifying only the part of the code where the
Lagrange function is clearly written in terms of vector op-
erations. The possibility to perform such realistic simula-
tions, before applying any real changes to the apparatus, al-
lows us to implement those which provide the best results so
as to optimize the experiment. Along these lines, the present
approach can be adapted to the “Galileo Galilei” �GG� ex-
periment in space, where we expect a much more sensitive

7
test of the equivalence principle.
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APPENDIX: THE TRANSFER FUNCTION

1. The C matrix

In our experiment, Eq. �3� is characterized by two inputs,
namely, the X� and Y� components of the external forces, and
two outputs Y, that are the relative displacements of the
two test cylinders from their equilibrium positions in the
sensitivity plane as measured in the rotating X�Y� frame.

That is, Y ��Y1 ,Y2	= ��Ro�t�−�Ri�t�� · �X̂� , Ŷ�	, where
�R
�t�=R
�t�−R


0. In order to determine the coefficients of
the C matrix, we thus have to combine Eq. �2� of Part I for
the vectors pointing to the three bodies and written in terms

of the unit vectors L̂a, L̂o, and L̂i together with the expression
�16� of Part I for the unit vectors in terms of the generalized
coordinates X= �x1 , . . . ,x12	, thereby obtaining expressions
for R
��x1 , . . . ,x12	�. In the linearized theory, we then have
�R
�t�=R
��x1+x1

0 , . . . ,x12+x12
0 	�−R�x1

0 , . . . ,x12
0 �
, so that

we can explicitly form the differences

Y1 = X̂� · �Ro�X + X0� − Ro�X0� − Ri�X + X0� + Ri�X0�� ,

Y2 = Ŷ� · �Ro�X + X0� − Ro�X0� − Ri�X + X0� + Ri�X0�� .

After imposing

�Y1

Y2
� = C�

x1

x2

¯

x12

� , �A1�

we obtain the coefficients Cjk of the 2�2n matrix as

C1k = k cos xk
0 cos xk+6

0 , k � 6,

C1k = k sin xk−6
0 sin xk

0, k � 6,

C2k = k cos xk
0 sin xk+6

0 , k � 6,

C2k = − k sin xk−6
0 cos xk

0, k � 6,

2k = 0, " k � 6, �A2�

where 1=−7=−�2La+�L�, 3=−9=L2, and 5=−11=
−L1.

2. The B matrix: Case of differential
and common accelerations

The vector U in Eq. �1� is defined as the components of
the given external force F on the sensitivity plane in the

rotating X�Y� frame, namely, U��U1 ,U2	=Fe · �X̂� , Ŷ�	. The
matrix B transforms the two-component U vector into its
2n=12-component counterpart U�X�.

In the case of a differential external force, we may figure
out Fe as having opposite signs when acting on the two test

cylinders. The B matrix is expressed as

Downloaded 15 May 2006 to 131.114.73.5. Redistribution subject to 
Bi1 = �
r=1

2n

MirBr1 for even i = 1, . . . ,2n ,

Bi2 = �
r=1

2n

MirBr2 for even i = 1, . . . ,2n ,

and

Bij = 0 for odd i = 1, . . . ,2n and j = 1,2, �A3�

where M is the “mass” matrix defined in Eq. �29� of Part I.
We find

B = �B j1 B j2� , �A4�

where B j1 is the column vector defined as

B j1 =�
���Ri − Ro� · X̂��/�	a

− ��Ro · X̂��/�	o

+ ��Ri · X̂��/�	i

���Ri − Ro� · X̂��/��a

− ��Ro · X̂��/��o

+ ��Ri · X̂��/��i

� , �A5�

and B j2 is obtained from B j1 after substitution of X̂� with Ŷ�.
Common accelerations instead would act on both test

bodies and the coupling arm. The resulting B matrix is then
composed by the column vectors,

B j1 =�
���Ra�ma/mi� + Ro + Ri� · X̂��/�	a

��Ro · X̂��/�	o

+ ��Ri · X̂��/�	i

���Ra�ma/mi� + Ro + Ri� · X̂��/��a

− ��Ro · X̂��/��o

+ ��Ri · X̂��/��i

� , �A6�

and the same for Bj2 containing the Y� components. In Eq.
�A6�, the factor ma /mi has been introduced so that the exter-
nal force produces on the arm the same acceleration as on the
inner and outer bodies.

3. The transfer function in the nonrotating frame

We show here how to transform the transfer function
into the nonrotating frame. In our setting, we may write for
the two-component �X�Y�� outputs YNR and inputs FNR in the
nonrotating frame,

YNR�t� = R�t�Y�t� , �A7�

FNR�t� = R�t�U�t� , �A8�

where the rotation matrix R is

R�t� = �cos �st − sin �st

sin �st cos �st
� . �A9�

After introducing the complex variable Z�t�=Y1�t�+ iY2�t�,
NR
from �A7� and �A9� we have Z �t�=exp�i�st�Z�t� and fi-
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nally in the frequency domain ZNR�s�=Z�s− i�s�=Y1�s
− i�s�+ iY2�s− i�s� or else

ZNR�s� = R�Z�s − i�s�� + iI�Z�s − i�s�� . �A10�

In a similar manner, we also have

W�s� = R�FNR�s + i�s�� + iI�FNR�s + i�s�� , �A11�

with W�s�=U1�s�+ iU2�s� and FNR�s��F1
NR�s�+ iF2

NR�s�.
We now evaluate the right-hand side of Eq. �A10� by

inserting the expressions of Eq. �3� for Y1�s− i�s� and Y2�s
− i�s� and using Eq. �A11� for W�s� �thus U1 and U2�. After
some simple algebra we obtain

ZNR�s� = HNR�s�FNR�s� �A12�

for the nonrotating output YNR�s� in response to the nonro-
tating forces FNR. The non-rotating transfer matrix HNR turns
out to be formed by a combination of the coefficients of the
rotating H, that is,

HNR�s� = �R�H11�s−� + iH21�s−�� R�H12�s−� + iH22�s−��
I�H11�s−� + iH21�s−�� I�H12�s−� + iH22�s−��

� ,

�A13�
where we have introduced the shorthand notation s−

�s− i�s.
Let us now look at the poles plm

r and zeros zlm
r of the

rotor response. The rotating Hlm can be expressed as

Hlm�s� =
�r�s − zlm

r + i�s��s − zlm
r*

− i�s�

�r��s − plm
r� + i�s��s − plm

r�*
− i�s�

, �A14�

showing that poles �zeros� in the rotating frame are calcu-
lated by shifting the nonspinning values plm

r �zlm
r � by ±i�s,

namely, plm
r ± i�s �zlm

r ± i�s�. By inspection from Eq. �A13�, it
follows that the poles �zeros� of HNR in the nonrotating frame
can be expressed in terms of the pr �zr � nonspinning values
lm lm

Downloaded 15 May 2006 to 131.114.73.5. Redistribution subject to 
as combinations of a dc component plm
r and of a term plm

r

+2i�2 modulated at twice the spin frequency �zlm
r and zlm

r

+2i�2�.

1 E. Fischbach, D. E. Krause, C. Talmadge, and D. Tadic, Phys. Rev. D 52,
5417 �1995�.

2 T. Damour, F. Piazza, and G. Veneziano, Phys. Rev. Lett. 89, 081601
�2002�.

3 Y. Su et al., Phys. Rev. D 50, 3614 �1994�.
4 S. Baebler, B. R. Heckel, E. G. Adelberger, J. H. Gundlach, U. Schimidt,
and H. E. Swanson, Phys. Rev. Lett. 83, 3585 �1999�.

5 P. W. Worden Jr. and C. W. F. Everitt, in Experimental Gravitation, Pro-
ceedings of the “Enrico Fermi” International School of Physics, Course
LVI, edited by B. Bertotti �Academic, New York, 1973�; J. P. Blaser et al.,
ESA SCI Report No. �96�5, 1996 �unpublished�; see also the STEP web-
site http://einstein.stanford.edu/STEP/step2.html

6 See the MICROSCOPE website http://www.onera.fr/dmph/accelerometre/
index.html

7 A. M. Nobili, D. Bramanti, G. L. Comandi, R. Toncelli, E. Polacco, and
M. L. Chiofalo, Phys. Lett. A 318, 172 �2003�; Galileo Galilei �GG�
Phase A Report, ASI, 2nd ed., January 2000; A. M. Nobili, D. Bramanti,
G. Comandi, R. Toncelli, E. Polacco, and G. Catastini, Phys. Rev. D 63,
101101 �2001�; for a review see, e.g., A. Nobili, in Recent Advances in
Metrology and Fundamental Constants, Proceedings of the “Enrico
Fermi” International School of Physics, Course CXLVI, edited by T. J.
Quinn, S. Leschiutta, and P. Tavella �IOS, IOS Press, 2001�, p. 609; see
also the GG website http://eotvos.dm.unipi.it/nobili

8 A. M. Nobili, D. Bramanti, G. L. Comandi, R. Toncelli, and E. Polacco,
New Astron. Rev. 8, 371 �2003�.

9 G. L. Comandi, A. M. Nobili, D. Bramanti, R. Toncelli, E. Polacco, and
M. L. Chiofalo, Phys. Lett. A 318, 213 �2003�.

10 G. L. Comandi, A. M. Nobili, R. Toncelli, and M. L. Chiofalo, Phys. Lett.
A 318, 251 �2003�.

11 A. M. Nobili, D. Bramanti, G. L. Comandi, R. Toncelli, E. Polacco, and
M. L. Chiofalo, in Proceedings of the XXXVIIIth Rencontre de Moriond
“Gravitational Waves and Experimental Gravity,” edited by J. Dumarchez
and J. Tran Thanh Van �The Gioi, Vietnam, 2003�, p. 371.

12 Note that Ki and Ko are bound to be very similar to K for symmetry
reasons, and that Lo is related to Li through Lo=2La+�L+Li. Thus Li �or
else L � is the remaining independent parameter.
o

AIP license or copyright, see http://rsi.aip.org/rsi/copyright.jsp


	A fast rotating differential accelerometer for testing the Equivalence Principle: prleiminary results
	Table of contents
	Introduction
	Symbols
	CHAPTER 1 INTRODUCTION TO THE DYNAMICAL BEHAVIOUR OF ROTORS.
	1.1: GENERAL CONSIDERATIONS.
	1.2: THE LINEAR JEFFCOTT ROTOR.
	1.3: VISCOUS DAMPING.
	1.4: THE JEFFCOTT ROTOR WITH VISCOUS DAMPING.
	1.5: STRUCTURAL DAMPING.
	1.6: ACCELERATING JEFFCOTT ROTOR.
	1.7: COUPLED ROTORS.
	1.8: WHIRLING MOTION AND STABILIZING FORCE.
	1.9: ENERGY DISSIPATION IN WHIRLING MOTION.
	1.10: ISOTROPIC JEFFCOTT ROTOR ON NON-ISOTROPIC SUPPORTS.
	1.11: NON-ISOTROPIC JEFFCOTT ROTOR. NATURAL FREQUENCIES.
	1.12: CONCLUSIONS.

	CHAPTER 2: THE GGG –“GG (GALILEO GALILEI) ON THE GROUND” DIFFERENTIAL ACCELEROMETER FOR TESTING THE EQUIVALENCE PRINCIPLE. OVERVIEW OF THE EXPERIMENT.
	2.1: INTRODUCTION.
	2.2: BASIC CONCEPTS OF THE GGG MECHANICAL DESIGN.
	2.3: HOW IT WORKS.
	2.4: THE SIGNAL OF AN EQUIVALENCE PRINCIPLE VIOLATION.
	2.5: THE READ-OUT SYSTEM.
	2.6: WHIRL CONTROL.
	2.7: ADJUSTMENTS AND SETTINGS.
	2.8: LOW FREQUENCY SEISMIC NOISE.

	CHAPTER 3: MATHEMATICAL MODEL OF THE GGG SYSTEM.
	3.1: INTRODUCTION.
	3.2: GENERALISED COORDINATES AND THE GGG MATHEMATICAL MODEL.
	3.3: THE LAGRANGEAN OF THE SYSTEM IN THE ROTATING REFERENCE FRAME.
	3.4: EQUILIBRIUM POSITIONS AND SECOND-ORDER EXPANSION OF THE LAGRANGEAN.
	3.5: LINEARIZED EQUATIONS OF MOTION.
	3.6: EQUATIONS OF MOTION IN STATE-VARIABLE FORM.
	3.7: ROTATING AND NON-ROTATING DAMPING.
	3.8: NUMERICAL SIMULATION OF THE GGG SYSTEM.
	3.9: NORMAL MODES AS DERIVED FROM THE NUMERICAL SIMULATION.
	3.9.A: COMPARISON WITH THE EXPERIMENT.
	3.9.B: THE ROLE OF DAMPING.
	3.9.C: THE LOW-FREQUENCY LIMIT.
	3.9.D: NORMAL MODES AS FUNCTIONS OF THE SPIN FREQUENCY.
	3.9.E: INSTABILITY REGIONS.
	3.9.F: GGG FREQUENCY RESPONSE.
	3.10: APPROXIMATED FORMULA FOR DERIVING THE NORMAL MODES.
	3.11: CONCLUDING REMARKS.

	CHAPTER 4: DYNAMICAL RESPONSE OF THE GGG DIFFERENTIAL ACCELEROMETER.
	4.1: INTRODUCTION.
	4.2: EXTERNAL FORCES AND COMPUTATION OF THE TRANSFER FUNCTION.
	4.3: THE C MATRIX.
	4.4: THE B MATRIX.
	4.5: THE TRANSFER FUNCTION IN THE NON-ROTATING REFERENCE FRAME.
	4.6: THE COMMON MODE REJECTION FACTOR.
	4.7: ANALYTICAL SOLUTION AT ZERO SPIN.
	4.8: LOW AND HIGH SPIN FREQUENCY REGIME.
	4.8.A: THE PERIOD OF NATURAL DIFFERENTIAL OSCILLATION.
	4.8.B: RELATIVE DISPLACEMENT AS FUNCTION OF FREQUENCY OF THE EXTERNAL FORCE.
	4.8.C: COMMON MODE REJECTION OF LOW FREQUENCY FORCES.
	4.9: INTERMEDIATE SPIN FREQUENCIES REGIME.
	4.10: ENHANCED COMMON MODE REJECTION.
	4.11: MOMENT OF INERTIA AND SELF-CENTRING OF ROTORS.
	4.12: SELF-CENTRING IN THE GGG ROTOR.
	4.13: CONCLUDING REMARKS.

	CHAPTER 5: EXPERIMENTAL RESULTS ON WHIRL MOTION AND QUALITY FACTOR.
	5.1: INTRODUCTION.
	5.2: THE MEASUREMENT DATA.
	5.3: THEORETICAL MODEL OF THE WHIRL.
	5.4: BACKWARD AND FORWARD WHIRLS IN THE EXPERIMENT.
	5.5: BEST FIT OF THE WHIRL MOTION.
	5.6: GENERAL CONSIDERATIONS ON THE QUALITY FACTOR OF THE GGG SYSTEM.
	5.7: Q MEASUREMENTS AT ZERO SPIN RATE.

	CHAPTER 6: ACTIVE LINEAR CONTROL OF THE WHIRL MOTIONS.
	6.1: INTRODUCTION.
	6.2 THE B MATRIX.
	6.3 WHIRL DAMPING AND SIMULATION OF THE CONTROL SCHEME.
	6.4 EXPERIMENTAL RESULTS.

	CHAPTER 7: ACTIVE REDUCTION OF SEISMIC NOISE.
	7.1: MEASURED ENVIRONMENTAL DISTURBANCES.
	7.2: OPEN LOOP SCHEME OF THE SYSTEM.
	7.3: PROPORTIONAL-INTEGRAL CONTROL OF SEISMIC NOISE.
	7.3.A: THE TRANSFER FUNCTIONS.
	7.3.B: PRELIMINARY EXPERIMENTAL RESULTS.

	CHAPTER 8: THE GGG EXPERIMENT- CONCLUDING REMARKS AND PERSPECTIVES.
	CHAPTER 9: THE GG SPACE EXPERIMENT.
	9.1: INTRODUCTION.
	9.2: THE GG EXPERIMENT CONCEPT.
	9.3: THE SPACECRAFT AND THE ORBIT.
	9.4: REQUIREMENTS AND ERROR BUDGET.
	9.5: THE MATHEMATICAL MODEL.
	9.6: GENERAL SOLUTION OF THE EQUATIONS OF MOTION.
	9.7: DYNAMICAL EVOLUTION IN THE ROTATING FRAME.
	9.8: NON ROTATING DAMPING AND WHIRLING STABILISATION.
	9.9: RECONSTRUCTION OF THE WHIRL MOTION.
	9.9.A RECONSTRUCTION OF THE RELATIVE DISPLACEMENT.
	9.9.B: RECONSTRUCTION OF THE RELATIVE VELOCITY.
	9.10: THE CONTROL FORCE.
	9.11: RESULTS OF THE NUMERICAL SIMULATIONS AND CONCLUSIONS.
	9.12: TIDAL EFFECTS ON THE GG TEST MASSES.
	9.12.A: EP VIOLATION SIGNAL AND TIDAL EFFECTS FOR TEST MASSES COUPLED IN THE ORBIT PLANE.
	9.12.B: TIDAL EFFECTS IN SUPERCRITICAL ROTATION.
	9.12.C: THE GG EXPERIMENT: EP VIOLATION SIGNAL, WHIRL MOTION AND TIDAL EFFECTS IN THE SENSITIVE PLANE.
	9.12.D: THE GG EXPERIMENT: TIDES DUE TO RELATIVE DISPLACEMENTS ALONG THE SPIN AXIS.

	APPENDIX 3.A: THE LAGRANGEAN OFA ROTOR.
	APPENDIX 4.A: TRANSFER FUNCTION IN THE NON-ROTATING FRAME.
	APPENDIX 4.B: SELF-CENTRING.
	APPENDIX 5.A: DATA ANALYSIS IN THE ROTATING FRAME - FOURIER FILTER.
	APPENDIX 5.B: THE  s+ AND s- FUNCTIONS.
	APPENDIX 8.A: THE GGG ELECTRONIC CIRCUITS.
	APPENDIX 9.A: THE PGB PASSIVE NOISEATTENUATOR IN THE GG SPACE EXPERIMENT.
	APPENDIX 9.B: A PGB-LIKE PASSIVE/ACTIVE NOISE ATTENUATOR ON THE SPACE STATION.
	9.B.1: The Mechanical Suspensions.
	9.B.2: Goal and Requirements of the Active Control.
	9.B.3: Derivation of the Transfer Function.
	9.B.4: Thermal Analysis.

	APPENDIX 9.C: NUMERICALSIMULATION OF THE GG DYNAMICALSYSTEM.
	9.C.1: EIGENVALUES OF THE GG ROTOR IN THE INERTIAL FRAME.
	9.C.2: SIMULATION OF THE WHIRLING MOTION IN THE ROTATING FRAME.
	9.C.3: SIMULATION OF THE WHIRLING STABILIZATION – IDEAL CASE.
	9.C.4: SIMULATION OF THE WHIRL CONTROL WITH REALIST ERRORS.

	Article no. 34: ``Galileo Galilei (GG) on the Ground-GGG'':  experimental results and perspectives
	Introduction
	Design and main features of the GGG differential accelerometer
	Quality factor, whirl control and sensitivity
	Conclusions
	Acknowledgements
	References

	Article no. 54: Tidal effects in space experiments to test the equivalence principle: implications on the experiment design
	Introduction
	EP violation signal and tidal effects on free-flying test masses in low Earth orbit
	EP violation signal and tidal effects with test masses coupled in the orbit plane
	Signal modulation
	EP violation signal and tidal effects in the GG space experiment design
	The GG apparatus
	Whirl motion and tidal frequencies in the sensitive plane
	Tides due to relative displacements along the spin/symmetry axis

	EP violation signal and tidal effects with test masses coupled and controlled in one dimension: the STEP and µSCOPE cases
	Conclusions
	Acknowledgements
	References

	Article no. 28: ``Galileo Galilei-GG'': design, requirements, error budget and significance of the ground prototype
	Introduction
	The signal and the accelerometers
	The spacecraft and the orbit
	Requirements and error budget
	Significance of the ground prototype
	Acknowledgements
	References

	Article no. 33: A rotating differential accelerometer for testing the equivalence principle in space: result
	Introduction
	Design of the apparatus
	Adjustments and settings of the apparatus
	Read-out and data acquisition
	Results from measurement data
	Concluding remarks
	Note added in proof
	Acknowledgements
	References

	Article no. 40: The fast rotating "GGG" differential accelerometer for testing the Equivalence Principle: current state and analysis of seismic disturbances 
	The GGG differential  accelerometer:deisign and current sensitivity
	Relevance for a space test to 10^-17
	Seismic noise attenuation for a ground test to 10^-13
	Acknowledgements and references

	References
	Article [I]:Dynamical response of the Galileo Galilei on the ground rotor to test the equivalence principle: Theory, simulation and expeirment. I. The normal modes
	Introduction
	The GGG rotor: overview of the experiment
	The model
	The numerical method
	Reults: the normal modes
	Concluding remarks
	Appendix A: The Lagrange function in the rotating reference frame
	Appendix B: The one-cylinder solution
	Appendix C: The self-centering
	References

	Article [II]: Dynamical response of the Galileo Galilei on the ground rotor to test the equivalence principle: Theory, simulation and experiment. II. The rejection of common mode forces
	Introduction
	The numerical method
	Results
	Enhanced rejection behavior of the GGG rotor
	Concluding remarks and perspectives
	Appendix: The transfer function
	References




