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As an important sequel to his first paper on relativity, Einstein’s extensive discussion of the
subject in the 1907 issue of Jahrbuch der Radioaktivitdt und Elektronik, including a first
exposition of his embryonic ideas on gravitation, is of intrinsic as well as considerable
historical interest. In this, the first of three parts dealing with Einstein’s essay, a translation
is presented of the Introduction and of Part I, which is concerned with relativistic

kinematics.

A. INTRODUCTION

Two years after the appearance of his first paper on
the theory of relativity,! Einstein published in the then
prestigious Jahrbuch der Radioaktivitit und Elektronik
an extensive survey article on the subject,? entitled “Uber
das Relativitidtsprinzip und die aus demselben gezogene
Folgerungen.”? In addition to a renewed painstaking
analysis of the basic kinematic principles of the theory of
relativity, and a treatment of relativistic mechanics and
thermodynamics inspired by Planck’s work on the subject
of the same year, the memoir includes a note on the clash
with conventional causality of assuming the existence of
signals faster than light, an extension of Einstein’s earlier
discussions concerning the inertia of energy, and, most
importantly, a first step towards the eventual creation of
the general theory of relativity in the brilliant idea of an
intimate link between “acceleration” and gravitation, as
suggested by the proportionality between inertial and gra-
vitational mass.

Some of the topics treated in the memoir and the methods
employed there are even today not devoid of at least edu-
cational interest. But its greatest interest by far is certainly
historical. The Introduction, in particular, contains valuable
information bearing on the history of special relativity, when
considered alongside the relevant material in Ref. 1. As for
the history of general relativity, the significance of Ein-
stein’s first inspirational flashes, which in the course of a
personal scientific odyssey culminated in his remarkable
gravitational equations, is of course abundantly clear.

It is because of this considerablie historical interest pre-
sented by the memoir that a translation of the Introduction
and of the first and last parts together with a concise mod-
ernized rendition of its other parts appeared worth under-
taking. Nevertheless, a few words of explanation are in
order why there is, in fact, any need of an English rendition
when the chief significance of this essay today is, after all,
only to historians of science. What must be stressed here is
that in addition to the professional historians of science, who
are naturally in a position to avail themselves of the original
material at first hand, there are many scientists who for one
reason or another have serious but subsidiary historical
interests and who may not find it feasible to go directly to
the original work. Moreover, the comments presented in the
footnotes that relate to the ideas or mathematical steps in
the memoir, as well as the modernized rendition, may be
helpful not only to the latter group but to some members
of the former group as well.

The present paper consists of a translation of the Intro-
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duction and of Part I of Einstein’s essay. As in the earlier
work,* of which the present is a sequel, it is endeavored to
strike some reasonable balance between a measure of ad-
herence to prevailing English idiom and as close a repro-
duction of the original in content, style, and even punc-
tuation, as seemed possible. Unlike Ref. 4, the present
translation reproduces the numbering of formulas as found
in the original. Thus the only changes that are introduced
in the translation are in the mathematical notation of a few
formulas (for typographical convenience) and in the addi-
tion of a few footnotes. The latter are numbered by Arabic
riumerals, while the footnotes of the original paper are in-
dicated by lowercase Roman letters.

B. TRANSLATION OF THE INTRODUCTION
AND THE KINEMATIC PART OF
EINSTEIN’S PAPER

The Newtonian equations of motion retain their form
upon a transformation to a new coordinate systemr which
is in a state of uniform translational motion relative to the
original system, according to the equations

x'=x—-vt, y =y, z'=z

As long as one held to the opinion that all of physics could
be built upon the Newtonian equations of motion, one could
entertain no doubt that the laws of nature come out the
same when referred to any one of a family of coordinate
systems which move uniformly (free of acceleration) with
respect to each other.’ That independence from the state
of motion of the employed coordinate system,> which will
henceforth be called “the principle of relativity,” appeared
however all at once open to question through the brilliant
confirmations which the electrodynamic theory of H. A.
Lorentz has experienced.? That theory is founded, namely,
on the assumption of a stationary immobile ether: its fun-
damental equations are not so constructed that they go over
into equations of the same form upon application of the
above transformation equations.

Since the emergence of that theory one had to expect that
one would succeed in demonstrating an influence of the
motion of the Earth relative to the luminiferous ether upon
optical phenomena. As is known, Lorentz proved indeed in
that work that according to his basic assumptions no in-
fluence of the relative motion upon the path of a [light]® ray
was to be expected, as long as one restricts oneself in the
calculation to terms in which the ratio v/c of that relative
velocity to the velocity of light in vacuum enters only in the
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first power. But the negative result of the Michelson and
Morley experiment® showed that in a particular case an
effect of second order (proportional to v2/c2) was also ab-
sent, even though according to the foundations of Lorentz’s
theory it ought to have been noticeable in the experi-
ment.

It is known that that contradiction between theory and
experiment was formally removed by the assumption of H.
A. Lorentz and G. F. Fitzgerald, according to which moving
bodies experience a certain contraction in the direction of
their motion. This ad hoc assumption appeared however as
just an artificial device for saving the theory; the Michelson
and Morley experiment had made it quite clear that phe-
nomena obey the principle of relativity also then, when that
could not be foreseen from Lorentz’s theory. It appeared
thus that Lorentz’s theory had to be abandoned again, and
replaced by a theory whose foundations agreed with the
principle of relativity, since such a theory made it possible
to foresee the negative result of the Michelson and Morley
experiment directly.

Surprisingly, however, it turned out that it was only
necessary to grasp the concept of time sharply enough in
order to get around the above difficulty. It required only the
recognition that the auxiliary quantity introduced by H. A.
Lorentz, and called by him “local time,” can be defined as
simply “time.” If one adheres to the indicated definition of
time, then the basic equations of Lorentz’s theory accord
with the principle of relativity, provided only the above
transformation equations are replaced by transformation
equations that agree with the new time concept. The hy-
pothesis of H. A. Lorentz and G. F. Fitzgerald appears then
as a necessary consequence of the theory. Only the idea of
a luminiferous ether as the carrier of electric and magnetic
forces does not fit in with the theory presented here; for
electromagnetic fields do not appear here as states of some
kind of matter, but rather as independently existing objects,
on a par with matter, and sharing with the latter the char-
acteristic of inertia.

In what follows it is endeavored to present an integrated
survey of the investigations which have arisen to date from
combining the theory of H. A. Lorentz and the theory of
relativity.

In the first two parts of this work are treated the kine-
matic foundations of the theory of relativity and their ap-
plication to the basic equations of the Maxwell-Lorentz
theory; 1 am following here the investigations® of H. A.
Lorentz (Versl. Kon. Akad. v. Wet., Amsterdam 1904), and
A. Einstein (Ann. d. Phy. 16, 1905).

In the first section,” in which application is made exclu-
sively of the kinematic foundations of the theory of rela-
tivity, I have also treated some optical problems (the Dop-
pler effect, aberration, the dragging of light through moving
bodies); my attention has been drawn to the possibility of
such a treatment by an oral communication and a paper
(Ann. d. Phys. 23, 989, 1907)8 of Mr. M. Laue, and by a
paper (in need of correction, to be sure) of Mr. J. Laub
(Ann. d. Phys. [23, 738], 1907).

The third part contains a development of the dynamics
of the material point (the electron). For the derivation of
the equations of motion I employ the same method as in my
above-mentioned work. Force is defined as in Planck’s
paper. Also taken from this work are the transformations
of the equations of motion of a material particle, which
make it possible to bring out so clearly the analogy of these
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equations with the equations of motion of classical me-
chanics.

The fourth part deals with the general conclusions con-
cerning the energy and momentum of physical systems, to
which one is led by the theory of relativity. These have been
developed in the following original papers:

A. Einstein, Ann. d. Phys. 18, 639, 1905, and Ann. d.
Phys. 23, 371, 1907; as well as M. Planck, Sitzungs-
ber. d. Kgl. Preuss. Akad. d. Wissensch. XXIX,
1907.

They are, however, derived here in a new way, which—as
appears to me—allows us to recognize especially clearly the
connection between those applications and the foundations
of the theory. Also treated here is the dependence of entropy
and temperature on the state of motion®; on entropy I follow
entirely the last cited paper of Planck, while I define the
temperature of moving bodies as Mr. Mosengeil does in his
paper on moving cavity radiation.d

The most important result of the fourth part concerns the
inertial mass of energy. This result suggests the question
whether energy also possesses gravitational mass. The
further question forces itself whether the principle of rela-
tivity is restricted to nonaccelerated moving systems. In
order not to leave these questions completely out of the
discussion, I have added in this essay a fifth part, which
includes a new relativistic-theoretic view on acceleration
and gravitation.

I. Kinematic part

1. The principle of the constancy of the velocity of
light. Definition of time. The principle of relativity

In order to be able to describe any given physical process,
it must be possible for us to label spatially and temporally
the changes occurring at individual points of space.

For the spatial labeling of a process occurring in a spatial
element with infinitely short duration (point-event), we
require a Cartesian coordinate system, i.e., three mutually
perpendicular and rigidly connected rigid rods together with
a rigid unit measuring rod.® Geometry permits the deter-
mination of the position of a point or of the place of a
point-event in terms of three measure-numbers (coordinates
x,y,z).f For the temporal labeling of a point-event we em-
ploy a clock, which is at rest relative to the coordinate sys-
tem and in whose immediate vicinity the event occurs. The
time of the point-event is defined by the simultaneous
reading of the clock.

We consider clocks, at rest relative to the coordinate
system, arranged at many points. These are all to be
equivalent; i.e., the difference of the readings of any two
such clocks are to remain unaltered, when they are arranged
near each other. If we imagine these clocks stationed in any

~ manner, then provided they are arranged with sufficiently

small separations, the ensemble of clocks allows the tem-
poral labeling of an arbitrary point-event—namely, by
means of the adjacent clock.

The sum total of these clock-readings does not, however,
provide us as yet with a “time,” as it is needed for the pur-
poses of physics. We require in addition a rule according
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to which these clocks are to be set with respect to each
other.

We assume now that the clocks can be so regulated, that
the propagation velocity in empty space of every light
ray—when measured with these clocks—is everywhere
equal to a universal constant c, provided the coordinate
system is not accelerated.'® If 4 and B are two points oc-
cupied by clocks at rest in the coordinate system and at a
distance r apart, and if 74 is the reading of the clock at 4
when a light ray propagating through a vacuum in the di-
rection AB reaches the point A, and ¢ is the reading of the
clock at B when the light ray arrives at B, then regardless
of the state of motion of the light source or of other bodies,
one always has

r/(tg — ty) =c.

That the assumption just made, which we shall call the
*“principle of the constancy of the velocity of light,” is ac-
tually satisfied in nature, is not at all self-evident, but it is
made probable—at least for a coordinate system in a defi-
nite state of motion—by the experimental confirmations
of Lorentz’s theory,® which is based on the assumption of
an absolutely stationary ether.h

The aggregate of the readings of all the clocks that have
been set according to the foregoing specification, and which
we can imagine to be at rest at the individual points relative
to the coordinate system, we call the time belonging to the
coordinate system under consideration, or briefly, the time
of this system. ‘

The coordinate system under consideration together with
a unit measuring rod and the clocks which serve to establish
the time of the system, we call “reference system S.” We
suppose that the natural laws are established with respect
to the system S, which is at first, say, at rest relative to the
Sun. Subsequently the system is accelerated for a time by
some outside causes, finally reaching again a state of no-
naccelerated motion. How will the laws of nature turn out
when the processes are referred to a coordinate system!! .S
which is now in a different state of motion?

Regarding this question we now make the simplest im-
aginable assumption, and one that is also suggested by the
Michelson and Morley experiment: The laws of nature are
independent of the state of motion of the system of refer-
ence, at least if the latter is without acceleration.1?

The following discussion will be based on this assumption,
which we call the “principle of relativity,” as well as on the
aforestated principle of the constancy of the velocity of
light.

2. General remarks concerning space and time

1. We consider a number of unaccelerated rigid bodies
that move alike (i.e., are mutually at rest). According to the
principle of relativity we conclude that the laws governing
the possible mutual spatial arrangements of these bodies
do not change with the change in their common state of
motion. From this it follows that the laws of geometry al-
ways determine the positional possibilities of rigid bodies
in the same way, independently of their common state of
motion.!2 Assertions about the shape of a body moving
without acceleration!® have therefore immediate sense. We
shall call the shape of a body in the described sense its
“geometric shape.” The latter is obviously not dependent
on the state of motion of a system of reference.
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2. According to the definition of time given in Sec. 1 a
statement about time has sense only with respect to a ref-
erence system in a definite state of motion. It is therefore
to be expected (and will be confirmed in what follows) that
two distant point-events, which are simultaneous with re-
spect to a reference system S, are in general not simulta-
neous with respect to a reference system S” in a different
state of motion.

3. Let a body consisting of the material points P move
in some manner relative to a reference system S. At the time
t of § each material point P possesses a definite position in
S, i.e., it coincides with a definite point I1 at rest relative to
S. The aggregate of the positions of the points II relative
to the coordinate system of S, and the aggregate of the
mutual positional relations of the points IT, we call respec-
tively the position'3 and the kinematic shape'3 of the body
with respect to S at the time ¢. If the body is at rest relative
to S, then its kinematic shape and its geometric shape are
identical.

[t is clear that an observer at rest relative to a reference
system S, can only ascertain the kinematic shape of a body
that is moving relative to S, but not its geometric shape.

In the sequel we shall not usually differentiate explicitly
between geometric and kinematic shape; an assertion of
geometric content is concerned with the kinematic or the
geometric shape, respectively, according as it does or does
not relate to a reference system S.

3. Transformation of coordinates and time

Let S and S’ be equivalent coordinate systems, i.e., these
systems possess unit measuring rods of equal length and
clocks running at the same rate, when compared in a state
of relative rest. It is then clear that every law of nature
which holds with respect to S, holds also with respect to S’
in exactly the same form, provided S and S’ are at rest with
respect to each other. The principle of relativity requires the
same perfect agreement also when S” is in a state of uniform
translational motion relative to.S.'4 Thus, in particular, we
must obtain the same value for the velocity of light in vac-
uum, relative to both coordinate systems.

Let an event!> be determined relative to S by the vari-
ables x,y,z,t, and relative to S’ by the variables x’,y’,z’,t’,
where S and S’ are free of acceleration and move with re-
spect to each other. What are the equations that obtain
between the two sets of variables?

We can say at once that these equations must be linear
in the stated variables, since this is demanded by the ho-
mogeneity properties of space and time. From this it follows
in particular that the coordinate planes of S’—referred to
the reference system S—are uniformly moving planes; al-
though in general these planes will not be mutually per-
pendicular. However, if we choose the position of the x’-axis
so that the latter—when referred to S——has the same di-
rection as that of the translational motion of S” with respect
to S, then it follows from symmetry considerations that the
coordinate planes of S’ referred to S must be mutually
perpendicular. In particular, we shall choose, as we may,
the positions of the two coordinate systems so that the x-axis
of S coincides lastingly with the x’-axis of S’, and that the
y’-axis of S’ referred to S is parallel to the y-axis of S. We
shall, further, choose as the time origin of both systems the
instant of coincidence of the origins of coordinates; the
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linear transformation equations we are seeking are then
homogeneous.

We now conclude immediately from our knowledge of
the position of the coordinate planes of S’ relative to S, that
every pair of the following set of equations is equivalent:

x’=0andx —vt=0; y'=0andy=0;
zZZ=0andz =0.

Hence three of the sought transformation equations are of
the form:

x'=a{x—wvt), y' =by, z’/'=cz

Since the velocity of propagation of light in empty space
equals ¢ with respect to both reference systems, the two
equations

X2+ p2 4 22 = ¢2¢2
and
X2+ y'24 22 =22

must be equivalent. From this and from the above-found
expressions for x’,)’,z” one concludes after a simple calcu-
lation, that the sought transformation equations must be
of the form: '

= ¢)B[t — (v/cH)],
y' = o)y,

where we have set

x' = ¢)B(x —vt),
/= ¢(v)z,

8= 11— (o),

We shall now determine the function of v which still re-
mains undetermined. If we introduce a third reference
system S”, that is equivalent to S and S’, moves with the
velocity —v relative to S’, and is oriented relative to S* as
S’ is to S, we obtain by a double application of the equations
arrived at above

17 = ¢)p(=0)t, x" = ¢p(V)d(~v)x,
y'=¢@)e(-v)y. 27 = ¢(v)d(-v)z.

Since the origins of coordinates of S and S” remain in co-
incidence, and since the axes have the same orientation and
the systems are “equivalent,” therefore this transformation
is the identity,! so that

¢()p(—v) = 1.

Since, moreover, the relationship between y and y’ cannot
depend on the sign of v,

d(v) = p(—v).

Therefore,) ¢(v) = 1, and the transformation équations
read

t' = B[t —(v/cHx],
y'=y z2z'=z n

x’ = B(x — vt),

where .
8=~ /ey,

If one solves the equations (1) with respect to x,y,z,t, one
obtains the same equations, except that the “primed”
quantities are replaced by the corresponding “unprimed”
quantities and conversely, and v is replaced by —v. This also
follows directly from the principle of relativity and from the
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consideration that S is in a state of uniform translation with
respect to S, with velocity —v in the direction of the X’-
axis.

In general, we obtain according to the principle of rela-
tivity a correct relationship between “primed” quantities
(defined with respect toS’) and “unprimed” quantities
(defined with respect to S), or between quantities of only
one of these types, when we replace the unprimed by the
primed symbols and conversely, and also replace v by
0.

4. Consequences from the transformation equations
that concern rigid bodies and clocks

1. Consider a body at rest relative to S”. Let x{",y1".z,’
and x7’,y5’,z5” be the coordinates of two of its material
points referred to S’. Between the coordinates x;,y,z; and
X3,¥2.2 of these points relative to S, there obtain at each
time ¢ of S, according to the above-derived transformation
equations, the relations

X2 = xp = [1 = (©/c)?]Hxy' — x1),
ya=n =y -yl

The kinematic shape of a body considered to be in a state
of uniform translation depends thus on its velocity relative
to the reference system; namely, by differing from its geo-
metric shape in being contracted in the direction of the
relative motion in the ratio 1:[1 — (v/c)]/2. A relative
motion of reference systems with superluminal velocity is
incompatible with our principles.

2. Suppose that there is a clock at rest at the origin of
coordinates of S”, which runs »g times faster than the clocks
employed in the systems S and S” for the measurement of
time, i.e., this clock executes »g periods during a time in
which the reading of a clock which is at rest relative to it and
is of the nature of the clocks employed in S and S’ for the
measurement of time, increases by one unit. How fast does
the first-mentioned clock run as viewed from S?

The clock under consideration completes each of its cy-
cles at the instants f,” = n/po, where n runs through the set
of integers, and x” = O for this clock. From this one obtains,

with the aid of the first two transformation equations, the
values

22—21=22’—Z|,. (2)

t, = Bt," = Bnfvg

for the instants t,, when, as viewed from S, the clock com-
pletes each of its cycles. As viewed from S, the clock exe-
cutes therefore v = vy/B = vo[1 — (v/c)?]'/2 periods per unit
of time; or: a clock moving uniformly with the velocity v
relative to a reference system, runs when viewed from that
system, more slowly in the ratio 1:[1 — (v/c)2]'/2 than the
same clock when at rest relative to this reference system.

The formula » = »p[1 — (v/c)?]'/2 admits of a very in-
teresting application. Mr. J. Stark has shown last yeark that
the ions forming the canal rays emit line spectra, by ob-
serving a shift of spectral lines which he interpreted as a
Doppler effect.

Since we may well consider the oscillational process
corresponding to a spectral line as an intra-atomic process
whose frequency its determined solely by the ion, we can
consider such an ion as a clock of definite frequency v,
which frequency is obtainable, e.g., by examination of the
light emitted by identical ions that are all at rest relative to
the observer. The above consideration shows then that the
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influence of the motion on the light frequency to be ascer-
tained by the observer is not yet completely accounted for
by the Doppler effect. The motion reduces in addition the
(apparent) proper frequency of the emitting ions according
to the above relationship.!

5. Addition theorem of velocities

Let a point move uniformly relative to the system S” ac-
cording to the equations

x' = ux’t’, y/ = uy’t’, 2 = llz,t/.
Replacing x’,y’,z’,t’ by x,y,z,t by means of the transfor-
mation equations (1), one obtains x,y,z as functions of ¢, and
hence also the velocity components'® uy,u,,u, of the point
with respect to S. There result thus the equations [cor-
recting a trivial misprint]
Uy’ +v [l = (e -,
Uy =—‘/—“2“, uy=—,2uy ,
1 + (vuy'/c?) 1 + (vuy’/c?)

_- @

T+ (vuyfe?)

The parallelogram law of velocities holds therefore only
in first approximation. Setting

(3)

wr=u2+ w2 tu?, wr=u/?+u/?+u,?

and denoting by « the angle between the x’-axis (v) and the
direction of motion of the point relative to S” ('), then
[correcting a dimensionally obvious misprint]

u=[(v2+ u'?+ 20u’ cos @)
— (vu’ sin a/c)?)V/2/[1 + (v’ cos a/c?)].

If both velocities (v and u’) have the same direction,
then:

u=(v+u)/[1+ (wu'/c?)].

From this equation it follows that from the superposition
of two velocities that are smaller than ¢, there always results
a velocity smaller than ¢. Forif wesetv=c —k, w' =c —
A, where k and X are positive and smaller than ¢, then:

u=cQRe—k—N/Qc—k—=-x+krYH<ec

It follows further that the superposition of the velocity of
light ¢ and a “subluminal velocity™ yields again the velocity
of light ¢.!7

From the addition theorem of velocities results the fur-
ther interesting consequence, that no action can exist which
can be utilized for arbitrary signaling and which has a
propagation speed greater than that of light in vacuum. In
fact, suppose a material strip extended along the x-axis of
S, relative to which a certain action can be propagated with
the speed W (as judged from the material strip), and let
observers who are at rest relative to S be situated both at
the point x = 0 (point 4) and at the point x = X (point B).
Let the observer at 4 send signals to the observer at B by
means of the aforementioned action, through the material
strip, which is not at rest but moves with the speed v (< ¢)
in the direction of the negative x-axis. The signal is then,
according to the first of equations (3), carried from A to B
with the speed (W — v)/[1 — (Wv/c?)]. The time T re-
quired for this is therefore [correcting a trivial misprint]

T = [l — (Wo/eD)]/(W = p).

The speed v can take on any value smaller than c. If there-
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fore, as we have assumed, W > ¢, we can always choose v
so that 7 < 0. This result signifies that we must consider as
possible a transmission mechanism that allows the intended
action to precede the cause. Although from a purely logical
point of view this result does not contain, in my opinion, any
contradiction, yet it clashes so much with the character of
our whole experience, that the impossibility of the as-
sumption W > ¢ appears thereby to be sufficiently prov-
en.

6. Applications of the transformation equations to
some optical problems

Let the light-vector of a plane light wave propagating in
vacuum be proportional to sin w[t — (Ix + my + nz)/c]
when referred to the system S, and to sin o[t — (I'x” +
m’y’ + n’z’)/c] when referred to S’. The transformation
equations developed in Sec. 3 require that the following
relations hold between the quantities w,/,m,n, and

o' m'n
, M A el /(9]
¢ _“’ﬁ<l c>' = o)
m/ m ’ n (4)

L= /o1 " T B = (el
We shall interpret the formula for w” in two different ways,
according as we consider the observer as moving and the
(infinitely distant) light source as stationary, or conversely
the first as stationary and the latter as moving.

1. If an observer moves with the speed v relative to an
infinitely distant light source of frequency », so that the
connecting line “light source-observer” forms the angle ¢
with the velocity of the observer, referred to a coordinate
system which is at rest relative to the light source, then the
frequency »’ of the light as perceived by the observer is given
by the equation

v = [l = (v/c) cos ¢1/[1 — (v/c)?]'/2.

2. If alight source which has the frequency »g when re-
ferred to a comoving system, moves so that the connecting
line “light source-observer” forms the angle ¢ with the ve-
locity of the light source, referred to a system at rest relative
to the observer, then the frequency v perceived by the ob-
server is given by the equation

v = o[l = (v/c)]'?/[1 = (v/c) cos ¢].  (4a)

The last two equations express the Doppler principle in
its general form. The last equation enables us to recognize
how the observed frequency of the light emitted (resp. ab-
sorbed) by canal rays depends on the velocity of the ions
forming the rays and on the direction of sighting.

If one further denotes by ¢,¢’ the respective angles be-
tween the wave normal (direction of the ray) and the di-
rection of the relative motion of S’ with respect to S (i.e.,
and [the directions of] the x- axis or x’-axis),'® then the
equation for /” assumes the form :

cos ¢’ = [cos ¢ — (v/c)]/[1 — (v/c) cos ¢].

This equation shows the influence of the relative motion of
the observer on the apparent place of an infinitely distant
light source (aberration).

We shall now investigate how fast light propagates in a
medium moving in the direction of the light ray. Let the
medium be at rest relative to the system S’ and let the
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light-vector be proportional to sin w’[¢t" — (x’/V”)] and sin
w[t — (x/V)] respectively, according as the process is re-
ferred to S or to S. The transformation equations yield

w= B’ [14+ WV)], «/V=p8/V)1+ (Vi/ch].

Here V7 is to be considered as a function of ’ known from
the theory of optics of stationary bodies. By dividing the two
equations we obtain

V= (V' +v)/[1 + (Vv/c?H))],

an equation which could have been also obtained by direct
application of the addition theorem of velocities.™ In case
V” can be taken as known, the problem is solved completely
by the last equation. But when only the frequency (w) re-
ferred to the “stationary” system S can be taken as known,
as e.g., in the case of the known experiment of Fizeau, then
one has to apply the above two equations together with the
connection between «’ and V7, in order to determine the
three unknowns «’, V7, and V.

Again, if G and G’ are the group velocities referred to S
and S’ respectively, then by the addition theorem of ve-
locities

G = (G’ + v)/[1 + (G'v/c?)].

Since the connection between G’ and «’ is provided by the
theory of optics of stationary bodies,” and since «” is cal-
culable from w according to the foregoing, therefore the
group velocity G can be computed also when we are given
only the frequency of the light referred to S along with the
nature and the velocity of motion of the body.
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333, 1887.
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dKurd von Mosengeil, Ann. d. Phys. 22, 867, 1907.

¢Instead of “rigid” bodies one could just as well speak here and in the sequel
of solid bodies free of deforming forces.

fIn addition one requires auxiliary rods (rulers, compasses).
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8H. A. Lorentz, Versuch einer Theorie der elektrischen und optischen
Erscheinungen in bewegten Korpern. Leiden 1895.

bIt is to be noted especially that this theory yields a result for the drag
coefficient (Fizeau’s experiment) in agreement with experience.

IThis conclusion is based on the physical assumption that the length of a
measuring rod as well as the rate of a clock do not suffer any lasting
change by being set in motion and then brought back to rest.

iObviously ¢(v) = —1 does not enter into consideration.

kJ, Stark, Ann. d. Phys. 21, 401, 1906.

ICf. Sec. 6, Eq. (4a).

mCf. M. Laue, Ann. d. Phys. 23, 989, 1907.

"We have namely [correcting a misprint}, G’ = V//[1 + (dV'/dw’)/V"].

'A. Einstein, Ann. Phys. (Leipzig) 17, 891 (1905).

ZA. Einstein, Jahrb. Radioakt. Elektron. 4, 411 (1907). Corrections in
A. Einstein, Jahrb. Radioakt. Elektron. 5, 98 (1908).

3“On the Principle of Relativity and the Conclusions Drawn There-
from.”

“H. M. Schwartz, Am. J. Phys. 45, 18 (1977).

SImplicit is here the tacit assumption that the coordinate systems are
“inertial.” The same elliptic expression appears also in Ref. 1, but there
the explicit reference to this restriction on the coordinate systems is made
at the start of the paper (where reference is made to systems in which
the laws of mechanics hold good).

SBrackets are used here, as in Ref. 4, to enclose added clarifying words
or symbols and, in general, material not found in the original.

"The correct word here is “part.” However, the original word is “Ab-
schnitt,” namely, “section”—an obvious (and trivial) inaccuracy.

8Qbviously, in these citations, as in all others to follow, the last number
represents the year.

%0One understands here, of course, the state of motion of the physical
systems under observation, relative to a specified coordinate system.

10That is, not accelerated relative to an inertial reference frame. See Ref.
5.

There is possibly a prime missing from the letter S.

12The phrase “state of motion™ here and in the sequel represents obviously
an abbreviation for the more complete statement: “state of uniform
rectilinear motion relative to an inertial reference frame.”

13]talics not in the original.

14Omission of mention at this point that S is assumed to be an inertial
reference system is reminiscent of a similar omission in Einstein’s second
formulation of the principle of relativity in Ref. 1, Sec. 2.

15We translate henceforth “Punktereignis™ simply as “event.”

16The original contains an apparent minor slip of the pen, namely, the
replacement here and on the fourth line of p. 423 of the letter u by the
letter w (the latter occurring in the same connection in Ref. 1).

7This paragraph is essentially identical in content with the corresponding
material in Sec. 5 of Ref. 1, and footnote 29 of Ref. 4 is also relevant
here.

18This phrase [in the original: Nennt man ferner ¢ bezw. ¢’ den Winkel
zwischen der Wellennormalle (Strahlrichtung) und der Richtung der
Relativbewegung von S’ gegen S (d.h. mit der x- bezw. x"-Achse)] is
obviously incomplete. One must add: “as measured in S,S” respectively.”
[The formula that follows and Eq. {4a) are obviously equivalent to the
second and first of Egs. (4).]
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This continuation of the English rendition of Einstein’s 1907 essay on relativity, of which the
first part appeared in the June 1977 issue of this Journal, is devoted to Parts II-IV of the
essay, dealing with the relativistic treatments of electrodynamics, optics, mechanics, and
thermodynamics. The original text of these parts covers 27 printed pages. However, owing
to the nature of the subject matter and the character of the original exposition, it was
possible to reproduce here the essential content of the original text intact in terms of a free
rendition, using modern notation, and retaining all the original formulas with their
numbering, and also including direct translations of all passages of possible historical
interest. Mathematical amplifications of a few of the key derivations in the original text are

presented in added footnotes.

A. INTRODUCTION

This is the second part of a three-part English rendition
of Einstein’s 1907 memoir on relativity.! As noted in the
introductory remarks to the first part,? in addition to pos-
sessing obvious historical interest, Einstein’s memoir is also
of considerable didactic interest. This is particularly true
of the portion of the memoir presented here, consisting of
Parts I1-1V, which contain concise and instructive discus-
sion of the relativistic treatment of a number of basic topics
in electrodynamics, optics, mechanics, and thermody-
namics.

Because Parts 1I-1V of Einstein’s paper are, with only
a few possible exceptions,? mainly important for the phys-
ical results and the methods of their derivation, their es-
sential content can be represented accurately, as is done
here, without resorting to a complete direct translation.*
But in those instances where any -doubt existed at all
whether an original idea would be strictly conveyed by a free
rendition, or where possible historical interest might attach
to the original phraseology, the corresponding passages or
phrases have been translated fully, and these are enclosed
in quotation marks. On the other hand, the free rendition
of the rest of the material, including the employment of
direct vector notation, hasresulted in increased compactness
in the presentation, without any essential loss in clarity.

Except for the notation, all the formulas in the original
text are reproduced together with their original numbering;
and Egs. (1)-(4) and Secs. 1-6 to which reference is made
in this paper, are contained in Ref. 2. In a few instances, for
convenience of reference, originally unnumbered formulas
have been indicated by asterisks. All original footnotes are
labeled by lower-case Roman letters, and the added foot-
notes by Arabic numerals. The latter are largely concerned
with expanding or clarifying mathematical steps in deri-
vations presented in the original text.

B. SUMMARY OF PARTS II-1V OF
EINSTEIN’S 1907 MEMOIR

II. Electrodynamic Part

7. Transformation of the Maxwell-Lorentz Equations>
The equations

(ou + dE/0t)jc = V X H, (5)
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oH/cdt = —V X E, (6)

where® E,H are, respectively, the vectors of electric and
magnetic “field-strength,” and

p=V-E (*)

is the “dx-fold density of electricity,”” together with the
“assumption that the electric charges are immutably bound
to small rigid bodies (ions, electrons), form the foundation
of Lorentz’s electrodynamics and optics of moving bod-
ies.”

The reference systems .S and S” being defined as in Sec.
3, and taking Eqgs. (5) and (6) [as well as Egs. (*) and (**)]
to hold with respect of .S, an application of the transfor-
mation Egs. (1) connecting S and S’, yields equations rel-
ative to S’ of the same form as Egs. (5) and (6), i.e.,

(o’ w + JE'/dt")/c = V' X H', (5)
dH'/cdt’ = -V’ X !, (6")

provided [introducing now the current notation: § = v/c,
y=(1-p2)"1/28

E:v = K, E;) = 'Y(Ey — BH;), E; = y(E. + BH,).

(7a)

H;: =H,, H;/ = 'Y(Hy + BE.), H; =v(H; - ﬁEy)'
(7b)

p’' =V - E =v(1 —vuy/c?)p. (8)

uy = (ux = v)/(1 — uyw/c?),
wy = uy/y(1 = uxw/c?), u, = u;/v(1 — uw/c?). (9)

In arriving at this conclusion, one must show that a resulting
arbitrary factor depending on v which can be applied to E/
and H', is necessarily unity, and this “can be easily shown
in a way similar to that used in Sec. 3 in connection with the
function ¢(v).”

The above result combined with the principle of relativity
implies that E’, H’ represent, respectively, the vectors of
“electric and magnetic field-strength referred to S’.”
Moreover, comparison of Egs. (3) and (9) shows that v’ is
the velocity of the electric particles relative to S’, and hence
p’ is the density of electricity with respect to S’. “The
electrodynamic foundation of the Maxwell-Lorentz theory
agrees, thus, with the principle of relativity.”

In interpreting Eqgs. (7a), it should be observed that in
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accordance with the principle of relativity, and the manner
of determining with the aid of Coulomb’s faw the magnitude
of a given electric charge when at rest relative to S or rel-
ative to S, it can be concluded that the two respective
magnitedes must be identical. “This conclusion is based
moreover on the assumption, that the magnitude of an
electric quantity is independent of its prior course of mo-
tion.”

Equations (7a) and (7b) show that there is no absolute
significance attaching to E and H separately, but that their
relative roles in a given electromagnetic phenomenon de-
pend in general on the choice of reference system. In par-
ticular, the “electromotive” forces acting on a charge which
is moving in a magnetic field can be represented by electric
forces referred to the rest frame of the charge.

In agreement with the result obtained earlier concerning
the invariance of the magnitude of an electric charge, we
find from Eq. (8) that if a charged body is at rest relative
to S, so that its total charge e’ is given by the integral
Sp’dx’dy’dz'/4w, and if e is the total charge of the body at
a fixed time ¢ of S, then

e =e.

In fact, by Eq. (1) it follows that for ¢ constant, dx’dy’dz’
= ydxdydz, while by Eq. (8) applied to the present case
(when u, =0), p" = p/7.

“With the aid of Egs. (1), (7), (8), and (9), all problems
in the electrodynamics and optics of moving bodies, for
which an essential role is played only by velocities and not
by accelerations, can be reduced to a series of problems in
the electrodynamics and optics of stationary bodies.”

As an optical application, let us consider a plane wave of
light in vacuum, having in S the representation

E =Eysin®, H=Hpsin®, & =w[t— (n-x/c)],
and hence by Egs. (1) and (7), having in S’ the represen-
tation, :

E,=EYsin®, E,=v(E?- BH?)sind,
.= v(E?+ BHY) sin®’,
H,=Hsin®’, H,=~y(H®+ BE?) sind’,
H, = y(H? - BEY) sin®’,
¥ =wlt — (n-x'/c)].
That the wave normal and the electric and magnetic field
vectors in S” are mutually perpendicular, and the latter two
have equal magnitudes, is a direct consequence of Egs. (5)
and (6’). The results stemming from the equality of ® and
&’ have already been discussed in Sec. 6. We now determine
the amplitude 4" and the state of polarization of the wave
inS”.

To this end we take the wave normal n parallel to the x,y

plane and choose at first the axes in S so that,
EX=0, EY=0, El=4,
H)= —Asin®, HY=-Acosd, H!=0,
¢ being the angle between nand the x axis. Then (correcting
an obvious misprint),
E,=0, E, =0, E,=~(1~p8cos¢)A4sin?,

H,= —Asing sin®, H,= y(—cos¢ + )4 sind’,
H,=0.
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Hence,
A" =v(1 —~ Bcosp)A. (10}

“This relation holds obviously also in the special case when
the magnetic field is perpendicular to the directions of the
relative motion and of the wave normal. Since by the su-
perposition of these two special cases we can construct the
general case, it follows that the relation (10) has general
validity when we introduce a new reference system S’, and
that the angle between the plane of polarization and the
plane parallel to the directions of the relative motion and

-of the wave normal, is the same in both reference sys-

tems.”?

III. Mechanics of a Material Point (of an Electron)

8. Derivation of the Equations of Motion of a
(Slowly Accelerated) Material Point or Electron

“Let a particle supplied with an electric charge € (to be
called ‘electron’ in the sequel) move in an electromagnetic
field; we assume the following about its Jaw of motion:

“If at a given instant of time the electron is at rest with
respect to a (nonaccelerated) system S’, then its motion
relative to S’ during the next instant proceeds according to
the equations™!0

m(d2x’/dt'?) = eF/, (*)

where m [u in the original] is “a constant which we call the
mass of the electron.” Applying Egs. (1) and (7a), and using
the fact that at our initial instant we have in S the equations
X =dx/dt = v, y =z = 0, we find at first in a few simple
steps that

my3% = eE,, myy = e(E, — 8H.),
my: = e(E, + BH,). (**)

Then, writing g2 = |x|2, replacing v in 8 by %, and intro-
ducing into “the appropriate places [of (**)] the terms
obtained by cyclic interchange from” XH,/c and —xH,/c,
“which vanish in the considered special case,” we obtain

generally'!:
d . 2\ 1/2
E;[mx/<1—‘§2) ]=K, (11)

K = ¢{E + [(x X H)/c]}. (12)

The vector K will be called “the force acting on the ma-
terial point.” When ¢2/cZ can be neglected, Eq. (11) shows
that K goes over into the Newtonian force, and it will be seen
in Sec. 9 that in relativistic mechanics this vector generally
performs the functions of force in classical mechanics.

Equation (11) will be retained also when the force is not
of electromagnetic origin. “In this case equations (11) do
not have any physical content, but have to be considered as
equations of definition of force.”!2

where

9. Motion of a Mass Point and Mechanical Principles

When Egs. (5) and (6) are multiplied scalarly by E/4x
and H/4mx, respectively, and the results added and inte-
grated, one obtains the energy conservation equation

S(p/4m)+E d3x + dE,/dt =0, (13)
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where
E. = (1/87) { (E2 + H?)d3x,

“is the electromagnetic energy of the space [i.e., region]
under consideration,” and the integrand in Eq. (13) is the
electromagnetic energy absorbed by the electrical substance
per unit volume and unit time.

In particular, the contribution of an electron to the first
term of Eq. (13) is ¢E ¢ x, where E is the external electric
field, i.e., the field excluding that due to the electron itself.
By Eq. (12) this expression equals K « x. “Thus the vector
K designated as ‘force’ in the preceding section bears the
same relation to work done as in Newtonian mechanics.”
On the other hand, by Eq. (11),13

SKexdt = y,me? + const, (14)
q

introducing [in this rendition] the abbreviation
vq = (1 —q%c)~1/2

Thus, the equations of motion (11) are consistent with the
principle of mechanical energy conservation, with the
right-hand side of Eq. (14) representing “the kinetic energy
of the material point (the electron).”

That they are also consistent with the principle of con-
servation of momentum is seen by taking the vector prod-
ucts of Eqs. (5) and (6) by H/4x and —E /4, respectively,
then adding and integrating “over a region on whose
boundaries the field strengths vanish”!4 :

57 f (1/4x¢)(E X H)d3x
+ f(p/47r)[E + (u X H)/c}d3x =0,
or, according to Eq. (12),

dit f(1/47rc)(E XH)dx+ YK =0. (I5)

(13)

*“If the charges are bound to freely moving material points
(electrons),” then by applying Eqs. (12) and (11) to the
second integral in Eq. (15), we obtain the equation

d 1 '
d—t[ f e (EXH)x + ZW""] =0. (15b)

Thus the expression £ = ygmx “plays the role of the mo-
mentum of a material point, and according to Eq. (11), as
in classical mechanics,” d&/dr = K.

From Eq. (11) it is also seen immediately that the
equations of a particle can be put in the Lagrangian form
[using here Einstein’s notation for the Lagrangian]

(d/dt)(2H/d%) = K,
where
= —mc?/y, + const.

They can also be expressed in terms of Hamilton’s principle
[using Einstein’s symbols.again here and in the sequel, ex-
cept for retaining “m” and vector notation)

f “(dH + A)dt = 0. A=K-0x, thevirtual work.
&1

Upon introducing the momentum vector
£ = 0H/ox,

and the kinetic energy of the particle!>
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L = mc?[1 + (£2/m2c?)]'/2 + const,
the Hamiltonian canonical equations assume the form
dté/dt = K, dx/dt = dL/d¢.

10. Onthe Possibility of an Experimental Check of

the Theory of Motion of the Material Point.
Kaufmann’s Investigation

There is presented here (on pp. 436-439) a discussion of
Kaufmann’s experiments [published in Ann. Phys. 19, 487
(1906)] on the deflection of 8 rays of “radium-bromide”
by constant electric and magnetic fields, with a reproduction
of diagrams of the apparatus and of the deflection graph.
With reference to the latter Einstein remarks:

“Considering the difficulty of the investigation one might
be inclined to take the agreement [with the theory of rela-
tivity] as adequate. However, the existing deviations are
systematic and substantially outside the limits of error of
Kaufmann’s investigation. That M. Kaufmann’s calcula-
tions are free of mistakes follows from their agreeing
throughout with the results obtained by M. Planck using
a different method of calculation.?

“Whether the systematic deviations have their basis in

- an as yet unrecognized source of error or in the fact that the

foundations of the theory of relativity do not correspond to
the facts, can be decided with certainty only when a greater
variety of observational material becomes available.

“It should be observed further that the theories of elec-
tron motion of Abraham® and of Bucherer¢ yield curves
which fit the observed curves substantially better than the
curves deduced from the theory of relativity. But it is my
opinion that scant plausibility attaches to those theories,
because their basic assumptions which concern the mass of
the moving electron are not suggested by theoretical systems
that encompass wider complexes of phenomena.”

IV. On the Mechanics and Thermodynamics of Systems

11. On the Dependence of Mass upon Energy

We consider a physical system surrounded by an enclo-
sure that is impermeable to radiation, which is floating
freely in space “and is subject to no other forces except the
action of electric and magnetic forces in the surrounding
space.” By Eq. (13), the total energy thus absorbed by the
system [in the time interval (¢,,£,)—not indicated explicitly
in the original paper] is

12 1 9]
f dE = f d f (o/47)Eq - udx,
1 1]

where E, denotes the exterior electric field. Applying the
inverses of the transformations (7a), (8), and (9), and using
the fact that the Jacobian d(x;t’)/d(x;t) = 1, one
finds'®

S rae=q [ fopnE v

+0[ESD + (w X H,),/cl}d3x’ dr’.

By the principle of relativity and application of Eq. (12) it
follows then “in easily understood notation” that

dE = vdE' + vw S K. dr. (16)
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Suppose now that our system is at rest as a whole relative
t0.5”, and that its parts move relative to §” so slowly that the
squares of their velocities relative to S’ can be neglected
with respect to ¢2. It then follows by Newtonian mechanics
that =K, = 0 for every . However, the integral in Eq. (16)
does not necessarily vanish, since the time interval is taken
between #; and 5. But if it is assumed that no external forces
act on the system before t| and after ¢,, then this integral
will certainly vanish, so that

dE = vdE’. *)

From this result it can be deduced that “the energy of a

(uniformly) moving system, that is not under the influence

of external forces,” can be written as

E = [m+ (Eg/ed)ctv, (16a)
[v4 defined in Sec. 10, Eq. (*)], where m is the mass of the
physical system such as occurs in Eq. (14),!7 Eq = E’ (the
subscript 0 indicating, henceforth, quantities of the physical
system referred to a comoving coordinate frame), and q is
the velocity of translation of this system relative to S. In
fact, E depends on E¢ and q, and by Eq. (*), 0E/0E( = v,,
sothat £'= vy,Fo + ¢(q). “The case when Eq =0, i.e., when

the energy of the moving system is a function of the velocity

q alone, we have already investigated in Secs. 8 and 9.” [See
Eq. (14).] “We obtain thus Eq. (16a), where we omit the
integrating constant.”'® Comparison of Egs. (16a) and (14)
shows that our physical system behaves, as far as concerns
the dependence of its energy upon its velocity of translation,
as a particle of mass M given by the formula
M = m + (Eo/c?). {amn

“This result is of extraordinary theoretical importance,
for in it the inertial mass and the energy of a physical system
appear as similar things. A mass u is equivalent, as regards
inertia, to a quantity of energy uc2. Since we can dispose of
the zero point of Eq arbitrarily, we are not at all in a position
to differentiate without arbitrariness between a ‘true’ and
an ‘apparent’ mass of the system. It appears far more nat-
ural to consider every inertial mass as a store of energy.”
As to the practical possibility of checking this result, it
appears for the present to be negligible. “The decrease, e.g.,
in the mass of a system, which gives up 1000 gram-calories,
amounts to 4.6 X 10711 g.” Indeed “during the radioactive
decay of a substance enormous amounts of energy are
freed.” But “Mr. Planck writes concerning this” that from
the measurements of Precht [Ann. Phys. 21, 599 (1906)]
it can be concluded that the mass equivalent of the energy
emitted by a gram-atom of radium even during a year is
only 0.012 mg, and is thus still too small a part of the mass
of the substance to be detected. But (according to Einstein)
one need not exclude the possibility that “radicactive pro-
cesses will become known for which a considerably larger
percentage of the mass of the original atom is converted into
energy of different radiations than is the case for radium

“In the preceding it is tacitly assumed that such a change
of mass can be measured by the instrument usually em-
ployed for the measurement of masses, namely, the balance;
and that therefore the relation

M = m+ (Ey/c?)

814  Am. J. Phys,, Vol. 45, No. 9, September 1977

holds not only for inertial mass, but also for gravitational
mass; or in other words, that under all circumstances inertia
and gravitation due to a system are strictly proportional.
We should, therefore, also have to assume, for example, that
cavity radiation possesses not only inertia, but also weight.
But that proportionality between inertial and gravitational
mass holds without exception for all bodies within the ac-
curacy so far attained, so that until the contrary is proved
its general validity must be accepted. We shall moreover
encounter in the last section of this essay a new argument
in support of the assumption.”

12. Energy and Momentum of a Moving System

We return to the physical system discussed at the be-
ginning of Sec. 11, and apply to the external fields E,, H,,,
the considerations that led to Eq. (15), thus obtaining the
relation

al ¢ L 3 ]

+f—”—[Ea+l(uxHa)] d3x = 0.
47l' c x

“We will now assume that the law of conservation of mo-
mentum has general validity. Then the part of the second
term of this equation, extended over the [interior of the]
envelope of the system, must be representable as the de-
rivative with respect to time of a quantity G, completely
determined by the instantaneous state of the system, which
we shall designate as the X-component of the momentum
of the system.” By applying Egs. (1), (7)-(9), we find as in
Sec. 11 (and using the same elliptic notation) that

faomr f (2 |[eriwnm]

+ g E,- u'} d3x'dr’.

Hence,
dG, = (vB/c)dE' + v f K, dt’. (18)

With considerations analogous to those underlying the
discussion following Eq. (16), the last term in Eq. (18) can
be taken as null, and one can conclude that when no external
forces act on the system, so that its momentum depends only
on the energy Ej of the system relative to the comoving
coordinate frame and on the velocity q of translation of the
latter, one has the vector relation!?

OG/dEy = y4q/c? lyg=(1 - q%/c?)~1/2).

By integration and reference to Eq. (15b), it follows then
by steps analogous to those leading to Eq. (16a) that

G = yglm + (Eo/cH)]q, (18a)

a result consistent with the analogous result Eq. (16a).
When no restriction is made on the existence of external
forces, the last term in Eq. (18) can no longer be dropped,
since the time integration is between the limits #;, ¢, but
the calculation can be made tractable by first breaking up
the time interval of integration into three parts [(#,/v) —
Bx7fe), i/, (t1/v, t2/7), [tao/v, (t2/v) — (Bx'/c)], and
introducing the assumption that the forces vary little in
periods that are of the order of magnitude of 8x’/c (other-
wise “under the application of the basic assumptions em-
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ployed here, we could not speak at all of an energy or a
momentum of the system.”d) In the second interval =K',
= 0, and in the first and third, by our assumption, K’ can
be taken as constant. Hence,

SEK dr' = (Bc)(ZX'K )
~ (B/c)(Zx'K )2 = = (B/c)d(2x'K),

and the solutions of Egs. (16) and (18) consist in the addi-
tion to Egs. (16a) and (18a) of the respective terms

~v4(q%/c?)Z60K0s, —7v4(4/c?)Z80Kos

[yielding Egs. (16b), (18b), respectively, in the original
text], “where Ko; is the component of the force in the di-
rection of motion referred to a comoving reference system,
and &g represents the distance as measured in this system
between the point of application of that force and a plane
perpendicular to the direction of motion.”

In particular, if the external force is a homogeneous
normal pressure acting on the surface of our system, so
that

ZaoKos = —poVo, (19)

where according to our notational convention py, Vo are the
pressure and the volume of the system relative to a comoving
reference system,2 then

E = y4[mc? + Eo + (q%/c®)poVol.
G = v4[m + (Eo + poVo)/c?q.

(16¢)
(18c)

13. Volume and Pressure of a Moving System.
Equations of Motion

It is an immediate consequence of Eq. (2) that
V="Vdve (20)

where V' is the volume of the system relative to S. To find
the connection between p and po, we find first the Lorentz
transformation of the components of a force of any type. In
view of the last assertion in Sec. 8, it suffices to consider the
special case of an electromagnetic force. By a consideration
of a charge e that is at rest in .S”, it follows by a straight-
forward inspection of Egs. (12) and (7a) that

K.=K, K,=vK, K,=~K.. @2n

Suppose now that s’ is a surface element at rest relative to
S’ and n’ is the unit vector normal to it and directed towards
the interior of the body. The components of the corre-
sponding force (in S”) are then (putting K, = K, etc.)
Ki=p'sn;=p's; (i=123).
But by Egs. (2),
si=s1, s;=vs; (= 23).

Hence, combining these two sets of equations and Eq. (21),
we find at once, since K; = ps;, that p’ = p, i.e.,

P = po. (22)

Equations (16c), (20), and (22) enable us to represent
Eo, Vo, poin terms of E, V, p, and q. In particular Eq. (18¢)
can be written as?2!

G =q(E + pV)/c?

“which equation in conjunction with the equation

[corrected], (18d)
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dG/dt = YK,

expressing the principle of conservation of momentum,
determine completely the translational motion of the system
as a whole,” provided ZK and the set E,p,V, or an equivalent
set, are known functions of r.

14. Examples

Consider a physical system consisting of electromagnetic
radiation enclosed in a “massless” container. If no external
forces act on the system, then by Eqgs. (16a) and (18a),

E=v,E, G=vy4Eq/c?=Eq/c’

But if the container walls are “perfectly flexible and ex-
tensible,” so that an outside pressure must be applied to
them to balance the pressure exerted by the radiation, then
by Egs. (16¢) and (18c¢), and using the well-known formula
[correcting an obvious misprint]

po = Eo/3Vs,
we have,
E=y,[1+(@q%3c?)]Eo, G=v4(4Eo/3c?)q.

“We consider, further, the case of an electrically charged
massless body. If no external forces act upon it, we can apply
again Egs. (16a) and (18a).” We then find the first set of
equations of this section.

“Of these values a part derives from the electromagnetic
field, and the rest from the massless body under the action
of the forces arising from its charge.”?2

15. Entropy and Temperature of Moving Systems

The following results are presented for the transforma-
tion of entropy n, heat @, and absolute temperature 7

7= 10, (25)
dQ = dQo/vq, (26)
T=To/vg (27)

For the proof of Eq. (25), Einstein cites verbatim the
words of Planck.?? Then using the known expression

dQ = dE + pdV — q - dG (23)

for the heat received by a body, and the known thermody-
namic relation

dQ = Tdn (24)

holding for reversible processes, an application of Egs.
(16¢), (18c), (20), and (22) yields Egs. (26) (since dQq =
dEg + podVy), and hence Eq. (27).

~ 16. Dynamics of Systems and the Principle of Least

Action

Since in the paper cited in Sec. 15 Planck obtains results
identical to those obtained in this work, but on the basis of
the principle of least action instead of the principles of
conservation of energy and momentum employed in this
work, it is of interest to establish the connection between
these principles.

Consider, then, a system whose state is determined by the
variables, q, V, and T. For reversible processes the two
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conservation principles imply the relations

dE = F-dx — pdV + Tdy (28)
and
F = dG/dt, (29)

where F is the resultant force acting on the system.2* But
F-dx=F-xdt=x-dG=d(x:G)—G-dx,

and x = ¢. Hence,
d(~E+Tn+ q-G)=G-dx+ pdV + ydT.

Since the left-hand side of this equation is the complete
differential of the Lagrangian H of our system, it yields,
using Eq. (29), the equations

d OH OH oH

_———= —==p, ==

dtox oV 2T

These are the relations derived by Planck with the aid of the
principle of least action, which have served as his starting
point. [Planck, loc. cit., p. 549, Egs. (6) and (7).]
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aCf. M. Planck, Verhandl. d. Deutschen. Phys. Ges. VIIL. Jahrg. Nr. 20,
1906; 1X. Jahrg. Nr. 14, 1907.

bM. Abraham, Gétt. Nachr, 1902.

¢A. H. Bucherer, Math. Einfithrung in die Elektronentheorie, p. 58,
Leipzig 1904.

dCf. A. Einstein, Ann. d. Phys. 23, § 2, 1907. [Both in this paper, which
develops under restricted conditions the essential reasoning underlying
the discussions in Secs. 11 and 12, as well as in these sections, the integral
expressions for the total force on the charges of the system are replaced
by sums, reflecting adherence to the idea of the atomicity of mat-
ter.]

This circumstance provides also the justification for the procedure em-
ployed in the preceding investigations, which consisted in our intro-
ducing only interaction of a purely electromagnetic kind between the
system under consideration and its environment. The results hold quite
generally.

'A. Einstein, Jahrb. Radioakt. Elektron. 4, 411 (1907); Corrections, ibid.
5, 98 (1908).

2H. M. Schwartz, Am. J. Phys. 45; 512 (1977).

3Notably, the remarks bearing on the inertia of energy.

4The interested professional historian of science will naturally in any case
consult the original text.

5This appropriate designation of Egs. (5), (6), (*), and the tacitly assumed
equation V - H = 0 [Eq. (**)] occurs here perhaps for the first time. In
his first paper on relativity, Einstein refers to them as “Maxwell-Hertz
equations.with convection currents taken into account™ [A. Einstein,
Ann. Phys. 17, 891 (1905), p. 916]. Why is Eq. (**) not included in the
Maxwell-Lorentz set? The noninclusion of Eq. (*) in the displayed set
of these equations would suggest that perhaps Einstein simply took Eq.
(**) for granted, because he considered the nonexistence of magnetic
monopoles as a universally established fact. As is shown in Ref. 8, Eq.
(**) is involved in the deduction of Eqgs. (7a) and (7b).

6The symbol B, employed in H. M. Schwartz, Am. J. Phys. 39, 1287
(1971), in a similar context, is here interchangeable with H, and whereas
the former is currently the more common symbol, the latter has stronger
historical associations.

7So that despite appearances, it is Gaussian, and not Lorentzian units,
which Einstein employs.

8The proof is sketched out in Einstein’s first paper on relativity (reference
in Ref. 5), Secs. 6 and 9. Section 6 treats the transformation of Max-
well’s equations in free space under the Lorentz transformations (1).
The deduction of the fourth (and similarly the first) of the last set of
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equations on p. 908 of this paper, is not as immediate as that of the other
equations of the set, and use of Eq. (**) is essential, as follows (setting
xo ="ct and B = v/c): OH,/Oxp = v(0/dxy — BO/Ox")H, = OE,/0z —
OF./dy; OH /dxo = (JE,/dz' — DE,Jdy")/y + BOH,/dx’ (since y’
=y 2’ = z); OHy/dx" = v(0/0ox + B0/dxo}Hy = v[—dH,/dy —
OH./dz + B(OE,/dz — JE,[dy)], using Eqs. (**) and (6); hence,
OHjaxo = y[(v™2 + BH(OE,/0z' — DE./dy") — B(dH,/dy" +
0H./0z")] = y[O0(E, — BH,)/dz' — d(E + $H,)/dy’]. Relation (8)
follows directly, using Eqs. (7a), (5),and (¥):p' = V' - E' = v(d/0x +
Bo/oxo)Ex + v[O(E, — BH;)/0y + O(E, + BH,)/02] = vV -E +
YB(—ux/c)p = v(1 — vuy/c?)p. Then Egs. (9) are obtained from Egs.
(5), (7a), (7b), (5), (*), and (8); for instance, p’u,/c = dH /Y’ —
OH Jaz' — BE Joxy = v[d(H, — BE,)/dy — d(H, + BE.)/0z —
(0/0x0 + BO/AX)E,] = v[=BV - E + puyfc] = vplus/c — B).or, u,
= y(ux —0)p/p’ = (tx — 0)/(} ~ uxv/c?).

9This statement may not appear so immediately obvious. The general
validity of Eq. (10) is, however, readily obtained from the general form
of the transformation of (E,H) under a Lorentz transformation [as
given, e.g., in H. M. Schwartz, Introduction 10 Special Relativity
(McGraw-Hill, New York, 1968), Eq. (v), p. 304 (where B = H)]. The
fact that E - H = 0, E? = H2 imply the same relations for the primed
quantities is immediately checked, and in a few simple steps one finds
for E’2 the expression y2E2{1 + $2[1 — cos?(8,E) ~ cos?(8,H)] ~ 28
cos{(8,n)}, which confirms Eq. (10), since 1 — cos*(8,E) — cos?(8,H) =
cos2(B,n) = cos2¢. Again, the cosine of the angle between the planes in
question, taking the “polarization plane” as defined in optics, is given
by the expression [(n X H)/{n X H]] - (8 X m)/|8 X n|, which reduces
since n = (E X H)/E? (remembering that E-H =0, E = H), 10 (—~E/E)
~(8-HE—B8-EHY/E~![(8-H)?+ (8-E)?]}/2 = ~(8-H)[(B-H)* +
(8- E)2]~1/2. This expression is form invariant under Lorentz trans-
formations, since §-H=8-H’,8-E = 8- E [loc. cit., p. 304, Eq.
(vi)].

1010 the original form: pd2xo/dt’2 = €X', ud2yo/dt’ = €Y', ud?zo/dt’?
= ¢Z’. The term “unaccelerated system” is of course synonymous here
with the term “inertial system.” The subscript 0, which is dropped in
his general Eq. (11), is introduced by Einstein provisionally to indicate
the specialization under which Egs. (**) are obtained.

"These equations were first obtained by M. Planck, Verh. Deutsch. Phys.
Ges. 8, 136 (1906). Einstein refers in the introductory remarks of his
essay to Planck’s work but not to the paper; and Einstein’s proof, based
on symmetry considerations, is his own. As the latter proof, so Planck’s
proof also, is only sketched out in his 1906 paper. It can be presented
more fully with the aid of Egs. (3-29a) and (v) on pp. 52 and 304, re-
spectively, of the reference contained in Ref. 9. With the (temporary)
notation, xg = ct, f = dffdxo, the first of the referred equations yields
after a few obvious reductions: d2x’/dxg = {(1 — 8- %)X + §- X[%x —
vB/(y + DI/v¥1 — B+%)3, 8- d2x'/d2xy = B+ %/¥*(1 —B-%)*. Then
by the second of the referred equations, Eq. (*), and the identity 8- E/
= B-F, one finds: ve[E + (8 X H)] = eE/ — [e(1 — )8 -E//B%1B8 =
med?x/[dxg — (1 = v)(B - d2x'/dx¢)/82)8} = mc2[(1 — B- %)% +
8- %x]1/¥2(1 — B - x)>. We may now identify 8 with x, with the result
{retaining the symbol v for (1 ~ x2)~1/2]: ¢[E + (x X H)] = mc?(yX
+ 3% « XX) = mc2d(yx)/dxo, which is seen to be identical with Egs. (11)
and (12), when account is taken of the difference in notation (and in
particular, in the meaning of the dot operator).

12This statement, reflecting Mach'’s philosophical position in mechanics,
is of obvious historical interest, though what Einstein means here by
lack of physical content (physikalischen Inhalt) can only be conject-
ured.

3Since x - [d(v4%)/dt] = c2d~y,/dt. In the second line above Eq. (14) the
dots are missing from x,y,z, in the original. This is one of a large number
of obvious minor misprints (not corrected in the second reference in Ref.
1), which will not be pointed out further.

14A similar restriction, insuring the vanishing of surface integrals arising
in an integration-by-parts step, applies of course also in the derivation
of Eq. (13).

15The quantity [£{ is represented in the original by the already actively
employed symbol p.

16This result is readily checked for arbitrary direction of v by the use of
the inverse of the first of Egs. (v) in the reference indicated in Ref. 9.
When it is observed that (pc,pu) is a four vector when p denotes the
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charge density as measured in S [see Eq. (7-5) in the reference in Ref.
9], and one uses the inverse of Eq. (3-29a) of the cited reference, one
finds: pu - E = p'lu’ + [ye + (v — 1)8728- w18} - ly[E' — (B X H')] +
(1 —v)/648-EB = vp'lw - E' + 8- [cE' + (w X H)]}.

17Actually, the rest mass (or proper mass) of the system, but the idea was
still represented in the essay simply by the word “mass.”

18Getting the integration constant of Eq. (14) here equal to zero is thus
at this stage only an assumption, but certainly a natural and funda-
mental assumption.

19The symbols ¢ and G in the original are obviously meant to represent
vector quantities, as is, for instance, apparent from Eq. (18) with the
last term set equal to zero.

201t should be noted that in all the derivations in this section it is tacitly
assumed that the physical systems are such that one can speak of a
unique translational velocity q of a system, as in the case of a classically
rigid body. This condition is explicit in the pertinent part of footnote

d.

21The original equation contains a strangely overlooked misprint, namely,
the right-hand side contains the added term uq (i.e., mq in the present
notation). But clearly m is already contained in E. Explicitly: By Egs.
(16¢) and (20), E = (mc? + Eo)yq + (g/c)>vapV. Eo + poVo = (E/v,)
—{qfc)2vgpV — mc? + yopV = (E + pV)/v, — mc? hence, vo[m +
(Eo + poVo)/c?] = (E + pV)/c?, and Eq. (18¢c) implies Eq. (18d) as
presented here.

22Ejnstein refers here in a footnote to pp. 373-379 of his paper, footnote
d.

231n Planck’s essay (referred to by Einstein towards the end of his intro-
ductory remarks), entitled “Zur Dynamik bewegter Systeme,” on p.
552, Einstein uses the symbol 7 for Planck’s S, and his quotation con-
tains an obvious misprint that consists in reversing the sense of an in-
equality.

24These results are obtained directly from Eqs. (23) and (24).

MUTABILITY: THE STAIRCASE OF LAW, AND LAW TRANSCENDED

ALL LAWS OF PHYSICS
EXPRESSED IN LANGUAGE
OF SPACE AND TIME

LAWS OF CONSERVATION
OF ENERGY, CHARGE, AND
ANGULAR MOMENTUM

LAWS OF CONSERVATION OF
BARYON AND LEPTON
NUMBER

NUCLEAR CHARGE NUMBER
AND MASS NUMBER

CHEMICAL VALENCE
CONCEPT OF DENSITY
ESTABLISHED ("EUREKA")
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—John Archibald Wheeler

WITH GRAVITATIONAL COLLAPSE,
FRAMEWORK FALLS DOWN FOR

EVERY LAW OF PHYSICS

LAWS OF CONSERVATION OF ENERGY,
CHARGE, ANGULAR MOMENTUM MEANINGLESS
FOR A CLOSED UNIVERSE

LAWS OF CONSERVATION OF PARTICLE NUMBER
TRANSCENDED IN BLACK HOLE PHYSICS

UCLEAR TRANSMUTATION

CONCEPT OF VALENCE TRANSCENDED
AT HIGH TEMPERATURE

APPLICATION OF SUFFICIENTLY
HIGH PRESSURE ALTERS DENSITY
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Einstein’s comprehensive 1907 essay on relativity, part III

H. M. Schwartz
University of Arkansas, Fayetteville, Arkansas 72701
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This is the concluding part of the English rendition of Einstein’s 1907 essay on relativity, of
which part I appeared in the June 1977 issue of this Journal and part II in the September
1977 issue. It consists of a direct translation of the last part of the essay, part V, entitled
“Principle of Relativity and Gravitation,” and of a few added footnotes.

A. INTRODUCTION

Einstein’s 1907 essay on relativity! does not appear
to be widely known. Yet, as noted in the Introduction to the
first part of the present English rendition of this essay,? it
is of substantial interest both on didactic and historic
grounds. Its didactic value, relating to the treatment of a
number of basic topics in Special Relativity, is particularly
in evidence in the portion of Einstein’s essay that is dealt
with in the second part of the present rendition.? Its his-
torical importance is associated mainly with the genesis of
special relativity, and also with the genesis of general rel-
ativity. Part V, the last part of Einstein’s 1907 essay, con-
tains Einstein’s first published expression of his initial highly
important seminal ideas on the latter subject. It is translated
here, as far as seemed feasible, verbatim, with a few added
mainly explanatory notes.

It may perhaps not be amiss to point out here that the
latter notes, as well as those presented in the other two parts
of the present rendition, and in the partial translation of
Einstein’s first paper on relativity,* have for their principal
aim only the facilitating of a close reading of the respective
fundamental papers of Einstein, whether historically or
pedagogically motivated.’

As in the previous parts of this rendition all the original
footnotes are labeled by lower-case roman letters, and the
added footnotes by arabic numerals.

B. TRANSLATION OF THE GRAVITATIONAL
PART OF EINSTEIN’S 1907 MEMOIR

V. Principle of Relativity and Gravitation

17. Accelerated Reference System and Gravitational
Field

Until now we have applied the principle of relativity—i.e.,
the assumption that the laws of nature are independent
of the state of motion of the reference system—only to
nonaccelerated reference systems. Is it conceivable that the
principle of relativity holds also for systems which are ac-
celerated with respect to each other?

This is not really the place for the exhaustive treatment
of this subject. Since it forces itself, however, on the mind
of anyone who has followed the previous applications of the
principle of relativity, I shall not refrain here from taking
a position on the question.

We consider two systems of motion, =; and =,. Suppose
2, is accelerated in the direction of its X axis, and 7 is the
magnitude (constant in time) of this acceleration. Suppose
2, is at rest,5 but situated in a homogeneous gravitational
field, which imparts to all objects an acceleration —7 in the
direction of the X axis.
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As far as we know, the physical laws with respect to %,
do not differ from those with respect to =,; this derives from
the fact that all bodies are accelerated alike in the gravi-
tational ficld. We have therefore no reason to suppose in the
present state of our experience that the systems £ and 2,
differ in any way, and will therefore assume in what follows
the complete physical equivalence of the gravitational field
and the corresponding acceleration of the reference sys-
tem.”

This assumption extends the principle of relativity to the
case of uniformly accelerated translational motion of the
coordinate system. The heuristic value of the assumption
lies therein that it makes possible the replacement of a ho-
mogeneous gravitational field by a uniformly accelerated
reference system, the latter case being amenable to theo-
retical treatment to a certain degree.

18. Space and Time in a Uniformly Accelerated
Reference System

We consider first a body whose individual material points
possess relative to the nonaccelerated reference system S,
at a fixed time ¢ of S, a certain acceleration but no velocity.
What influence does this acceleration vy have on the shape
of the body with respect to S?

If such an influence exists, it will consist in a dilatation
of constant ratio in the direction of the acceleration, and
possibly in the two directions perpendicular to this direc-
tion®; since an influence of another kind is precluded by
considerations of symmetry. Those dilatations arising from
the acceleration (if they exist at all) must be even functions
of v; and they can be thus disregarded when one restricts
oneself to the case when « is so small that terms of the sec-
ond and higher powers in ¥ may be neglected.® Since we
wish to confine ourselves in the sequel to this case, we do not
have therefore to assume any influence of the acceleration
on the shape of a body.

We consider now a reference system = which is uniformly

- accelerated relative to the nonaccelerated reference system

S in the direction of the X axis of the latter. Let the clocks
and the measuring rod of 2, when examined at rest, be the
same as the clocks and the measuring rod of S. Let the or-
igin of coordinates of = move along the X axis of S, and let
the axes of 2 remain parallel to those of S. There exists at
every instant a nonaccelerated reference system S’, whose
coordinate axes coincide with the coordinate axes of T at
that instant (for a fixed time ¢’ of S”). If a point-event oc-
curring at this time ¢’ has the coordinates £,7,{ with respect
to Z, then

xX'=E y=mn x=¢

since by the foregoing discussion we must not assume any
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influence of the acceleration upon the shape of the mea-
suring bodies used in measuring £,3,{. Let us imagine fur-
ther that at this time ¢’ of S” the clocks of X are so adjusted
that their reading at this instant is . What can we say about
the rate of the clocks in the next time element 77

First we have to bear in mind that a specific influence of
the acceleration upon the rate of the clocks does not enter
into consideration, since it would have to be of the order of
v2. Moreover, since we can neglect, as being of order 72, the
influence upon the rate of the clocks of the velocity attained
during 7 as well as of the path traveled by the clocks relative
to those of S” during the time 7, therefore for the time ele-
ment 7 the readings of the clocks of 2 are fully replaceable!©
by the readings of the clocks of S”.

It follows from the foregoing discussion, that in the time
element 7 light in vacuum propagates with the universal
velocity ¢ relative to Z, if we define simultaneity in the
system S” which is instantaneously at rest relative to Z, and
apply for the measurement of time and lengths, clocks and
measuring rods which are the same as those used in the
measurement of time and lengths in nonaccelerated sys-
tems. The principle of the constancy of the velocity of light
can thus be applied also here for the definition of simulta-
neity, provided one confines oneself to very small light
paths.

We imagine now that the clocks of Z are set in the indi-
cated manner at that time ¢ = 0 of S when 2 is momentarily
at rest relative to S. The totality of the readings of the clocks
of Z so set, shall be called the “local time” ¢ of the system
Z. As one recognizes immediately, the physical significance
of the local time ¢ is as follows. If one utilizes this local time
o for the temporal labeling of processes occurring at indi-
vidual space elements of Z, then the laws obeyed by those
processes cannot depend on the position of the particular
spatial element, i.e., on its coordinates, if one employs at the
different spatial elements not only the same clocks, but the
same measuring devices as well.

On the other hand, we must not consider the local time
o as simply the “time” of Z, because, in fact, two events
taking place at two different points of X are not simulta-
neous in the sense of the above definition when their local
times ¢ are equal to each other. Since, namely, any two
clocks of T are synchronous with respect to S at the time
t = 0, and undergo the same motion, they remain contin-
uously synchronous with respect to S. On this account,
according to Sec. 4,!! they are not synchronous with respect
to a reference system S’ that is momentarily at rest relative
to X and in motion relative to S, and therefore, according
to our definition, neither are they synchronous with respect
to 2.

We define now the “time” 7 of the system Z as the to-
tality of those readings of the clock located at the origin of
coordinates of 2, which are simultaneous, in the sense of the
above definition, with the events to be temporally label-
led.?

We will now find the relationship obtaining between the
time 7 and the local time ¢ of an event. From the first of Egs.
(1)1 it follows that two events are simultaneous with re-
spect to S”, and hence also with respect to Z, when

11 — (vx1/c?) =ty — (vx2/c?),

where the indices refer to the one and to the other point-
event, respectively. We restrict ourselves at first to the
consideration of such short times,® that all terms containing
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second or higher powers of 7 or of v can be discarded; then,
by reference to Egs. (1) and (2),!! we have to set

X=X =x,—x1= & — &

ty=01, th=o0y; v=yt=~v71,!2

so that we obtain from the above equations:

oy — o1 = yr(k2 — &1)/c%

If we place the first point-event at the origin of coordinates,
so that o = 7 and £; = 0, we obtain upon dropping the index
for the second point-event,

o =7[l + (v/cI)]. (30)

This equation is valid, to begin with, when r and £ lie
below certain bounds. It holds obviously for arbitrarily large
7, if the acceleration «y is constant with respect to Z,13 be-
cause then the connection between o and 7 must be linear.
For arbitrarily large £ Eq. (30) does not hold. In fact, since
the choice of the origin of coordinates cannot influence the
relation in question, one concludes that Eq. (30) must be
replaced in all strictness by the equation

o = rev¥,

We shall, however, retain formula (30).

According to Sec. 17, Eq. (30) is to be applied also to a
coordinate system in which a homogeneous gravitational
field is acting. In this case we have to set & = y£, where ¢
denotes the gravitational potential, so that we obtain

o =11 + (®/c2)]. (30a)

We have defined two kinds of time for Z. Which of the
two definitions do we have to utilize in the different cases?
Let us suppose that at each of two places of different gra-
vitational potential (v£) there exists a physical system, and
that we wish to compare the physical quantities associated
with them. To this end, we shall clearly proceed most nat-
urally as follows. We betake ourselves with our measuring
devices first to the one physical system, and carry out our
measurements there; and then we betake ourselves with our
measuring devices to the other system to carry out here the
identical measurements. If the measurements yield the
identical results in both places, we shall designate the two
physical systems as “identical.” Among the mentioned
measuring devices there exists a clock, with which we
measure the local time ¢. From this it follows that for the
definition of physical quantities at a given place of the
gravitational field, we quite naturally utilize the time o.

But if one deals with a phenomenon that necessitates the
simultaneous consideration of objects situated at places of
different gravitational potential, then we must employ the
time 7 in the terms where the time appears explicitly (i.e.,
not only in the definition of physical quantities); since
otherwise the simultaneity of the events would not be ex-
pressed by the identity of the values of their time. Since in
the definition of the time 7 one does not employ an arbi-
trarily chosen instant, but rather a clock situated at an ar-
bitrarily chosen place, the laws of nature, when one uses the
time 7, cannot vary therefore with the time, but may well
vary with the place.

19. Influence of the Gravitational Field Upon Clocks

If at a point P of the gravitational field & there is situated
a clock which indicates the local time, then according to Eq.
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(30a) its indications are 1 + (®/c?) greater than the time
7, i.e., it runs 1 + (®/c?) faster than an identically con-
structed clock situated at the origin of coordinates. Suppose
that an observer situated anywhere in space ascertains in
some manner the indications of the two clocks, e.g., by op-
tical means. Since the time interval A7, which elapses be-
tween the instant of an indication of one of the clocks and
its being perceived by the observer, is independent of 7, the
clock at P runs for an observer situated anywhere in space
1 + (®/c?) times faster than the clock at the origin of
coordinates. It is in this sense that we can say that the pro-
cess taking place within the clock—and more generally,
every physical process—proceeds at a rate which is the
faster the greater the gravitational potential of the place
where it occurs.

Now there exist “clocks,” which are to be found at places
of different gravitational potential and whose rates can be
controlled very precisely; these are the generators of spectral
lines. It follows from the above discussion® that the light
coming from the surface of the Sun, which arises from such
a generator, possesses a wavelength that is greater by about
a two-millionth part than that of the light generated by
identical material on the surface of the Earth.

20. Influence of Gravitation Upon Electromagnetic
Processes

If we refer an electromagnetic process at a given instant
to a nonaccelerated reference system .S that is momentarily
at rest relative to the reference system X, which is acceler-
ated as above, then by Egs. (5) and (6)!4 we have the
equations

( ‘u, +a—X,)/c= ON'_ oM’ .
PR o oy oz 7

and

oL” 2V oZ’
=— -/, €tc

co 0oz’
According to the above, we can immediately identify the
quantities p’, u’, X’, L', x’, etc., referred to S’ with the
corresponding quantities p, u, X, L, £, etc., referred to X,
as long as we confine ourselves to an infinitely short time,d
which is infinitely close to the time of relative rest of S” and
2. Moreover, we have to replace ¢’ by the local time o.
However, we may not simply set

0 0

ot do’
because a point at rest with respect to Z, to which the
equations transformed to X are to be referred, changes its
- velocity relative to .S’ during the time element dt’ = da. To
this change there corresponds according to Egs. (7a) and
(7b)14 a temporal change in the field components which are
referred to =. We have therefore to set
OX'_dX V' _JY N 7' _2Z

M
o ds” ' 2 ¢ A d ¢’
oL’ L oM'_dM _yZ dN'_dN ¥
o d¢’ A da ¢ ' A d5 ¢
The electromagnetic equations referred to = read thus, to
begin with,
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0X ON oM
(v ) -5

do on of

oY 7N/ dL ON

e R S = —
<”“"+aa c> Y RRFY:

oz _yMy /. _oM 3L
(”“‘J’aa c>/ 2t on’

oL _ oY _ oz

cdd (& on’

(24 -2Z) /2L oK
96 ¢ o8 ¢’

(24 2Y) f, - 2X_2F,

O¢ c on  0of
We multiply these equations by 1 + (y£/c?), and set for
short
X*=X[1+ (v&c?)], Y*=Y[l+ (v§c?)], etc,
o* = o[l + (v&/cD)].

Upon neglecting terms of second degree in -y, we obtain then
the equations

PREET g FY Y

oY* oL* ON*
xu, + ) fe=22 22 31
(” “n ba)/c or | of (312)
oZ* oM* QJL*
* + - —_——
(p “s elid >/c of on
OL* _ dY* o7+
cdg Of on '
oOM* Q7% OX*
. = - s 2
o0 dw  of (322)
ON* - OX* _ oY*
coo oy of

From these equations one sees first how the gravitational
field influences static and stationary phenomena. The
regularities that are obtained are the same as in the gravi-
tation-free field, except for the substitution of X[1 +
(v£/c?)], etc., for X, etc., and p[1 + (v£/c?)] for p.
Moreover, in order to survey the course of nonstationary
states we employ the time 7 for terms that involve differ-
entiation with respect to time, as well as for the definition
of the velocity of electricity, i.e., we set according to Eq.

(30),
o . 16 90
or <1 + cz> o0
and
we = [1+ (v&/c)]ug.
We obtain thus
oX* ON* OM*
(p*wg + “O—T-) /0[1 + (v¢/c?)] = E T etc.,
(31b)
and
oL*
(;) / ¢ [1+ (v&/ec?)] = a—;?— - ab_z:, etc. (32b)
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These equations, too, are of the same form as the corre-
sponding ones in the acceleration-free or gravitation-free
space, but here instead of ¢ there appears the quantity

c[l + (v&/c?)] = c[1 + (/c?)].

It follows from this that the light rays that are not propa-
gated in the direction of the £ axis are bent by the gravita-
tional field; as is easily seen, the change in direction per
centimeter of light path amounts to (y/c?) sing, where ¢
is the angle between the direction of the gravitational force
and that of the light ray.

By means of these equations and those which connect
field strengths and electric currents at a given place ac-
cording to the theory of optics of stationary bodies, it is
possible to ascertain the influence of the gravitational field
upon optical phenomena for stationary bodies. It should be
borne in mind in this connection that those equations from
the optics of stationary bodies are valid for the local time
o. Unfortunately, the influence of the Earth’s gravitational
field is according to our theory so slight (because of the
smallness of yx/c2), that there exists no prospect for a
comparison of the results of the theory with experience.

If we multiply Eqs. (31a) and (32a) successively by
X* /4, .-+, N*¥/47 and integrate over infinite [i.e., all of]
space, we obtain, using our previous notation:

S+ (v&/eD))2(p/dm)(ueX + u,Y + uiZ)dw
+ S+ (v&/cH]*(1/87)
><a()(2+ Y2+---+N2)dw -0
oo

p(uX + u,Y + u Z)/4x is the energy 7, conveyed to the
matter per unit volume and unit local time o; when this
energy is measured by means of the measuring devices lo-
cated at the place in question. Hence by Eq. (30), 7, = 5,[®
+ (v£/c?)] is the energy (similarly measured) conveyed to
the matter per unit volume and per unit of time 7. (X2 + Y2
+ --- + N2)/87 is the electromagnetic energy ¢ per unit
volume—similarly measured. If we bear in mind, further,
that according to Eq. (30) we have to set 9/0¢ = [1 —
(v£/c?)]0/07, we obtain

S 11+ o8 do+ 5 11+ GEdeda = 0.

This equation expresses the principle of the conservation
of energy and contains a very remarkable result. An energy
or a transport of energy which has the respective value £
= e¢dw or E = n dw dr, when measured at a given spot,
contributes to the energy integral in addition to the value
E corresponding to its quantity, also a value Ev£/c2 =
E®/c? corresponding to its position. To every energy E there
belongs thus in the gravitational field an energy of position,
which is as large as the energy of position of a “ponderable”
mass of magnitude £/c2.

The law deduced in Sec. 11,'4 that to a quantity of energy
E there belongs a mass of magnitude E/c2, holds thus not
only for the inertial, but also for the gravitational mass,
provided the assumption introduced in Sec. 17 is valid.
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aThe symbol “7” is thus employed here in a different sense than pre-
viously.

bThereby there arises also, according to (1),'! a certain restriction re-
garding the values of £ = x’.

By assuming that Eq. (30a) holds also for a nonhomogeneous gravitational
field.

9This restriction does not impair the domain of validity of our results, since
by the nature of things, the laws to be derived cannot depend on the
time.
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Poincaré’s Rendiconti paper on relativity that appeared in this journal
[39, 1287 (1971); 40, 862 (1972); 40, 1282 (1972)], were in fact un-
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to the above-mentioned works of Poincaré and of Einstein on special
relativity. Similarly, the present paper is in part motivated by an interest
in investigating certain intriguing questions in the genesis of the general
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SRest and acceleration with respect to an inertial frame is, of course,
tacitly assumed.

"This bold intuitive extrapolation is of course a remarkable characteristic
of Einstein’s youthful genius.

8Rather than “in the two directions perpendicular to this direction” [in
the original; . . . in den beinden dazu senkrechten Richtungen . . .] what
was intended is, of course, “in any direction perpendicular to this di-
rection” (reflecting the cylindrical symmetry about the direction of
acceleration).

9What is to be taken as “small” for the dimensional quantity v is apparent
from subsequent discussion.

10The original word “nutzbar” is replaced in the second reference of Ref.
1 by the word “ersetzbar.”

HSee Ref. 1 or Ref. 2.

12At the end of the second reference in Ref. 1, Einstein states that he is
prompted by a communication from Planck to clarify the notion of
“uniform acceleration” in the new kinematics; and that this is to be
understood here as the acceleration relative to the instantaneous rest
system of the body under consideration. He concludes that the “relation
v = ~t holds only in the first approximation; but this suffices, since only
terms linear with respect to z or 7 need to be considered here.”

U3This restriction would be, of course, already contained in the title of the
section, if there existed no ambiguity in the use here of the term “ac-
celeration.” But, actually, such an ambiguity does exist (see footnote
12). For an explicit relativistic definition of uniform acceleration, see,
e.g., W. Pauli, Theory of Relativity (Pergamon, New York, 1958), Sec.
26; or H. M. Schwartz, Introduction to Special Relativity (McGraw-
Hill, New York, 1968), Eq. (ii), p. 83.

14See Ref. 1 or Ref. 3. As in Ref. 2, but not in Ref. 3, Einstein’s notation
is retained here throughout. The symbols X, Y, Z and L, M, N represent
the respective components of the electric and magnetic field intensi-
ties.
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