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The integration time required by space experiments to perform high accuracy tests of the universality of
free fall and the weak equivalence principle is a crucial issue. It is inversely proportional to the square of the
acceleration to be measured, which is extremely small; the duration of the mission is a severe limitation and
experiments in space lack repeatability. An exceedingly long integration time can therefore rule out a
mission target. We have evaluated the integration time due to thermal noise from gas damping, Johnson
noise and eddy currents—which are independent of the signal frequency—and to internal damping, which
is known to decrease with increasing frequency. It is found that at low frequencies thermal noise from
internal damping dominates. In the “Galileo Galilei” proposed space experiment to test the equivalence
principle to 10−17 the rapid rotation of the satellite (1 Hz) up-converts the signal to a frequency region
where thermal noise from internal damping is lower than gas damping and only a factor 2 higher than
Johnson noise, with a total integration time of 2.4 to 3.5 hours even in a very conservative estimate. With an
adequate readout and additional care in reducing systematics the test could be improved by another order of
magnitude, close to 10−18, requiring a hundred times longer—still affordable—integration time of 10 to
14.6 days. μSCOPE, a similar room temperature mission under construction by the French space agency to
be launched in 2015, aims at a 10−15 test with an estimated integration time of 1.4 days. Space tests using
cold atoms and atom interferometry have been proposed to be performed on the space station (Q-WEP, to
10−14) and on a dedicated mission (STE-QUEST, to 10−15 like μSCOPE). In this case integration is
required in order to reduce single shot noise. European Space Agency funded studies report an integration
time of several months and a few years respectively.
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I. INTRODUCTION

General relativity is founded on the assumption that in a
gravitational field all bodies are equally accelerated [uni-
versality of free fall (UFF)]. Tests of UFF, hence of the
equivalence between inertial and gravitational mass [weak
equivalence principle (WEP)], require us to measure very
small accelerations acting between two test masses of
different composition freely falling in the gravitational
field of a source body, such as Earth (see e.g. [1,2]). No
differential acceleration should be detected between the test
masses if UFF/WEP holds. The best results to date have
been obtained with macroscopic test bodies very weakly
coupled in slowly rotating torsion balances, confirming
UFF/WEP to ≃10−13 in the field of Earth [3] and to
several parts in 1013 in the field of the Sun [4] (see [5],
Table 3).

In the gravitational field of Earth much better results can
be obtained if the experiment is carried out inside a
spacecraft orbiting at low altitude h. If the goal is to test
UFF/WEP to the level η ¼ Δa=gðhÞ, a differential accel-
eration Δa must be measured between two test masses of
different composition falling in the field of Earth at altitude
h with the average acceleration gðhÞ. The corresponding
differential force is Fsignal¼ μgðhÞη, μ ¼ m1m2=ðm1 þm2Þ
being the reduced mass of the test bodies of mass m1, m2

respectively.
The “Galileo Galilei” (GG) space experiment [1] that we

are involved in aims at testing UFF to the level ηGG ¼
10−17 with two concentric coaxial test cylinders of equal
mass (m1 ¼ m2 ¼ 10 kg, μ ¼ 5 kg). They are very weakly
coupled in the plane perpendicular to the symmetry axis so
that the natural period of oscillation relative to each other is
very long (≃540 s) yielding high sensitivity to differential
forces. They are enclosed in a small spacecraft, also
with cylindrical symmetry, to fly in a near circular, Sun-
synchronous orbit around Earth at h≃ 600 km altitude.
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The whole spacecraft rotates around the symmetry axis
at 1 Hz rate—provided once for all at the start of the
mission—and in so doing it is passively stabilized. The
target differential acceleration between the test cylinders is
aGG ≃ 8 × 10−17 ms−2. It gives rise to a displacement of
the centers of mass of the test bodies relative to each other
pointing to the center of mass of Earth as the satellite orbits
around it at frequency νorb ≃ 1.7 × 10−4 Hz. The size of the
target differential displacement is ≃0.6 pm. The target
differential force is FGG ≃ 4 × 10−16 N.
Error sources are either systematic or random. Assuming

that systematic errors sources can be adequately reduced
and that readout noise is not an issue, we investigate
random error sources due to thermal noise of various
origins at thermal equilibrium. Once the spectral density
of all thermal noise sources has been minimized by acting
on the physical parameters they depend upon, the only way
to bring the effects of random thermal disturbances below
the target signal is by increasing the integration time tint
(the duration of the experiment) since the size of the
integrated random noise decreases as 1=

ffiffiffiffiffiffi
tint

p
. However, if

the signal to be detected is very small the integration time
required can be prohibitively long—especially for an
experiment to be carried out in space—which makes a
careful analysis of thermal noise and the consequent
integration time very important.

II. THERMAL NOISE AND INTEGRATION TIME

The fluctuation-dissipation theorem [6] gives a quantita-
tive relationship between dissipation and certain fluctua-
tions. An intuitive interpretation of this fact is given by the
authors as follows. A dissipative process involves the
interaction of two systems: a dissipative system and a source
system. The dissipative system is capable of absorbing
energy under the action of a periodic force, and the source
system is the one which provides this periodic force and
delivers energy to the dissipative system. As long as the two
systems are isolated from each other, the source system
(e.g. a pendulum) maintains its dynamics (e.g. its periodic
motion), and we can say that it possesses an internal
coherence. However, once the source system interacts with
the dissipative one its energy is sapped away, the internal
coherence is destroyed and it is left with only the random
disordered energy typical of thermal equilibrium (≃kBT,
with T the equilibrium temperature and kB the Boltzmann
constant). Thus, random fluctuations generated in the dis-
sipative system and acting on the source system give rise to
its loss of coherence. As stated in [6], dissipation is the
macroscopic manifestation of the disordering effect of the
Nyquist fluctuations [7] and, as such, it is necessarily
quantitatively correlated with the fluctuations.
The power spectral density (PSD) of the random force

associated with some dissipation expressed by a damping
coefficient γ at equilibrium temperature T is given (using
the “hat” symbol for the Fourier transform) by

hjF̂thðωÞj2i ¼ 4kBTγ: (1)

The dissipative phenomena which give rise to a thermal
noise random force can be of various kinds. For a given
target force FðωsignalÞ acting at frequency ωsignal the
integration time required for the measured force signal
to emerge above the competing thermal noise force by the
factor signal-to-noise ratio (SNR) is

tint ¼ SNR2 ·
hjF̂thðωsignalÞj2itot

FðωsignalÞ2
(2)

where

hjF̂thðωsignalÞj2itot ¼
X
i

hjF̂thðωsignalÞij2i (3)

and the index i refers to the ith kind of dissipative
phenomenon which gives rise to a thermal noise fluctuating
force. Thus, aiming at a 10 times better sensitivity would
require, with the same limiting level of thermal noise, a 100
times longer integration time.
UFF/WEP tests are concerned about comparing gravi-

tational and inertial forces (i.e. Earth’s attraction and the
centrifugal force while orbiting around it) which are
proportional to the gravitational and inertial mass respec-
tively, in the search for a deviation of their ratio from þ1.
Therefore, the target signal is a differential acceleration
while thermal noise forces are nongravitational forces
producing smaller accelerations if the mass of the body
is larger. More massive test bodies should therefore be used
whenever possible.

III. THE CASE OF SPACE EXPERIMENTS TO
TEST THE EQUIVALENCE PRINCIPLE

Experiments to test UFF/WEP belong to the category of
extremely small force gravitational experiments, and hence
require great care in dealing with thermal noise. We analyze
three types of thermal noise forces which physicists have
faced—and still face—in such small force experiments.
They are due to gas damping in the presence of residual air
surrounding the test masses; Johnson noise and eddy
currents in the presence of a magnetic field; and internal
damping due to losses in the suspensions of the test bodies.

A. Thermal noise due to gas damping

Let us first consider gas damping. In the small force
experiments that we are interested in, the residual pressure
of the gas surrounding the test mass is low and the mean
free path of the gas molecules is longer than the size of the
test mass. In these conditions the gas damping coefficient
γgas can be written as (see e.g. [8])

γgas ¼
p
vT

·A (4)
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where p is the gas pressure, vT ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=mo

p
is the thermal

velocity of the gas molecules of mass mo at equilibrium
temperature T in one direction and A is the surface cross
section of the test mass depending on its specific geometry.
The gas damping coefficient does not depend on the
frequency at which the test mass is oscillating.
In the simplified assumption that the test body is

surrounded by an “infinite” volume of gas, in which case
multiple bounces typical of small gaps do not occur, the
cross section A∞ (the subscript refers to the assumption
made) has been computed by the authors of Ref. [8] for
various geometrical shapes of the body. For a solid cylinder
of radius R and height H sensitive to forces acting in the
plane perpendicular to the symmetry axis they find that
the translation damping coefficient is proportional to the
geometrical cross section:

A∞ ¼ πR2

ffiffiffi
2

π

r �
1þ 3H

2R

�
1þ π

6

��
: (5)

If the test mass is not surrounded by an “infinite” volume
of gas because of small gaps (compared to its size) between
its surfaces and the surrounding enclosure, the effective
cross section increases due to multiple bounces of the gas
molecules.
For cubic test masses completely surrounded by a nearby

enclosure the amplification factor has been estimated
numerically with the aid of some experimental checks
[9]. A plot is reported which provides the simulated
amplification factor as function of the ratio between the
size d of the gap (between the cube and the enclosure
surrounding it on all sides) and the length s of the side of
the cube for 0.005 < d=s < 50 ([9], Fig. 5). The authors
give also an analytic expression for the amplification factor
which however is valid only for d=s ≪ 0.01.
In the current GG baseline the inner test cylinder is made

of Ti (5.55 cm inner radius, 8.51 cm outer radius, 17 cm
height) and the outer cylinder is made of Be (10.51 cm
inner radius, 13.06 cm outer radius, 28.63 cm height). They
are separated from each other by a 2 cm gap, and the inner
one is separated from the shaft by a similar gap. To the
contrary, on both sides in the direction of the symmetry
axis, as well as outside of the outer cylinder, the volume
available to the gas is much larger than the corresponding
size of the bodies and can be regarded as “infinite.” For the
cylindrical surfaces characterized by a gap from the nearby
cylindrical surface smaller than the radius of the cylinder
we estimate the amplification factor from the simulation
reported by [9] in Fig. 5 (translational case) for a cube with
a similar gap on all faces and side length equal to the radius
of the cylinder.
Gas molecules trapped in between the GG test cylinders

and in between the shaft and the inner cylinder have the
chance to access large volumes at the two ends of the
symmetry axis, thus reducing the number of multiple

bounces on those surfaces. Therefore, an estimate of the
amplification factors based as in [9] on the case of a test
mass completely surrounded by a nearby enclosure with a
small gap is a worst case estimate for GG.
Within this conservative estimate the amplification

factors turn out to be 4 and 2 for the inner cylinder (for
its outer and inner surfaces respectively) and 5 for the inner
surface of the outer cylinder, taking also into account that it
faces the outer surface of the inner cylinder with a 2 cm gap
only for the height of the inner cylinder while in the
remaining the ratio d=s is close to 1, yielding no ampli-
fication. We evaluate the gas damping coefficients at
T ≃ 300 K equilibrium temperature and p≃ 10−5 Pa
pressure from the residual gas whose molecules have
mo ≃ 5 × 10−26 kg. We compute the differential compo-
nent of the gas damping force on each of the four surfaces
of the test cylinders and finally derive the PSD of the total
differential force due to gas damping in the assumption that
they are all random. Note that a force acting only on one
of the two test bodies, say m1, results in a differential
force between the two a fraction m2=ðm1 þm2Þ smaller.
If m1 ¼ m2 the differential force is a factor 2 smaller,
yielding—in the case of a damping force—a damping
coefficient a factor 4 smaller. We get

hjF̂th-gasðωÞj2i≃ 2.2 × 10−28 N2=Hz (6)

corresponding to a gas damping coefficient

γgas ≃ 1.3 × 10−8 kg=s: (7)

In the same conservative assumptions, but allowing for
the gas damping forces in the gap between the concentric
cylinders (i.e. the force on the outer surface of the inner
cylinder and the force on the inner surface of the outer one)
to be correlated to each other, we would obtain a slightly
larger effect of ≃3.8 × 10−28 N2=Hz and a correspond-
ingly larger damping coefficient of ≃2.3 × 10−8 kg=s.

B. Johnson noise and eddy currents

A magnetic shield is required in order to attenuate the
disturbances caused by Earth’s magnetic field B⊕ ≃ 5 ×
10−7 T on the test masses at the same frequency as the
target violation signal or at frequencies very close to it. In
GG a 150 attenuation factor is sufficient, to be achieved
with a μ-metal shield which can be located on the inner
surface of the spacecraft.
The residual magnetic field inside the volume sur-

rounded by a μ-metal shield is known to exhibit spatial
gradients even if the magnetic field outside it is uniform.
Gradients inside the shield are mitigated if the shield has
almost uniform thickness and magnetic permeability and if
it is close to spherically symmetric, being zero in the ideal
case that the shield is spherical, it has uniform thickness
and uniform permeability.
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In the following we shall make the worst case
assumption that the gradient inside the shield is as large
as B=rs, where B ¼ B⊕=150≃ 3.33 × 10−7 T is the mag-
netic field of Earth attenuated by the shield and rs ≃ 0.7 m
is the average radius of the shield. In the case of GG the
shape of the shield is essentially the shape of the spacecraft
body, which is close to having spherical symmetry.
Moreover, its rapid rotation helps to further reduce effects
due to imperfections.
If the test masses are conductors with resistance R at

temperature T, Johnson noise inside them gives rise to
fluctuating current loops, hence to magnetic moments
which—in the presence of a nonzero gradient of the
magnetic field—give rise to a fluctuating force competing
with the target violation signal. The power spectral density
of the Johnson voltage noise is known to be

hjV̂JðωÞj2i ¼ 4kBTR (8)

from which, by Ohm’s law, the PSD of the fluctuating
currents noise is derived:

hjÎJðωÞj2i ¼
hjV̂JðωÞj2i

R2
¼ 4kBT

R
(9)

giving rise to the magnetic moment noise,

hjm̂JðωÞj2i≲ hjÎJðωÞj2iH4 ≲ 4KBT
R

H4 (10)

whereH2 (H being the height of a test cylinder) is an upper
bound for the area of the current loops.
With a magnetic field gradient B=rs inside the spacecraft

the PSD of the resulting fluctuating force on the test
cylinder is

hjF̂th−JðωÞj2i≲ hjm̂JðωÞj2i
B2

r2s
≲ 4KBT

R
B2H4

r2s
: (11)

As a rough estimate of the resistance R for a hollow test
cylinder we take

R≃ ρH
πðr22 − r21Þ

(12)

where ρ ¼ 1=σ is the resistivity of the material
(ρBe ≃ 4 × 10−8 Ωm for the outer cylinder and ρTi ≃ 4.2 ×
10−7 Ωm for the inner one) and r1, r2 are the inner and
outer radii respectively of the cylinder of heightH (as given
in Sec. III A). The largest effect is on the Be cylinder,
because of its lower resistivity and bigger height. We
therefore take as an upper bound of the differential effect
between the test masses the total effect on the Be cylinder
(at T ≃ 300 K):

hjF̂th−JðωÞj2i ≲ 4.15 × 10−29 N2=Hz (13)

which is about a factor 5 smaller than the value (6) due to
gas damping. A more detailed estimate taking into account
symmetry and rapid rotation in reducing the magnetic field
gradient would yield an even smaller effect.
By writing (11) as

hjF̂th−JðωÞj2i ¼ 4kBTγJ (14)

we obtain the damping coefficient associated with Johnson
noise:

γJ ≲H4

r2s

B2

R
: (15)

Its value corresponding to (13) is

γJ ≲ 2.5 × 10−9 kg=s: (16)

In GG the test cylinders are weakly coupled in the
plane perpendicular to the spin/symmetry axis with a
natural frequency of oscillation relative to each other
ωn ≃ 2π=540 rad s−1. According to industrial studies of
the GG experiment in space, based on realistic simulations
and measurement errors, the largest relative displacement
between the centers of mass in the sensitive plane is
Δrmax ≃ 10−8 m (see [10], Ch. 6, and [11]). If such motion
occurs in the presence of a nonzero gradient of the magnetic
field of Earth eddy currents are generated inside the test
cylinders. An upper bound to the PSD of these currents is

hjÎeddyðωÞj2i ≲ B2H4ω2
nΔr2max

R2r2s
: (17)

By comparison with the Johnson noise currents (9) we have
the ratio

hjÎJðωÞji
hjÎeddyðωÞji

≳
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4kBT

Rr2s
B2H4ω2

nΔr2max

s
(18)

showing that, as far as the gradients of the magnetic field
are concerned, Johnson noise dominates by far over eddy
currents noise [the ratio (18) is ≳2.2 × 104 for the Be test
cylinder].
No eddy currents are generated in a conductor immersed

in a uniform and constant magnetic field as long as it moves
with pure translational motion, because there is no change
in the flux of the magnetic field in a loop inside the
conductor.
If the conductor rotates and the constantmagnetic field has

a nonzero component transverse to its rotation axis there is a
changing flux and there are eddy currents which dissipate
rotation energy. The power dissipated by eddy currents in
slowly rotating hollow cylinders has been calculated by [12]
for various geometrical dimensions of the cylinders. They
give [[12], Eq. (10)]P ¼ πσω2

spinB
2r52fðλ; μÞ, where σ is the

conductivity of the cylinder, r2 its external radius and the
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functionfðλ; μÞ is anumerical factor dependingon thevalues
λ, μ of the inner radius and semiheight of the cylinder
respectively expressed in units of its external radius. In
GG the largest effect is on the Be test cylinder for which,
with the numerical values reported in Sec. III A, it is
fBeðλBe; μBeÞ≃ 0.095 (see Fig. 2 in [12]), yielding
PBe ≃ 1.24 × 10−9 W. With 1 s spin period, this is also
the energy dissipated by eddy currents per spin period.
Knowing the rotation energy of the test cylinder
(EBe ¼ 0.5IBeω2

spin ≃ 2.8 J, with IBe ¼ 0.14 kgm2 the
moment of inertia with respect to the rotation/symmetry
axis) we get the quality factor corresponding to these losses:
QBe ≃ 2π · EBe=ð1.24 × 10−9 JÞ≃ 1.4 × 1010. As long as
the magnetic field is uniform the power dissipated in the
rotating test cylinders has no effect on the translational
motion of their centers of mass, and hence on the
equivalence principle violation signal being sought.

C. Thermal noise due to internal damping

We have seen that the contribution to thermal noise from
both gas damping and Johnson noise is frequency inde-
pendent. Whatever the frequency of the signal, their
contribution to the total thermal noise competing with it
will not change.
To the contrary, the frequency of the signal is relevant

when we consider thermal noise due to internal damping
(also referred to as structural or material damping) in which
case dissipation occurs inside the weak mechanical joints
which suspend (or couple, in the case of GG) the test
masses. In this case the damping coefficient γ in (1) is
known to depend on the frequency ω in the form [see [13],
Sec. V, Eq. (14)]

γidðωÞ≃ kϕðωÞ
ω

¼ μω2
nϕðωÞ
ω

(19)

where k is the elastic constant of the mechanical suspension
and ϕðωÞ its loss angle at the oscillation frequency ω. In
this form it has been confirmed by slowly rotating torsion
balances testing the equivalence principle on ground up to
their maximum rotation frequency of about 1 mHz, slightly
below the resonance, while above it the autocollimator
noise dominates, as the authors report ([14], Fig. 20). In the
case of GG k is the elastic constant of the 2D laminar joints
which couple the concentric test cylinders in each direction
of the sensitive plane perpendicular to the axis of sym-
metry; hence, k ¼ μω2

n with μ ¼ 5 kg the reduced mass of
the two cylinders and ωn ¼ 2π=540 rad s−1 the frequency
of natural oscillation of the cylinders relative to each other.
It is apparent from (19) that if the loss angle is

independent of frequency the internal damping coefficient
is lower at higher frequency, yielding a shorter integration
time. Indeed, there is experimental evidence that the loss
angle too decreases at higher frequency (see e.g. [15])

making the decrease of internal damping at higher
frequency even stronger.
Thermal noise from internal damping is known to be a

serious issue in small force experiments where the target
signal has low frequency.
If UFF/WEP is tested in a spacecraft that does not rotate

with respect to inertial space while orbiting Earth at low
altitude, in an inertial reference frame centered on the
center of mass of Earth a violation signal would have the
(low) orbital frequency (ωorb ≃ 2π · 1.7 × 10−4 rad s−1). In
GG, by rotating around the symmetry axis the whole
spacecraft which encloses—in a nested configuration—
the test cylinders and their readout, the spacecraft is
passively stabilized and, at the same time, the signal is
up-converted to the rotation frequency ωspin ≃ 2π rad s−1 at
which the satellite is stabilized. The main features of the
GG sensor are sensitivity in 2D, rotation frequency higher
than the natural frequency of the mechanical oscillator
(by the factor 540), and up-conversion of the signal
frequency to the much higher rotation frequency (by a
factor almost 5900). It has been demonstrated [16] that
in these conditions the relevant coefficient of internal
damping is

γidðωspinÞ≃ μω2
nϕðωspinÞ
ωspin

≃ 5.4 × 10−9 kg=s (20)

[atωspin ≃ 2π rad s−1, ϕðωspinÞ≃ 5 × 10−5] yielding for the
PSD of the corresponding thermal noise force competing
with the signal up-converted to ωspin the value

hjF̂th−idðωspinÞj2i≃ 4kBTγidðωspinÞ≃ 8.9 × 10−29 N2=Hz:

(21)

In the absence of rotation, the PSD of the thermal noise
force competing with a violation signal at the orbital
frequency ωorb ≃ 2π · 1.7 × 10−4 rad s−1 would be

hjF̂th−idðωorbÞj2i ¼
4kBTμω2

nϕðωorbÞ
ωorb

(22)

and hence

hjF̂th−idðωorbÞj2i ≳ 5.3 × 10−25 N2=Hz; (23)

where we have used the symbol ≳ instead of ≃ because—
for the same suspension—the value of the loss angle is
known to depend to some extent on the frequency at which
it oscillates, being higher at lower frequencies. Thus, with

hjF̂th−idðωorbÞj2i
hjF̂th−idðωspinÞj2i

≳ ωspin

ωorb
≃ 5900 (24)

thermal noise from internal damping for the signal at orbital
frequency would dominate by far and make the integration
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time (2) longer by the same factor. This fact shows well the
advantage of GG in modulating the signal by rapid rotation.
Operating the experiment at low temperature

(≃2 K instead of ≃300 K) would have the advantage of
reducing all sources of thermal noise alike. As far as
internal damping is concerned a reduction of the integration
time by the factor ≃150 in a cryogenic experiment would
be less effective than up-converting the signal to high
frequency [see (24)] except for the cases in which a
reduction of the loss angle is achieved at low temperature.
A drastic reduction of thermal noise would not help very

much if the response of the sensor to the signal were
attenuated due to its up-conversion above the resonance (or
natural) frequency of the oscillator. This fact is well known
to occur in 1D mechanical oscillators where the force
measured is smaller than the force applied if it is applied at
frequency ω higher than the resonance frequency of the
oscillator ωn, with an attenuation factor ω2=ω2

n for frequen-
cies much higher than the resonance (see e.g. [17], Vol. 1,
Ch. 23). It is also known that no such attenuation occurs if
the oscillator has 2 degrees of freedom like GG [see [16],
Eq. (20), and [1], Fig. 2]. As shown in Sec. I, the
acceleration to be measured for GG to test UFF/WEP to
ηGG ¼ 10−17 is aGG ≃ 8 × 10−17 ms−2; the same value
must be measured when the signal is up-converted by
rotation to ωspin ≃ 2π rad s−1.

D. Integration time

The square of the force FGG given in Sec. I (the target
differential force to be measured for GG to perform a weak
equivalence principle test to ηGG ¼ 10−17) enters at the
denominator of (2) for the calculation of the integration
time, while at the numerator, assuming all thermal noise
sources to be uncorrelated, we have

hjF̂thðωspinÞj2itot¼hjF̂th−gasj2iþhjF̂th−idðωspinÞj2iþhjF̂th−Jj2i
≃2.2×10−28þ8.9×10−29

þ4.2×10−29N2=Hz

≃3.5×10−28N2=Hz (25)

yielding, for a signal-to-noise ratio of 2, an integration time
of about 2.4 h.
If the gas damping thermal noise forces in the gap are

correlated we get hjF̂thðωspinÞj2itot ≃ 5 × 10−28 and 3.5 h
integration time.
We note from (23) that if the frequency of the target

signal had not been up-converted to the rapid spin fre-
quency of GG, thermal noise from internal damping would
dominate by far making gas damping and Johnson noise
irrelevant and requiring, for the same signal and the same
signal-to-noise ratio, an integration time of 152 d.

IV. CONCLUSIONS

Tests of the universality of free fall and the weak
equivalence principle in low Earth orbit require us to
measure the effect of a very small acceleration at low
frequency, typically up-converted to higher frequency for
electronic and mechanical noise reduction. Assuming that
at this frequency readout noise is adequate to the meas-
urement, and that systematic errors can be reduced below
the signal, the experiment is ultimately limited by thermal
(random) noise. The integration time required for it to be
reduced below the signal is inversely proportional to the
square of the force signal to be measured. If the target force
is very small, this may be prohibitively long for an
experiment to be performed in space.
GG aims at testing the universality of free fall and the

weak equivalence principle to ηGG ¼ 10−17 (4 orders of
magnitude improvement). We have estimated thermal noise
due to residual-gas damping, eddy currents and internal
damping in the mechanical suspensions finding overall—
under conservative assumptions—an integration time of 2.4
to 3.5 hours for a signal-to-noise ratio of 2. Crucial to this
result is the up-conversion of the signal to 1 Hz, since it
reduces the contribution of internal damping to thermal
noise at the frequency that the signal has been up-converted
to. The fact that thermal noise results in such a short
integration time leaves room for a mission outcome even
better than planned. If care is devoted to reducing readout
noise and to reducing/separating the most dangerous
systematic errors, one further order of magnitude improve-
ment (to 10−18) would require an integration time from 10
to 14.6 days. With no up-conversion, or up-conversion to a
low frequency, thermal noise from internal damping would
dominate by far and even the current 10−17 target would
require 152 days of integration and therefore would be hard
to achieve.
The μSCOPE mission, currently under construction and

planned for launch in 2015, aims at a space test of
UFF/WEP too. With a different sensor design, and up-
conversion of the signal from the orbital frequency
νorb−μscope≃1.6×10−4 Hz to νsignal−μscope ≃ 7.7 × 10−4 Hz
(νspin−μscope ¼ νsignal−μscope − νorb−μscope ≃ 6.1 × 10−4 Hz)
the target is set at ημscope ¼ 10−15. The authors report that the
dominant source of thermal noise is due to internal damping
in the gold wire connecting each test mass to its enclosure,
and estimate for the spectral density of the acceleration noise
the value 1.4 × 10−12 ms−2=

ffiffiffiffiffiffi
Hz

p
([18], Table 5; confirmed

in [19], p. 7). For a target acceleration signal aμscope≃
8 × 10−15 ms−2 and a signal-to-noise ratio SNR ¼ 2 the
required integration time is tint−μscope≃1.23×105 s¼ 1.4 d.
Upon solicitation from the European Space Agency

(ESA) [20] two studies have been carried out for an atom
interferometry test of the weak equivalence principle in
space (referred to as Q-WEP) to be performed on the
International Space Station [21]. The target was set to
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10−14, with the isotopes 85Rb, 87Rb and an integration time
of several months, for the single shot noise to be reduced
below the target signal through a very large number of runs
(assuming random runs).
A UFF/WEP test to almost the same 10−15 target

as in μSCOPE is being considered using cold atoms
(also 85Rb, 87Rb) and atom interferometry with the
dedicated space mission STE-QUEST under study by ESA
[22]. In this case an integration time of a few years is needed,
comparable to the duration of the mission. This is
undoubtedly a weakness because the measurement could
either indicate a major new physical result (violation) or
simplyreportdetectionofa tiny,known,classical effect.With
one or just a few measurements available during the entire
mission it would be very hard to establish which is the case,
making the scientific result of the mission uncertain.

We conclude that the integration time required in
space missions to test the weak equivalence principle
is a crucial issue worth a careful investigation by the
proposing scientists. Its consequences on the mission
feasibility, cost and scientific outcome are so far rea-
ching that it should be seriously taken into account by
space agencies in evaluating and comparing mission
proposals.
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