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We focus on the fact that light-pulse atom interferometers measure the atoms’ acceleration with only three
data points per drop. As a result, the measured effect of the gravity gradient is systematically larger than the
true one, an error linear with the gradient and quadratic in time almost unnoticed so far. We show how this error
affects the absolute measurement of the gravitational acceleration g as well as ground and space experiments
with gradiometers based on atom interferometry such as those designed for space geodesy, the measurement of
the universal constant of gravity and the detection of gravitational waves. When atom interferometers test the
universality of free fall and the weak equivalence principle by dropping different isotopes of the same atom, one
laser interrogates both isotopes and the error reported here cancels out. With atom clouds of different species
and two lasers of different frequencies, the phase shifts measured by the interferometer differ by a large amount
even in absence of violation. Systematic errors, including common mode accelerations coupled to the gravity
gradient with the reported error, lead to hard concurrent requirements—on the ground and in space—on several
dimensionless parameters, all of which must be smaller than the sought-for violation signal.
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Light-pulse atom interferometers (AIs) are based on quan-
tum mechanics. As the atoms fall, the atomic wave packet is
split, redirected, and finally recombined via three atom-light
interactions at times 0, T , and 2T . The phase that the atoms
acquire during the interferometer sequence is proportional to
the gravitational acceleration that they are subjected to.

Although one might think that the phase shift depends on
quantum mechanical quantities, “this is merely an illusion
since we can write the scale factor [between the phase shift
and the gravitational acceleration] in terms of the parameters
we control experimentally, i.e. Raman pulse vector k and pulse
timing T . It then takes the form kT 2. . . . We can simply
ignore the quantum nature of the atom and model it as a
classical point particle that carries an internal clock and can
measure the local phase of the light field” ([1], Sec. 2.1.3).
The same reference also demonstrates that, in the case of a
gravitational field with a linear gradient, both the exact path
integral approach and the purely classical one lead to the same
exact closed form for the phase shift and free fall acceleration
measured by the AI, which is then expanded in power series
of the local gravity gradient γ for convenience [1]. The recoil
velocity is the only part of the atom-light interaction which
is not found in the classical model; however, it does not
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appear in the phase shift actually measured by AIs, because
they are operated symmetrically so as to cancel it out [2,3].
Thus, the classical approach gives excellent predictions of the
phase shift measured by the interferometer, while including
the quantum mechanical details related to the internal degrees
of freedom is needed to account for smaller effects, such as
the finite length of the light pulses.

We focus on the fact that AIs measure the atoms’ position
along the trajectory only three times per drop (in correspon-
dence with the three light pulses), unlike laser interferometers
in falling corner-cube gravimeters which make hundreds to
a thousand measurements per drop [4]. Hence, although pre-
dicted exactly, the gravitational acceleration measured by AIs
is the true one only in a uniform field.

The predicted value of the measured acceleration first ap-
peared in Ref. [5], and it has been confirmed ever since [1,6–
9]. However, none of these works mentions that in the pres-
ence of gravity gradient this value is the average free fall ac-
celeration (at time T of the middle pulse) based on three posi-
tion measurements. This is, of course, only an approximation
to the true acceleration, expressed mathematically by the sec-
ond time derivative of the position, or obtained experimentally
with a sufficently large number of measurements per drop.

Initially, the lack of precise measurements made the dif-
ference unimportant, and by the time the precision improved,
nobody went back to this issue. However, its physical con-
sequences do deserve to be carefully addressed. Using the
classical approach [1], we point them out when AIs are used
to measure the absolute value of the gravitational acceleration
g, for gravity gradiometry and for testing the universality of
free fall (UFF), both on the ground and in space.

2643-1564/2020/2(1)/012036(6) 012036-1 Published by the American Physical Society

https://orcid.org/0000-0002-0363-4071
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.2.012036&domain=pdf&date_stamp=2020-02-11
https://doi.org/10.1103/PhysRevResearch.2.012036
https://creativecommons.org/licenses/by/4.0/


NOBILI, ANSELMI, AND PEGNA PHYSICAL REVIEW RESEARCH 2, 012036(R) (2020)

Since UFF tests are included, we allow from the start the
possibility that the equivalence of inertial and gravitational
mass may be violated for atoms of different species A, B in
the field of Earth (violation of the weak equivalence principle,
WEP), hence violating UFF [10]. We therefore write the
masses as mg

A,B = mi
A,B(1 + ηA,B), Mg

⊕ = Mi
⊕(1 + η⊕), where

superscripts i, g refer to inertial or gravitational mass and
the Eötvös parameters ηA, ηB, η⊕ may not be exactly zero
(although they must be smaller than 1 by many orders of
magnitude [11,12]). The equation of motion for atoms A or
B reads

z̈A,B = − GMi
⊕

(R⊕ + zA,B)2
(1 + η⊕ + ηA,B) (1)

where R⊕ is the Earth’s radius and the z axis points upward.
UFF is tested by measuring the differential acceleration z̈B −
z̈A, then η⊕ cancels out, and there is a violation if, with
identical initial conditions and no noise, the ratio

z̈B − z̈A

(z̈A + z̈B)/2
= ηB − ηA ≡ η (2)

differs from zero; thus, what matters is the different com-
position of the atoms under test, which should be maxi-
mized [13–15]. Hence, we assume Mg

⊕ = Mi
⊕ ≡ M⊕.

Using a perturbative approach for a gravity field with a
linear gradient γ (see, e.g., Ref. [16]), the equation of motion
reads

z̈A,B� − g◦(1 + ηA,B) − γ
(

1
2 g◦t2 − v◦

A,Bt − z◦
A,B

)
, (3)

where g◦ = GM⊕/R2
⊕ � 9.8 ms−2, γ = 2g◦/R⊕ � 3.1 ×

10−6 s−2, and z◦
A,B and v◦

A,B are the initial position and
velocity errors of the atoms at release (the exact values are
assumed to be zero). The solution is

zA,B(t ) � z◦
A,B + v◦

A,Bt − 1
2 g◦(1 + ηA,B)t2

− γ t2
(

1
24 g◦t2 − 1

6v◦
A,Bt − 1

2 z◦
A,B

)
. (4)

We compute the phase shift δφA,B measured by the AI follow-
ing the step-by-step algorithm outlined in Ref. [1]. Assuming
the same k for all three pulses (h̄k is the momentum transfer,
with h̄ the reduced Planck constant) and the same time interval
T between subsequent pulses, it is

δφA,B = φA,B(2T ) − 2φA,B(T ) + φA,B(0)

= k[zA,B(2T ) − 2zA,B(T ) + zA,B(0)] (5)

and, using (4)

δφA,B(T ) � − kT 2
[
g◦(1 + ηA,B)

+ γ
(

7
12 g◦T 2 − v◦

A,BT − z◦
A,B

)]
. (6)

With the scale factor kT 2 (k and T measured experimentally),
this gives the free fall acceleration gA,B meas(T ) that the AI
is predicted to measure at time T of the middle pulse. In
modulus,

gA,B meas(T ) � g◦(1 + ηA,B) + γ
(

7
12 g◦T 2 − v◦

A,BT − z◦
A,B

)
.

(7)

If ηA,B = 0 (WEP and UFF hold), this is the same as in
Ref. [1]; it is the expansion to order γ of an exact result

which can be obtained in closed form by an exact path integral
treatment or within a purely classical description.

In a gravitational field with a linear gradient, the free fall
acceleration of the atoms at time T is obtained from (3) while
the AI measurement gives, at the same time T , the value (7),
which is systematically larger (in modulus) than the true one
by the amount:

�a = 1
12γ g◦T 2 (8)

with a relative error �a
g◦

= 1
12γ T 2. The discrepancy was

pointed out in Ref. [17], where it was explained with the
simple algebra involved in computing (6) from (5) and (4).
In physical terms, it is due to the limitation, intrinsic to the
AI instrument, of making only three position measurements
per drop. Whether it can be neglected or not will depend on
the specific experiment. If not, appropriate systematic checks
are required in order to partially model this term, while any
remaining unknown fraction of it must be too small to matter.

With the same perturbative approach, the calculation can
be extended to order γ 2 by using the solution zA,B(t ) to first
order in γ as given by (4), rather than to order zero (i.e.
zA,B|γ=0 = − 1

2 g◦t2 + v◦
A,Bt + z◦

A,B), as used in (3). The new
equation of motion reads

z̈A,B � − [
g◦(1 + ηA,B) + γ

(
1
2 g◦t2 − v◦

A,Bt − z◦
A,B

)
+ γ 2

(
1

24 g◦t4 − 1
6v◦

A,Bt3 − 1
2 z◦

A,Bt2
)]

. (9)

Its solution leads to the phase shift, hence to the acceleration
measured by the AI to order γ 2:

gA,B meas(T ) � g◦(1 + ηA,B) + γ
(

7
12 g◦T 2 − v◦

A,BT − z◦
A,B

)
+ γ 2

(
31

360 g◦T 4 − 1
4v◦

A,BT 3 − 7
12 z◦

A,BT 2
)
. (10)

The result is the same as Eq. (2.19) in Ref. [1] (where it
was obtained by expanding to second order the exact result in
closed form) and it is generally accepted. However, it differs
from the true acceleration given by (9) (at the same time T )
with a relative systematic error:

�aA,B

g◦
= 1

12
γ T 2 + γ 2

(
2

45
T 4 − 1

12

v◦
A,BT 3

g◦
− 1

12

z◦
A,BT 2

g◦

)
,

(11)

though we limit our analysis to order γ .
Let us now consider an AI experiment in space, inside a

spacecraft in low Earth orbit such as the International Space
Station (ISS). The ISS is Earth pointing, the AI axis is aligned
with the radial direction, and the nominal point O of atoms’
release (origin of the radial axis ζ pointing away from Earth)
is at distance h from the center of mass of the spacecraft (e.g.,
closer to Earth than the center of mass itself). When testing
UFF with atom species A and B, we can assume ηspacecraft =
η⊕ = 0 since they cancel out anyway [18]. The equation of
motion reads

mi
A,Bζ̈A,B = − GM⊕mi

A,B

[r − h + ζA,B]2
(1 + ηA,B)

+ mi
A,Bn2(r − h + ζA,B) (12)

with r being the orbital radius of the spacecraft (constant for
simplicity) and n being its orbital angular velocity obeying
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Kepler’s third law n2r3 = GM⊕. Since (h − ζA,B)/r � 1, we
can write

ζ̈A,B � −(atide + gorbηA,B) + γorbζA,B, (13)

where atide = γorbh is the tidal acceleration at the nominal re-
lease point and gorb = GM⊕/r2 � 8.7 ms−2, γorb = 3gorb/r �
3.8 × 10−6 s−2 are the gravitational acceleration and gravity
gradient of Earth (the numerical values refer to an orbiting
altitude of �400 km). This equation shows that in orbit the
largest acceleration is the tidal one, with atide

gorb
� 3 h

r � 1 while
the driving acceleration of UFF violation is gorb (slightly
weaker than in ground drop tests), meaning that when the
free fall accelerations of two atom species are subtracted a
composition-dependent violation signal would be gorbη, with
η = ηB − ηA. The violation signal, if any, is an anomalous
acceleration in the same direction (and unknown sign) as the
monopole gravitational attraction from the source body, in this
case the radial direction to the Earth’s center of mass. Hence,
the equation of motion (13) contains the tidal acceleration
(due to gravity gradient) in the radial direction and not its
transversal component [19,20]. The ratio of the variable accel-
eration γorbζA,B relative to the constant term atide is γorbζA,B

atide
=

ζA,B

h � 1
2γorbT 2, in analogy to the corresponding ratio on the

ground γ zA,B

g◦
� 1

2γ T 2. Note that γorb is only slightly larger
than γ while it is expected that T can be several times larger
in space than on the ground, because of near weightlessness
conditions. This is considered the key motivation for moving
the experiment to space, since it means, for a given free fall
acceleration, a larger phase shift and hence higher sensitivity
(as T 2). However, it also means a larger gradient effect (also
as T 2). With this warning, we proceed with a perturbative
approach as on ground. To order γorb, it is

ζ̈A,B � −[
atide + gorbηA,B + γorb

(
1
2 atidet

2 − ϒ◦
A,Bt − ζ ◦

A,B

)]
,

(14)

where ζ ◦
A,B and ϒ◦

A,B are position and velocity errors at release
and the last term is of order γ 2

orb but cannot be neglected
because the free fall acceleration to be measured is of order
γorb. We are led to the measured acceleration (in modulus):

aA,B meas(T ) � atide + gorbηA,B

+ γorb
(

7
12γorbhT 2 − ϒ◦

A,BT − ζ ◦
A,B

)
, (15)

which, by comparison with its theoretical counterpart (14)
at the same time, shows a systematic relative error �a

atide
=

1
12γorbT 2, similar to the ground experiment.

When testing UFF, release errors result in position and
velocity offsets between the two atom clouds which—because
of gravity gradient—give rise to a systematic differential
acceleration error that mimics a violation signal [17]. The
effect of release errors is known to be a major issue in all
UFF experiments based on “mass dropping,” while it does
not occur if the test masses oscillate around an equilibrium
position, as in torsion balance tests or in the proposed Galileo
Galilei (GG) experiment in space [21]. As proposed by
Roura [22], the effect of release errors coupled to the local
gradient can be eliminated if the momentum transfer of the
second laser pulse is modified by a small quantity of order γ

such that the atoms fall as if they were moving in a uniform
field. On the ground, the nominal value k2 to be applied at
the second pulse is k2 = k + �k2 = k + k 1

2γ T 2. A residual
acceleration γres(z◦

A,B + v◦
A,BT ) remains if this value is not

implemented exactly (a successful reduction γres/γ � 10−2

has been reported [3]):

δφ
�k2
A,B (T ) � − kT 2

[
g◦(1 + ηA,B)

− γres(z
◦
A,B + v◦

A,BT ) + 1
12γ g◦T 2

]
. (16)

The acceleration term (8) remains too, in which the gradient
is unaffected by whatever reduction has been achieved for
the previous one, as pointed out in the Comment [23] and
acknowledged by Roura [24]. This is inevitable because �k2

has been computed in order to nullify the effect of the local
gradient on the atoms whose motion is governed by (3). In-
stead, the acceleration measured by the AI and used for tuning
the change �k2, is affected by the error (8) which cannot
therefore be compensated. Indeed, attempts to compensate
it [25] are questionable because compensation would alter
the free fall acceleration of the atoms and force it to equal a
measured value which (already to first order in γ ) is not fully
correct.

The very fact that in proposing the gravity gradient com-
pensation scheme Roura did not address the acceleration term
(8) indicates that the systematic error made by taking only
three measurements per drop has not been recognized.

A similar approach in space leads to a residual gradient
γorb−res < γorb after applying [22], and to the phase difference:

δφ
�k2
A,B orb(T ) � −kT 2

[
atide + gorbηA,B

− γorb−res(ζ
◦
A,B + ϒ◦

A,BT ) + 1
12γorbatideT 2]

(17)

where the error given by the last term contains γ 2
orb, but

amounts to 1
12γorbT 2 relative to atide = γorbh, which is the

quantity to be measured, and therefore cannot be ignored as
hinted by Refs. [23,24].

A previous approach to reducing gravity gradient and
initial offset errors in a proposed test of UFF on the ISS was
based on the idea of rotating the interferometer axis [26]. For
a dedicated mission, the idea of rotating the whole spacecraft
has been proposed by Rasel’s group as the key to reduce tidal
effects [27]. In both cases, the authors invoke a similarity with
MICROSCOPE space experiment [12].

In MICROSCOPE, the offset vectors between the centers
of mass of the macroscopic test bodies—being due to con-
struction and mounting errors—are fixed with the apparatus
and therefore follow its rotation at all time, allowing the
main tidal effect to be distinguished from a violation signal
during the offline data analysis of a sufficiently long run—
this is not a mass dropping experiment (Ref. [21], Sec. 7).
Instead, mass dropping tests with AIs require a huge number
of drops to reduce single-shot noise, each one with its own
initial conditions and mismatch vector between different atom
clouds, and the assumption that all these vectors are fixed
with the apparatus cannot be taken for granted. The argument
presented in Ref. [26] that the proposed instrument “has ran-
dom but specified mismatch tolerances” is a weak one. Being
systematic, this error must be below the target acceleration
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of the test in all drops; otherwise—should mismatch reversal
not occur even in a small number of drops during the entire
run (which is hard to rule out by direct measurement)—the
resulting average acceleration will be larger than the target,
thus questioning the significance of a possible “violation”
detection.

Roura’s proposal [22] is therefore to be preferred, as long
as the acceleration term (8) is recognized and dealt with, if
necessary.

On the ground, the error (8) affects the absolute measure-
ment of g. The best such measurement has achieved �g/g �
3 × 10−9 [7,28], only about three times worse than obtained
by the absolute gravimeter with free falling corner-cube and
laser interferometry [29]. With T = 160 ms, the acceleration
7

12γ g◦T 2 in (7) exceeds the target error and has required a
series of ad hoc measurements (drops from different heights)
to be modeled and reduced below the target. Should it be
possible to improve the sensitivity of the instrument by in-
creasing T , and to reduce the gradient and its effect coupled to
initial condition errors as proposed by Ref. [22], the error (8)
would still remain and should be taken care of for the absolute
measurement of g to be improved.

In gravity gradiometers, two spatially separated AIs with
atoms of the same species interrogated by the same laser
(hence �T = 0 and �k = 0) measure their individual free
fall accelerations at their specific locations and compute their
difference. The advantage is that the differential (tidal) accel-
eration is less affected than g by disturbances mostly in com-
mon mode, such as vibration noise. They are used for geodesy
applications, but also for the measurement of the universal
constant of gravity G and the detection of gravitational waves.
On the ground, if the release points A and B are separated
vertically by �h (A at the reference level and B higher by �h),
the differential acceleration is

|gB theory − gA theory|
� γ�h + γ

(
7
8γ�hT 2 + (v◦

B − v◦
A)T + z◦

B − z◦
A

)
(18)

while the gradiometer measures:

|gB meas − gA meas|

� γ�h + γ

(
49

48
γ�hT 2 + (v◦

B − v◦
A)T + z◦

B − z◦
A

)
(19)

with a systematic acceleration error proportional to γ 2 which
cannot be neglected relative to the tidal acceleration measured
by the gradiometer, the fractional error being 7

48γ T 2. In
space, with the release point A as in (12) and B at a radial
distance �h (farther away from Earth), the gradiometer would
measure

δφB − δφA � kT 2
[
γorb�h + γorb

(
7

12γorb�hT 2

+ (ϒ◦
B − ϒ◦

A )T + ζ ◦
B − ζ ◦

A

)]
(20)

with a fractional systematic error 1
12γorbT 2. The error—like

the physical quantity to be measured—contains the gradient.
Therefore, depending on the target precision and accuracy of
the experiment, ad hoc independent measurements are needed
in order to model and reduce it below the target.

In tests of UFF with AIs in which different atoms A and
B are dropped “simultaneously,” the individual phase shifts
are measured and their difference δφB − δφA is computed, to

yield zero if no composition-dependent effect is detected (i.e.,
η = ηB − ηA = z̈B−z̈A

(z̈A+z̈B )/2 = 0, UFF and WEP hold).
Different isotopes of the same atom can be interrogated

with the same laser. In this case, T is the same and the gradient
term with 1

12 or 7
12 coefficient cancels out. Different atom

species need different lasers and a requirement arises, for a
given target η of the UFF test, on the time difference �T , as
pointed out in Refs. [23,24]. However, the main problem with
different lasers is that different frequencies (kA �= kB) result in
widely different phase shifts measured by the interferometer
even in case of perfect synchronization (�T = 0), zero gra-
dient (γ = 0), no noise, and no violation. For instance, using
87Rb and 39K, the fractional difference of the phase shifts
is of the order of kK−kRb

kK
� 1.67 × 10−2 (kK = 4π/767 nm−1,

kRb = 4π/780 nm−1). When seeking a violation signal many
orders of magnitude smaller, this is a major problem, which
never occurred before in the long history of these experiments
that goes back to Galileo. Taking into account only kA �= kB,
the difference of phase shifts reads

δφB − δφA � −g◦T 2[(kB − kA) + (kBηB − kAηA)] , (21)

or −g◦T 2[(kB − kA)(1 + ηA) + kBη]. As mentioned earlier,
there is a large term even if WEP holds, which makes this
quantity hardly suitable to detect a tiny violation. Moreover,
the Eötvös parameters ηA or ηB appear in addition to η =
ηB − ηA [see Eq. (2)] mixed with the Raman vectors. This
mixing disappears and violation is correctly expressed by η

if we use the ratio of phase shifts instead:

δφB

δφA
� kB

kA
(1 + η). (22)

By defining kA = kA + �kA, kB = kB + �kB with kA, kB

being the exact values and �kA, �kB being the respective
experimental errors, we get

δφB

δφA
� kB

kA

{
1 + η − γres

g◦
[(v◦

B − v◦
A)T + (z◦

B − z◦
A)]

+ 2
�T

T
− �kA

kA

+ �kB

kB

+ �adm

g◦
− 2 × 1

12
γ T 2 acm

g◦

}
,

(23)

where we have included gravity gradient and initial condition
errors, the synchronization and Raman vector errors, and also
perturbations resulting in common mode accelerations acm

with inevitable differential residuals �adm. The most relevant
and best studied is vibration noise [30]; by using the same
mirror it is ideally common mode, but a differential residual
remains due to imperfect rejection. Systematic errors must
obey the conditions

γres

g◦

[
(v◦

B − v◦
A)T + (z◦

B − z◦
A)

]
< η,

�adm

g◦
< η,

acm

g◦
<

6

γ T 2
η,

�T

T
<

η

2
,

�kA

kA

< η,
�kB

kB

< η. (24)

The requirement on initial condition errors is very severe [17]
and must be relaxed by applying, for each species, an
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appropriate frequency shift at the second laser pulse [22] in
order to make the residual gradient γres as small as possible.
Gravity gradient is relevant because it couples also to common
mode accelerations which would otherwise cancel out (also
to higher order). Thus, vibration noise must meet the tight
requirements (24) in differential and in common mode. Note
that after applying [22], the requirement on acm is relaxed
only by a factor 7 because the residual (8) contains the actual
gradient γ and not the reduced one γres.

Concerning synchronization, the requirement (24) comes
from the fact that each phase shift grows as T 2 times the
leading free fall acceleration; hence, the relative error 2 �T

T
competes with η. The issue has been faced in Ref. [31]
in a WEP test with 87Rb and 39K, though only to a few
parts in 107. By chirping the lasers at a particular rate,
a wave acceleration was applied in order to compensate
to some extent (for each species) the leading acceleration
of the atoms which gives a phase shift proportional to
T 2. Raman pulse errors must meet similar tight require-
ments, and it is envisaged to make use of frequency comb
technology [30].

In Ref. [30], the authors propose a data analysis that would
allow a violation term containing η to be separated from
vibration noise. However, this is not the only violation term
in their equations, due to the mixing shown by (21). Violation
appears only as η in the ratio of the phase shifts, and (23)
shows beyond question that vibration noise, both in common
and differential modes, cannot be separated from η; �adm

g◦
and

1
6γ T 2 acm

g◦
could be misinterpreted as a violation and therefore

must be below the tight bounds (24).
For a violation at level η to be detected, it is necessary

(i) that all errors are negligible with respect to η and (ii)
that the absolute value of the ratio of the Raman vectors kB

kA

is measured to both precision and accuracy better than η,
so as to distinguish a deviation from the measured value at
this tiny level. Instead, in UFF tests with macroscopic test
masses, the physical quantity of interest is zero if η = 0 (“null
experiments” [21]).

With η already established at levels below 10−13,
10−14 [11,12], the requirements (24) are challenging and
each one needs a specific challenging technology, all to
be implemented together. Every error could be a WEP vi-
olation and needs specific systematic checks in order to
be distinguished from it; all checks must have the tar-
get sensitivity and therefore require a total integration time
each [17,22].

In space, the ratio of phase shifts reads

δφB−orb

δφA−orb
� kB

kA

{
1+ gorb

atide
η − γorb−res

atide
[(ϒ◦

B−ϒ◦
A )T + (ζ ◦

B − ζ ◦
A )]

+2 �T
T − �kA

kA
+ �kB

kB
+ �adm

atide
− 1

6γorbT 2 acm
atide

}
;

(25)

hence, the requirements on systematic errors are �T
T <

η

2
gorb

atide
,

�kA

kA
< η

gorb

atide
, �kB

kB
< η

gorb

atide
, γorb−res

gorb
[(ϒ◦

B − ϒ◦
A )T + (ζ ◦

B − ζ ◦
A )] <

η, �adm
g◦

< η, acm
gorb

< 6
γorbT 2 η. By comparison with (23) and (24),

the requirements on synchronization and Raman vector errors
are relaxed by the large factor gorb

atide
, as noticed by Ref. [30],

because in orbit the driving violation signal is gorb while the
leading free fall acceleration is atide [see Eq. (14)]. However,
this factor is gained only for systematic errors linear with
atide, not for gradient and initial condition errors and for
vibration noise, both in common and differential modes, in
which case the requirements are as tight as those on the
ground.

The intrinsic limitations and severe requirements of UFF
tests performed by dropping atoms of different species are the
reasons why almost all tests, especially if aiming at high preci-
sion [33], drop two isotopes of the same atom, 87Rb and 85Rb.
However, with only two neutrons difference, chances are
low that these experiments may detect composition-dependent
effects which would lead to new physics [11,32].

Light-pulse atom interferometers have the advantage that
atoms provide both the test mass and the readout. However,
they have only three time-position measurements at each
drop to recover the acceleration, unlike falling corner-cube
gravimeters which can rely on hundreds to a thousand data
points per drop. The resulting systematic error grows linearly
with the gradient and quadratically with the time interval T
between laser pulses. This error must be addressed in attempts
to improve the absolute measurement of g and must be proved
to be irrelevant—or taken care of—in gravity gradiometers
for the measurement of the absolute value of the universal
constant of gravity G, for space geodesy, and for the detection
of gravitational waves.
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