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Summary

A system of two weakly coupled rotors with natural frequency of relative oscillation ω◦
much smaller than the spin frequency ωspin and non zero dissipation (due to friction inside
its rotating parts, referred to as rotating damping) is known to develop a forward whirling
motion of increasing amplitude. The force necessary to stabilize the system (by preventing
the whirling motion from growing) is derived on the basis of general physical principles
with no assumption on the nature and the amount of dissipation in the system. It is found
that, even in the presence of very high viscous friction the stabilizing force is smaller than
the elastic spring force which couples the system. In all other cases (structural damping
only, or structural damping plus small-to-medium viscous damping) the frequency of the
destabilizing whirling motion is essentially the natural frequency of the system and the
stabilizing force is only 1/Qspin of the spring force, Qspin being the quality factor of the
springs which accounts for all dissipation (structural plus viscous), measured at the spin
frequency. In the GG case, where the spin frequency is 5 Hz at which very high Qspin can
be achieved (as we have already found in laboratory tests), the required stabilizing force
is therefore smaller than the spring force by far. Application of the right amount of force
by means of active electrostatic dampers which spin together with the rotors does in no
way change the amount of stabilizing force to be provided; this has also been checked in a
thorough numerical simulation of the GG system carried out by Alenia Spazio, including
drag disturbance and implementation errors, and with a very conservative assumption on
the amount of dissipation in the system. We conclude that: i) the stabilizing forces required
in the GG experiment (provided by electrostatic actuators spinning with the system) are
a factor about 106 smaller than the value claimed by Y. Jafry and M. Weinberger in their
Appendix to the ESTEC Technical Assessment of GG; ii) even in the presence of a very large
amount of viscous damping the stabilizing forces would be smaller than the spring forces
and never dominate the system. We notice that Y. Jafry and M. Weinberger have assumed
the damping coefficient of the system (whose physical dimensions are mass/time) to depend
on the reference frame, which is clearly incorrect in Galilean mechanics. Moreover, they
appear to have misunderstood non rotating friction with friction in the bearings, claiming
that the system is stabilized by friction in the bearings (or by an active simulation of it),
while the most efficient way of stabilizing the system is well known to be the non rotating
friction (or an active simulation of it). From the fact that the active damping forces are
much smaller than the forces of the springs it follows that the essentially passive nature
of the GG space experiment at a rotation rate of 5Hz is confirmed. Extremely weak
mechanical coupling and good balancing of the test masses (a common mode rejection of
5 · 10−6 has already been achieved with a ground prototype) are very advantageous for
testing the Equivalence Principle, as it is the signal modulation at 5 Hz.
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1. A Two Dimensional Harmonic Oscillator

Consider a 2 dimensional harmonic oscillator made of two equal point masses, each of
mass m, coupled by a spring of stiffness k/2 (which corresponds to the stiffness k for an
equivalent spring connecting each mass to the centre of mass of the system). The general
solution ~r(t) = (x(t), y(t)) (for each mass) is an elliptical orbit with the centre (not the
focus) in the common centre of mass of the bodies:





x(t) = A cos (ω◦t− φ◦)

y(t) = B sin (ω◦t− φ◦)
(1)

where the x, y coordinate axes are chosen to coincide with the symmetry axes of the
ellipse, ω◦ =

√
(k/2)/(m/2) =

√
k/m is the natural frequency of the oscillation, m/2 is

the reduced mass of the system, φ◦ is the phase, A and B are the amplitudes along the
symmetry axes. This general solution can be decomposed in various ways into the sum of
two simple harmonic motions. For instance, it can be written as the sum of two circular
oscillations, one forward and the other backward (for each mass). They have the same
frequency and phase but in general different ammplitudes:

~r
f

= ρ
f
ei(ω◦t−φ◦) , ~r

b
= ρ

b
e−i(ω◦t−φ◦) (2)

where ρ
f

ρ
b

are the amplitudes of the forward and backward circular oscillations respec-
tively:

ρ
f

=
A + B

2
, ρ

b
=

A−B

2
(3)

2. A 2-D Oscillator with Dissipation: Calculation of the Damping Force

Consider the dissipation of the whole system as expressed by the quality factor Q. Q

accounts for internal dissipation in the suspensions, for losses due to imperfect clamping
and for any other possible losses in the system. The total energy of the system will decrease
in time, from its initial value E(0), as follows:

E(t) = E(0)e−ω◦t/Q = E(0)e−t/τ (4)

where τ , defined by τ ≡ Q/ω◦, is the damping time of the system due to the dissipation.
If this damping time is much longer than the natural period T◦ = 2π/ω◦ of the oscillator
(i.e. if τ À T◦), then, in one natural period T◦, the energy decrease is:
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(
∆E

)
T◦

E
' −2π

Q
(5)

which is the usual definition for the quality factor Q. The amplitude of the circular
oscillation will decrease accordingly:

r(t) = r(0)e−ω◦t/(2Q) (6)

and the relative variation of the amplitude of oscillation, in one natural period, is:

(
∆r

)
T◦

r
' − π

Q
(7)

By monitoring the amplitude of oscillation the Q of the system can be measured, thus
measuring its total dissipation. This decrease in the amplitude of the circular oscillation
can be interpreted as due to a decrease of the along track velocity, which in turn can be
considered as caused by an average damping acceleration ad, also along track, such that:

1
2
adT

2
◦ = 2π

(
∆r

)
T◦

, ad ' − 1
Q

ω2
◦r (8)

Finally, we can consider ad as produced by an average damping force Fd on each mass:

Fd = mad ' − 1
Q

mω2
◦r = − 1

Q
Fc =

1
Q

kr = − 1
Q

Fspring (9)

where Fc = mω2
◦r is the centrifugal force, equal and opposite to the elastic force of the

spring Fspring = −kr. The damping force Fd is at about 90◦ with respect to Fspring. We
have:

|Fd| ' 1
Q
|Fspring| (10)

Thus, if Q À 1 the damping force is much smaller than the elastic force of the spring.
Note that Q is the experimentally measured value, thus accounting for all losses in the
system. Equation (10) also gives the “destabilizing” force, i.e. the force that would be
necessary, in absence of damping, to produce an exponential increase, with quality factor
−Q, of the amplitude of the oscillation. If such “destabilizing” force is applied to the
damped oscillator it prevents the exponential decrease of the amplitude of oscillation by
pumping into the oscillator exactly the same amount of energy it dissipates; the energy
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provided at any time is the same as in (4), but with the plus sign in the exponential, so
as to produce an undamped oscillator. Also the converse is true: if an external damping
force Fd, of magnitude given by (10), is applied to an unstable oscillator having a quality
factor −Q, it will prevent in the same way the exponential increase of the amplitude of
the oscillations, that is the oscillator will be stabilized.

3. A System of Two Weakly Coupled Rotors with Rotating Friction:

Whirling Motion and Destabilizing Force

Let now the two bodies of the oscillator be concentric cylinders rotating with angular
velocity ωspin. Assume that they are mechanically coupled by a spring with a stiffness
k so small that the natural frequency of relative oscillation ω◦ =

√
k/m is much smaller

than ωspin. It is known that in this case each body rotates around its own symmetry axis
and there is a position of relative equilibrium (fixed in the rotating frame) very close to
the spin axis. Assume for the time being perfect centring (i.e. the equilibrium position
lies exactly on the spin axis).

If there is friction inside rotating parts of the system (e.g. the springs) this amounts
to a non–zero rotating damping which has to be taken into account in the equations of
motion. Rotating damping has a destabilizing effect because it produces a spin down of
the system and a corresponding (forward) whirling motion of the rotating bodies around
their common centre of mass, with an exponentially increasing amplitude. The angular
frequency of whirl ωw depends on the kind of rotating damping present in the system. Let
Q represent the total dissipation of the system due to friction inside its rotating parts. We
can distinguish between structural damping and viscous damping. Structural damping
(also known as hysteresis damping) is due to the relative motions of different parts in
the material when subject to deformations (the springs); the particles maintain essentially
their relative positions and the motions are due to the deformations. Instead, viscous
damping occurs between particles sliding the ones with respect to the others.

The frequency of whirl is computed by solving the equations of motion with rotating
friction in the system being of structural nature and of viscous nature (see Appendix).

In the case of rotating structural friction we find (using ω◦/ωspin ¿ 1) a whirling angular
frequency:

ωw =
ω◦√

2

√
1 +

√
1 +

1
Q2

(11)

yielding, for Q À 1,

ωw ' ω◦
(
1 +

1
8Q2

) ' ω◦ (12)
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That is, the frequency of the destabilizing (forward) whirling motion is essentially the
natural frequency of the system. In the case of rotating viscous friction, expressed by a
quality factor Qv of the system, we consider, for a rotor with a given ratio ω◦/ωspin ¿
1, three subcases: of very small, intermediate and very large viscous damping, namely:
Qv À ωspin/ω◦; Qv ' ωspin/ω◦; Qv ¿ ωspin/ω◦;. The resulting whirling frequencies are:

ωw = ω◦
(
1 +

ω2
spin

8ω2◦Q2
v

) ' ω◦ (Qv À ωspin

ω◦
) (13)

ωw ' ω◦

√
1 +

√
2

2
' 1.1ω◦ (Qv ' ωspin

ω◦
) (14)

ωw = ω◦

√
ωspin

2ω◦Qv
À ω◦ (Qv ¿ ωspin

ω◦
) (15)

It is therefore apparent that, unless the system has a very large coefficient of rotating
damping due to viscous friction (with a viscous quality factor much smaller than the ratio
spin–to–natural frequency) the frequency of the whirling (destabilizing), motion is close
to the natural frequency of the system (Eqs. (13) and (14)). A small amount of viscous
damping does not change the frequency of whirl in any significant way with respect to
the case in which only structural damping is present, while in the presence of a very large
viscous damping it would be ωw À ω◦. In the GG experiment we can certainly exclude
the presence of very large viscous friction (see Appendix), and therefore it is ωw ' ω◦.

We can now compute the quality factor Qw of the whirling motion, which is defined by
the equation:

rw(t) = rw(0)e−ωwt/(2Qw) (16)

where now

Qw < 0 (17)

because rw increases with time as the whirling motion gains angular momentum, neces-
sarily from the spin angular momentum of the rotor. Consider a system of two concentric
hollow cylindrical rotors, each of mass m (section across the spin axis), coupled by weak
springs and rotating at ωspin À ω◦ (Fig. 1). They develop a forward whirling motion of
radius rw around the common centre of mass O and at angular frequency ωw (ωw ' ω◦
except in the presence of very large viscous friction in which case it is ω◦ ¿ ωw ≤ ωspin).
For our calculations the elastic properties of the system can be represented by a spring

5



subdivided into 4 springs at 90◦ from one another, each with longitudinal stiffness k/4.
This system of springs is equivalent to two springs with stiffness k/2 coupling the two
masses in both the x and y directions.

The time variation of the spin angular velocity of the system can be computed from the
conservation of the total angular momentum, namely the angular momentum of spin:

Lrotor ' 2mR2ωspin (18)

(R is the linear dimension of the rotor) plus the angular momentum of the whirling motion:

Lw = 2mr2
wωw (19)

It must be:

L̇rotor + L̇w = 0 (20)

Hence:

ω̇spin = −2rwωw

R2
· ṙw (21)

From (16) the rate of growth ṙw(t) is:

ṙw = − ωw

2Qw
rw (22)

and the corresponding despin rate of the rotor is:

ω̇spin =
1

Qw

r2
w

R2
ω2

w (Qw < 0) (23)

which gives the time variation of the spin angular velocity of the rotor in terms of the
“negative” dissipation of the whirling motion.

Let us now consider the energy of the system. Since the springs are very weak and their
masses are negligible compared to the mass of the rotor (see Fig. 1), they will be obliged
to follow the motion of the attachement points which rotate at ωspin around the centre of
mass of the respective test mass. The centres of mass of the springs will rotate around
O at ωspin. When the springs are going from position 1 to position 3 (see Fig. 1) they
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will be forced to expand by 4rw, and when going from position 3 to 1 to contract by the
same amount. In the figure the four position numbers represent the phase of the whirling
motion, in 90◦ steps, with position 1 always in the direction O1O2. They rotate around O

with angular frequency ωw. After the spring, starting from position 1, has completed one
turn in the time Ts = 2π/ωspin, the whirling motion will have displaced position 1 by an
angle ±2πωw/ωspin (The + sign refers to the forward whirling and the − to the backward
one). Therefore, in order to reach again the position 1 of maximum contraction, the spring
takes a time Tspring, slightly different from Ts. We have (Tspring)−1 = (Ts)−1 ∓ (Tw)−1.
This means that each spring is forced to oscillate with amplitude 2rw at the frequency
2π/Tspring = ωspin∓ωw (The − sign is for the forward whirling and the + for the backward
one). We see that these are the only frequencies at which the springs are forced to oscillate
and that no deformations whatsoever take place in the spring’s material at the whirling
frequency. This is rather counterintuitive, since it is just the opposite of what happens in
the more familiar case with ωspin ¿ ω◦, and since the two centers of mass O1, O2 of the
two masses are seen (in the inertial reference frame) to rotate at ωw ' ω◦ one with respect
to the other. It would also be wrong to say that a deformation of the spring’s material
with frequency ωw is superimposed to the one at ωspin: the only effect of ωw is to slightly
correct ωspin into ωspin∓ωw. In the general case of an elliptical whirling motion (see Eqs.
(1), (2), (3)) we have the superposition of the two dissipations at two angular frequencies
ωspin − ωw and ωspin + ωw but still no dissipation at ωw. These mechanical deformations
are exactly the same as those of the one dimensional elastic oscillator of Fig. 2 if this
oscillator has an identical spring (with stiffness k/4) and two small masses µ/2 attached to
its ends, with µ = k/(ωspin − ωw)2 so that its frequency of oscillation has the same value
ωspin−ωw as in the rotor of Fig. 1, and if it is made to oscillate with the same amplitude
2rw. The energy of the oscillator will decrease in time according to the law:

Eoscillator(t) = Eoscillator(0)e−(ωspin−ωw)t/Qsw (24)

which defines its quality factor Qsw and also defines the way by which Qsw should be
measured experimentally; Qsw accounts for all losses in the oscillator at the frequency
ωspin − ωw. The time derivative of (24) yields:

Ėoscillator(t) = −ωspin − ωw

Qsw
Eoscillator(t) (25)

where Eoscillator = (1/2)(k/4)(2rw)2 = kr2
w/2 = mω2

◦r
2
w/2 is the energy of the oscillator

in Fig. 2. Hence:

Ėoscillator = −ωspin − ωw

Qsw

1
2
mω2

◦r
2
w (26)
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Since this oscillator has the same frequency and amplitude as each one of the 4 rotor’s
springs of Fig. 1, the total energy dissipated (as heat) inside the 4 rotor’s springs is simply
4 times the energy dissipated by the oscillator of Fig. 2, that is:

Ėrotor springs(t) = 4Ėoscillator(t) = −ωspin − ωw

Qsw
2mω2

◦r
2
w (27)

which is nothing but the energy dissipated by the rotor because of rotating damping, i.e.
because of friction between different parts of the rotor.

The conservation of energy requires that:

Ėrotor(t) + Ėw(t) = Ėrotor springs(t) (28)

where:

Erotor ' mR2ω2
spin (29)

is the spin energy of the rotor and:

Ew = 2mω2
wr2

w (30)

the energy (kinetic + elastic) of the whirling motion of the system. Eq. (28) says that
the energy dissipated inside the rotor’s springs cannot result only in a spin down of the
rotor (i.e. the spin energy of the rotor cannot decrease by exactly the same amount as
the energy dissipated inside the springs) because the conservation of angular momentum
requires the development of a whirling motion which will gain angular momentum as well
as energy, while the springs do not enter in the balance of angular momentum. From (29),
using (21), and from (30), we have:

Ėrotor = −4mrwωwωspinṙw , Ėw = 4mrwω2
w ṙw (31)

that is:

Ėw = − ωw

ωspin
Ėrotor (32)

which means that only the small fraction ωw/ωspin of the energy lost by the rotor is gained
by the whirling motion, all the rest being dissipated as heat in the springs (Ėrotor springs =
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(1− ωw/ωspin)Ėrotor). From (28), using (27) for Ėrotor springs(t) and (22) for ṙw (needed
to compute the time derivatives of (31)) we get:

ω̇spin = − r2
w

R2

ω2
◦

Qsw

ωspin − ωw

ωspin
+

r2
w

R2

ω2
w

Qw

ωw

ωspin
(33)

By substituting Eq. (23) into Eq. (33) we obtain:

Qw = −Qsw
ω2

w

ω2◦
(34)

Clearly, the destabilizing (tangent) force along the whirling circle is (see (8) to (10)):

|Fdestab| ' | 1
Qw

Fspring| = 1
ω2

w

ω2◦
Qsw

|Fspring| (35)

Apart for the case of very large viscous damping, Eq. (34) yields:

Qw ' −Qspin (36)

because ωw ' ω◦ ¿ ωspin, Qsw ' Qspin (Qspin accounts for all dissipation at the spin
frequency). That is, the negative dissipation of the whirling (destabilizing) motion is equal
and opposite to the dissipation of the rotor’s springs when forced to oscillate at the spinning
minus whirling frequency, which is essentially the spinning frequency. And Eq. (35), with
(36), becomes:

|Fdestab| ' 1
Qspin

|Fspring| (37)

(Fdestab and Fspring are at about 90◦). Hence,

|Fdestab| ¿ |Fspring| if Qspin À 1 (38)

This result applies to the GG experiment where the presence of a very large viscous
damping (Qv ¿ ωspin/ω◦) can certainly be ruled out. Indeed, with a planned spinning
frequency of 5Hz, the quality factor Qspin of the springs (which accounts for all losses at
the spin frequency) is certainly much larger than 1, and therefore the destabilizing forces
are much smaller (by far) than the spring forces. An active damping force (servo force),
opposite to Fdestab and slightly larger will clearly stabilize the system.
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In a rotating system dominated by a very large viscous damping it would be:

|Fdestab| ' 1
ω2

w

ω2◦
Qv

|Fspring| (39)

with ωw À ω◦, 1 ≤ Qv ¿ ωspin/ω◦ and (ω2
w/ω2

◦)Qv À 1: even in this case the destabilizing
force generated by a very large amount of viscous friction is only a fraction of the spring
force. It is therefore not true that: “A minimal level of viscous damping has a serious effect
on the performance estimate. The servo forces will dominate the passive spring forces”, as
stated by the FPAG reviewing panel of ESA (resolution FPAG(96)4 of 9 October 1996,
Point no. 2).

4. Stabilization with Rotating Active Dampers

Let the whirling motion be damped by electrostatic sensors/actuators fixed to the rotor.
By providing forces internal to the system they cannot change its total angular momentum:
they can only transfer the angular momentum of whirl to the rotation angular momentum
of the rotor by spinning it up. This is what happens if they are made to provide a
stabilizing force of the same intensity as the destabilizing one (37). This force must always
act along the vector of relative velocity of the centres of mass of the bodies in their
whirling motion, as seen in the inertial frame of reference. Since the centres of mass of
the bodies are displaced by an amount 2rw, the electrostatic plates will necessarily apply
also a small force tangent to the surface of the rotor amounting to a fraction 2rw/R of
the main component Fa of the active force, of intensity Fa ' (2/Qspin)|Fspring| (for both
bodies), which will damp the relative velocity of whirl. Of the corresponding reaction
components on the electrostatic actuators only the reaction to the small tangent component
fa ' (1/Qspin)|Fspring|(2rw/R) will produce a non zero angular momentum by spinning
up the rotor at the expense of exactly the angular momentum of whirl:

faR ' 1
Qspin

|Fspring|2rw ' 1
Qspin

2mω2
wr2

w = L̇w (40)

which will therefore increase the spin angular momentum of the rotor Lrotor = 2mR2ωspin

in such a way that the total angular momentum of the system is conserved. That is:

2mR2ω̇spin ' 1
Qspin

2mω2
wr2

w (41)

thus producing a spin up of the rotor at the rate ω̇spin ' (1/Qspin)(r2
w/R2)ω2

w. Except for
the sign this is essentially the same as (23) because Qw ' −Qspin and Qspin ' Qsw. By
integrating ω̇spin for the entire duration of the mission Tmission = tf − ti, from intial to
final epoch, the ratio ωf/ωi of final–to–initial spin angular velocity of the rotor is obtained:
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ωf

ωi
= 1 +

ωi

Qspin

r2
w

R2

ω2
w

ω2
i

Tmission (42)

In the GG case, even assuming a very low value for the quality factor at the spin frequency
of 5 Hz (Qspin ' 500), R ' 5 cm (for the smallest test body made of Pt/Ir), rw ' 10−6 cm

(the capacitance sensors and actuators that provide the active damping can in fact maintain
the radius of whirl within a smaller value than this) and ω2

w/ω2
spin ' 2.5 · 10−6 we get, for

a 6 months duration of the mission:

ωf

ωi
− 1 ' 10−13 (43)

The corresponding angular advance is:

∆θ ' 1
2Qspin

r2
w

R2
ω2

wT 2
mission ' 5 arcsec (45)

which is clearly negligible. The corresponding quality factor Qrotor for the spin up of the
rotor (in absence of any external disturbances to its spin rate) would be obviously huge:

Qrotor = −2π
Tmission

Tspin

Erotor

∆Erotor
' −2.5 · 1021 (46)

the amounts of energy and angular momentum gained in 6 months being vanishingly small:

∆Erotor ' 2 · 10−13Erotor ' 2 · 10−4 erg , ∆Lrotor ' 10−13Lrotor ' 6 · 10−6 g cm2 s−1

(47)

Let us now consider the conservation of energy in the presence of rotating active dampers.
The contribution to the energy by the electrostatic dampers comes from the work done by
both components of the active force. The larger one, of intensity Fa and the smaller one
of intensity fa:

Fa ' 2
Qspin

2mω2
wr2

w , fa ' 2
Qspin

2mω2
wr2

w(
rw

R
) (rw/R < 2 · 10−7) (48)

While only fa will transfer angular momentum from the whirling motion to the rotor, both
components of the active force will provide energy. By spinning up the rotor at the rate
ω̇spin ' (1/Qspin)(r2

w/R2)ω2
w, fa will obviously also increase the spin energy of the rotor

by supplying to it the power:
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Ėrotor ' ωspin

Qspin
2mω2

wr2
w (49)

As for the component Fa (always directed along the relative velocity vector of the centres
of mass of the bodies and opposite to it) it will supply energy at the rate:

ĖF a '
ωspin − ωw

Qspin
2mω2

wr2
w (50)

because the electrostatic dampers, being fixed to the rotor (hence spinning at ωspin), are
required to provide a force at frequency ωw (in order to damp the whirling motion at ωw)
and therefore must actuate at frequency ωspin−ωw; in order to give the required stabilizing
force they must necessarily supply energy at the rate (50). This is transferred to the
springs, to be dissipated as heat, while the energy of the whirling motion does not change
any longer. Thus, the springs are provided with a power (1/Qspin)(ωspin − ωw) · 2mω2

wr2
w

which is exactly the energy that they dissipate in the presence of a whirling motion of
constant radius rw (see Eq. (27)).

In GG the electrostatic sensors/actuators are fixed to the spinning bodies and actuate at
the frequency ωspin−ωw, i.e. close to the spin/signal frequency of 5 Hz. This means that
they produce noise close to 5 Hz (with respect to the fixed frame, i.e. close to 10Hz or
DC w.r.t. the rotating frame). We demonstrate in Paper II that the weakly suspended
PGB laboratory inside the GG spacecraft is very effective in attenuating vibrational per-
turbations which act at frequencies close to the spin/signal frequency with respect to the
non rotating frame. This is very useful to attenuate noise produced by the electrostatic
dampers, by FEEP thrusters (which also fire close to the spin/signal frequency), and in
general by any other effect which may disturb the experiment at the spin/signal frequency.
For the action of the electrostatic actuators to be successful it is necessary that the whirling
circle be sufficiently small, its centre defining the position of relative equilibrium of the
system given the original unbalance ~ε of the rotor because of manufacturing and mount-
ing errors and of its spin-to-natural frequency ratio. In GG this is achieved after initial
unlocking by means of inch-worms equipped with pressure sensors. Once inch-worms have
achieved the initial centring by removing the unbalance bias ~ε, the electrostatic dampers
can damp the whirling motions and stabilize the system (by providing forces as small as
we have calculated) also in the presence of external disturbances such as drag. All this
has been confirmed with numerical simulations (performed by Alenia Spazio) assuming
very low quality factors (20 for the suspensions of the PGB and 500 for those of the test
masses) and including drag disturbances as well as implementation errors. Using forces of
the right intensity, and allowing for removal of the initial unbalance, the work by Alenia

Spazio shows that no problems arise due to the fact that the damping force is provided
by spinning actuators. There is no indication whatsoever that the damping force needs to
be amplifyed by a factor ωspin/ω◦ if applied in the rotating frame as stated in the ESTEC
Report.
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Numerical simulations of the GG system do not yet include the small movable rods, pivoted
at their centres on flat elastic gimbals, to which the GG test masses are suspended. As
of our present understanding it is possible that, due to the differential oscillations of the
bodies, they will develop only conical whirling motions, and no cylindrical whirling motion.
If so, they will not require any active stabilization, as conical whirls are naturally damped.
If a closer analysis will show that this is not the case, they can easily be stabilized similarly
to all other bodies of the GG system. Obviously, in introducing them with a non-zero mass
in the numerical simulations they will also be given the appropriate values for the principal
moments of inertia which will best suit their stabilization. The possibility of adjusting the
ratios of the principal moments of inertia in a body of cylindrical symmetry is well known.

Conservation of energy and angular momentum in the presence of spinning actuators
definitely demonstrates that whirling motions in weakly coupled rotors (such as GG) can
be stabilized by means of extremely small forces, far smaller than the spring forces and
never competing with them. It should also be stressed that the fastness of the electronics is
not an issue because, although the electrostatic dampers must actuate at a frequency close
to the spin frequency, the whirling motion to be damped is much slower, so that corrections
and adjustments are possible over several spin periods. Furthermore, this electronics is
the same for all the GG bodies, and as a matter of fact it is also similar to the electronics
needed for drag–free control with FEEP thrusters. In no way it can be regarded as a
critical issue in the space experiment.

Far more important it is to stress the fact that the major source of dissipation in the
GG experiment, namely the springs, dissipate energy at the frequency of spin, not at the
frequency of whirl. This is true only because of the fast rotation as compared to the small
natural frequency of oscillation provided by the weak mechanical coupling. This means
that thermal noise will be dominated by the quality factor of the suspension at 5 Hz, not
at the much smaller natural frequency. This Q is bound to be very high, making thermal
noise small and the integration time short, in spite of the fact that the experiment is run at
room temperature. The advantage of weak coupling and fast spin is apparent once more.

5. Stabilizing Forces in Ground Rotating Machines with ωspin À ω◦

The result (37), which so far has been obtained on the basis of general physical principles,
is the same used in engeneering textbooks and literature on rotating machines. On the
basis of direct experience with many rotating machines (whose suspensions are certainly
not the tiny GG springs) it is concluded that friction inside rotating parts (the suspensions)
is essentially of structural nature, thus always obtaining a frequency of whirl very close to
the natural frequency; see Eqs. (11) to (14). As a consequence, the coefficient of rotating
damping (see e.g. G. Genta, Vibration of Structures and Machines, Springer 1993, Section
4.5.5) when ωspin À ω◦ is given as:

cr ' η
k

ωspin
(51)
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where η ' 1/Q is the internal loss of the material at the frequency at which the material
goes through the elastic hysteresis cycle, which is ωspin−ω◦ ' ωspin, and not ω◦ as stated
in the ESTEC Report. Thus:

η =
1

Qspin
(52)

and:

cr =
1

Qspin

k

ωspin
(53)

In order to stabilize the whirling motion which is known to develop because of the rotating
damping expressed by the coefficient (53) it is necessary to provide an amount of non
rotating damping, expressed by a coefficient cnr which satisfies the stability condition of
the rotor (known as “Jeffcott rotor”):

cnr

cr
>

ωspin

ω◦
(k = mω2

◦) (54)

hence

cnr >
1

Qspin
mω◦ (55)

From this, the required stabilizing (damping) force can be computed, since the velocity to
be damped (in the inertial reference frame) is —at any given time— the linear velocity of
the centre of mass along the whirling circle of radius rw:

Fstabiliz = cnrω◦rw >
1

Qspin
mω2

◦rw =
1

Qspin
krw = − 1

Qspin
Fspring (56)

|Fstabiliz| > 1
Qspin

|Fspring| (57)

If ω◦ ¿ ωspin then Qωspin−ω◦ ' Qspin so that Eqs. (37), (38), (56), (57) remain almost
exactly valid also in the general case of an elliptical whirling motion (see Eqs. (1), (2), (3)).

6. Comparison with the ESTEC Result

In none of these two different derivations we recover the result reported in the Appendix
to the ESTEC Technical Assessment of GG (as released on October 7, 1996), namely:

14



[
|Fstabiliz| > 1

Q
|Fspring|ωspin

ω◦

]

ESTECAppendix

(58)

The ESTEC Appendix contains in fact an incorrect definition of the non–rotating damping
forces which are needed to stabilize the whirling motions. On page 16 (lines 18–20) one
can read: “... non-rotating damping forces are obtained by virtue of the naturally unavoid-
able viscous friction between the rotating body and the non-rotating parts, ...”. This is in
fact the definition of the friction in the bearings, which is not the non–rotating damping
needed for stabilization (see below; see also the GG Blue preprint, §III). Also incorrect
are the definitions, given on page 41 (beginning of Section 2.1) for the rotating and non–
rotating damping. It is stated: “Consider the general case where cr represents the viscous
damping coefficient in the rotating frame, and cn represents the viscous damping coeffi-
cient in the inertial frame (‘non–rotating damping’)”. The damping coefficients derive
from physical friction, hence from dissipated energy, which do not depend on the reference
system from where they are looked at. The physical dimension of damping coefficients is
mass/time, which in Galilean mechanics does not depend on the reference frame. The
“rotating damping” and the “non–rotating damping” are not the same effect as seen from
different reference frames: they are the names of two different types of damping in the
same reference frame. They have different physical properties (respectively in destabiliz-
ing and in stabilizing the rotor) that do not depend on the reference frame. Moreover, as
we have just said above, they have nothing to do with a third type of damping: the viscous
friction in the bearings.

In Fig. 3 we show the three general types of friction in a rotating machine, from which
the correct definition of rotating and non–rotating damping is obtained. They are:

i) The friction in the bearings. This is the friction (mostly viscous) between the rotating
body and the non rotating parts, which is obviously effective in slowing down the rotor
but almost completely ineffective at damping whirling motions (and also at producing
them). An important advantage of the GG space experiment is the absence of bearings,
hence of bearings friction at all (and we certainly don’t want to simulate them actively!).

ii) The rotating damping friction. This is the friction (viscous plus structural) between two
parts of the system which are both rotating (i.e. two parts of the rotor). The correspond-
ing losses are those which produce the instabilities (whirling motions) in weakly suspended
rotors with ω◦ ¿ ωspin by giving rise to the destabilizing forces computed above (namely
1/Qspin of the spring elastic forces). In the GG space experiment where all rotors are sus-
pended with tiny springs in vacuum the rotating damping friction is essentially structural,
caused by the relative motion of the various parts of the springs subject to mechanical
deformations (at spin minus natural frequency, which is essentially the spin frequency).
Adding the rotating friction generated by the rotating electrostatic active dampers them-
selves, which provide a force much smaller than the spring force, does in no way change
the dynamics of the GG system.
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iii) The non–rotating damping friction which generates the non–rotating damping forces. This
is the friction (viscous plus structural) between two parts of the system both non–rotating
(i.e. between two parts of the non-rotating supports, for example the friction between the
non-rotating part of the bearings and their fixed supports). The non-rotating damping
forces are effective in damping transverse translational oscillations of the rotor’s axis of
rotation (for example the whirling motions), and they can do this without slowing down its
rotation. For the whirling motions to be stabilized they must simply provide a coefficient
of non–rotating damping which satisfies the inequality (55). For instance, in the ground
rotors in which non–rotating damping is provided by tipping the non–rotating part of the
bearing in oil this is essentially viscous damping. In the GG space experiment where there
are no non–rotating parts an equivalent non–rotating damping is provided by electrostatic
actuators fixed in the rotating system. (see §4)

From a physical viewpoint the most important characteristic distinguishing the effects of
rotating and non–rotating damping on one side from the effects of friction in the bearings
on the other is that the former produce forces on the rotor, while the latter produces
torques. They are therefore independent from one another and interact only to a second
order, namely because of construction errors, asymmetries, misalignements etc. From this
it follows that if one were in fact using the forces generated by the friction in the bearings
in order to stabilize the whirling motions (rather than the forces due to non rotating
damping), he would inevitably need extremely large forces.

As for the amplifying factor ωspin/ω◦ claimed in the ESTEC Appendix as due to the fact
that the active dampers are fixed to the rotating bodies, we have shown in §4 above that
there is no physical grounds for it. So, the results of the ESTEC Appendix are based
on the use of supposedly “stabilizing” forces which are a factor (ωspin/ω◦)2 ' 106 larger
than we have shown (both theoretically and with numerical simulations) to be sufficient
for damping the GG whirling motions. Let us see what is the effect of the huge ESTEC
“stabilizing” force when applied to one of the masses m undergoing a destabilizing forward
whirling motion at frequency ωw ' ω◦ (as demonstrated by Eqs. (11) to (14) for all
cases except the one of very high viscous damping, which can be ruled out in GG) at
distance rw from the equilibrium position. Since the ESTEC “stabilizing” force amounts
to FESTEC ' (1/Q)mω2

spinrw it is apparent that it is compatible with two effects. In
one case it could force the body to whirl at angular velocity ωspin, much larger than its
previous angular velocity of whirl ωw when the system was undamped, at a distance rw/Q

from the equilibrium position, or, it could maintain the angular velocity of whirl of the
undamped situation while pushing the body a distance (ωspin/ω◦)2rw/Q away from the
equilibrium position. If ωspin ' 103ω◦ and Q is rather small (e.g. 20 for the PGB and 500
for the test masses), then it is apparent that in either case the huge ESTEC force, far from
damping the whirling motions would force the two masses into a totally wrong dynamical
configuration overcoming the spring forces and thus disrupting the whole experiment.
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Appendix — Frequency of Whirl Due to Structural and Viscous Rotating

Damping

Consider the rotor of Fig. 1. The relative motion of the two masses is described (in the
inertial reference frame) by the equation:

mredz̈ + cr ż + (k − iωspincr)z = 0 (A1)

where z is the position vector in the complex plane, mred is the reduced mass of the system,
cr is the coefficient of rotating damping and there is no non-rotating damping (see §6). The
characteristic equation associated to the equation of motion of the system is:

−mredλ
2 + icrλ + k − iωspincr = 0 (A2)

The solution of Eq. (A2) is of the type z = z0 exp(iλt), so that the real part of λ, <λ, is the
angular frequency of the whirling motion when the imaginary part of λ is negative. Therefore
the destabilizing forward whirling motion has frequency:

ωw ≡ +<λ =
1√
2
·

√√√√ω2
0 −

c2
r

4m2
red

+

√(
ω2

0 −
c2
r

4m2
red

)2

+
(crωspin

mred

)2

(A3)

Let us compute <λ for a system dominated by structural damping and for a system dominated
by viscous damping.

• Structural rotating damping. This means that cr is written as:

(cr)s =
1
Q
· k

ωspin − ω◦
(A4)

hence:

ωw ≡ +<λ =
ω◦√

2
·

√√√√1− ω2◦
4Q2(ωspin − ω◦)2

+

√(
1− ω2◦

4Q2(ωspin − ω◦)2
)2

+
ω2

spin

Q2(ωspin − ω◦)2

(A5)

and, if ω◦/ωspin ¿ 1:

ωw ≡ +<λ =
ω◦√

2
·
√

1 +
√

1 + 1/Q2 =
ω◦√

2
·
√

2 + 1/(2Q2) (A6)
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Since rotating damping derives from dissipation at frequency ωspin − ω◦ ' ωspin, the corre-
sponding Q is certainly such that Q À 1, yielding:

ωw ≡ +<λ ' ω◦
(
1 +

1
8Q2

)
' ω◦ (A7)

• Viscous rotating damping. This means that cr is written as:

(cr)v =
1

Qv
· k

ω◦
(A8)

with Qv the quality factor of the system due to rotating friction of viscous nature. Then:

ωw ≡ +<λ =
ω◦√

2
·

√√√√1− 1
4Q2

v

+

√(
1− 1

4Q2
v

)2

+
( ωspin

Qvω◦

)2

(A9)

Since ω◦/ωspin ¿ 1 and Qv > 1, the quantity ω2
spin/(Qvω◦)2 is dominant with respect to

1/(2Q2
v) and we have:

ωw ≡ +<λ =
ω◦√

2
·

√√√√1− 1
4Q2

v

+

√
1 +

( ωspin

Qvω◦

)2

(A10)

It follows that the whirling frequency is:





ωw ≡ +<λ =
√

ωspinω◦
2Qv

À ω◦ if Qv ¿ ωspin

ω◦

ωw ≡ +<λ = ω◦
√

1+
√

2
2 ' 1.1ω◦ if Qv ' ωspin

ω◦

ωw ≡ +<λ = ω◦
(
1 + ω2

spin

8ω2◦Q2
v

)
' ω◦ if Qv À ωspin

ω◦

(A11)

The case of very large viscous damping can certainly be ruled out in GG (and probably also in
ground rotating machines with ωspin > ω◦). This means that in GG the coefficient of viscous
rotating damping (A8) can never be used with a value of Qv such that Qv ¿ ωspin/ω◦.
We shall have (cr)v = (1/qv) · k/ωspin (Qv = qvωspin/ω◦) with qv À 1 in the case of small
viscous friction, and qv ' 1 in the intermediate case. Hence, (cr)v = (cr)s ·Q/qv where Q is
the quality factor due to structural damping. This means (cr)v ' (cr)s in the case of small
viscous friction and (cr)v ' (cr)s ·Q in the intermediate case. The force required to stabilize
the whirling motion is in all cases smaller than the elastic force of the spring (Eqs. (37), (39)).
In GG, rotating friction comes from dissipation, in vacuum and at the spin frequency, in the
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tiny suspension springs and in the small rotating electrostatic plates which provide stabilizing
forces much smaller than the spring forces themselves (see §4). Therefore, rotating structural
friction is bound to be very small and rotating viscous friction (e.g. due to imperfect clamping
of the suspensions) very small, if any. Ground tests based on the measurement of ω◦, ωw and
ωspin will be performed to determine the nature of rotating damping in the system using the
results (A7) and (A11).
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Figure 1. Section across the spin axis of the system of two hollow cylindrical masses coupled by weak 
springs. Both masses are spinning at the same angular velocity around their respective centers of mass O1 
and O2. In their turn O1 and O2 are "whirling" around the center of mass O of the whole system, at a distance 
rwR and at the angular velocity  w much smaller than the spin angular velocity. 
 
 
 
 
 

 
 
 

Figure 2. Simple scheme for the measurement of the quality factor of the spring at the frequency  of spin 
minus the frequency of whirl. 
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Figure 3. Rotating machine with rotating damping, non-rotating damping and friction in the bearings. 


