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Mechanical oscillators can be sensitive to very small forces. Low frequency effects are up-converted to

higher frequency by rotating the oscillator. We show that for 2-dimensional oscillators rotating at

frequency much higher than the signal the thermal noise force due to internal losses and competing

with it is abated as the square root of the rotation frequency. We also show that rotation at frequency much

higher than the natural one is possible if the oscillator has 2 degrees of freedom, and describe how this

property applies also to torsion balances. In addition, in the 2D oscillator the signal is up-converted above

resonance without being attenuated as in the 1D case, thus relaxing requirements on the read out. This

work indicates that proof masses weakly coupled in 2D and rapidly rotating can play a major role in very

small force physics experiments.
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Physics experiments for the measurement of small
forces are ultimately limited by thermal noise due to
internal losses in the mechanical suspensions (see [1],
Sec. IV). Once all systematics are reduced below the
signal—and if read out noise is not a limitation—it sets
the length of the integration time required for the signal to
emerge above thermal noise. A factor 10 better sensitiv-
ity—i.e. a 10 times smaller force to be detected—requires
an integration time 100 times longer, which makes reduc-
tion of thermal noise a must if extremely weak forces are to
be detected.

Consider a 2D harmonic oscillator made of two point-
like test bodies of reduced mass � coupled by a spring
of stiffness k in both directions of the plane. The general
solution is an elliptic orbit with the center in the common
center of mass of the bodies, which can be decomposed

into the sum of two simple harmonic motions with !n ¼ffiffiffiffiffiffiffiffiffi
k=�

p
the frequency of natural (or proper) oscillations of

the test masses relative to each other in each direction.
The oscillator is designed to be sensitive to very small

forces acting between the masses in their plane of motion.
Therefore, it has a very low natural frequency !n (because
the sensitivity improves as!�2

n ) and employs springs of very
high mechanical quality (i.e., their losses are very small).
Moreover, it is operated in vacuum at low residual pressure
in order to reduce damping resulting from Brownian motion
and with sufficient magnetic shielding to reduce damping
from eddy currents in moving conductors ([1], Sec. IV).
Such a system is dominated by internal damping.

According to Nyquist fluctuation-dissipation theorem, in
the frequency domain the power spectral density (PSD) of

the thermal noise force is given (using the ‘‘hat’’ symbol
for the Fourier transform) by

hjF̂thð!Þj2i ¼ 4KBT�ð!Þ (1)

withKB the Boltzmann constant, T the thermal equilibrium
temperature and �ð!Þ the damping coefficient which, for
systems dominated by internal damping has been found to
be frequency dependent and given by (1)

�ð!Þ ’ k�ð!Þ
!

; (2)

where � is known as loss angle (its modulus is the inverse
of the mechanical quality factor Q) which also depends on
the frequency!, albeit mildly, and�ð!Þ is an odd function
of!. (2) is verified experimentally (see, e.g., [2,3]) and the
divergence at zero frequency is a known issue of no rele-
vance in real systems ([1], Sec. VII).
Let !signal be the frequency of the very small force to be

sensed by the oscillator, typically smaller than its natural
frequency (!signal <!n). Once the experiment is limited

by thermal noise due to internal damping, because of the
frequency dependence (2), from (1) the relevant thermal
noise random force (i.e., its component acting on the test
masses at the same frequency as the signal) after an inte-
gration time tint is

F thð!signalÞjtint ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4KBT�!2

n�ð!signalÞ
!signal

vuut 1ffiffiffiffiffiffi
tint

p ; (3)
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showing that the lower is the frequency of the signal, the
longer is the integration time required to bring thermal
noise below the signal.

The difficulties of detecting low frequency effects can be
mitigated by up-converting the signal to higher frequency.
This is achieved by rotating the mechanical oscillator at a
frequency faster than that of the signal. Let us therefore
consider a 2D harmonic oscillator, with test bodies of equal
mass m for simplicity, rotating around an axis perpendicu-
lar to its a, b sensitive plane with angular velocity !spin

with respect to the inertial frame whose x, y plane coin-
cides with the sensitive plane of the oscillator (Fig. 1). The
signal is at frequency !signal in the inertial frame and it is

!signal � !spin.

For the oscillator of Fig. 1 we study the effect on the
relative motion of the test masses of the force due to
thermal noise when the system is in thermal equilibrium
at temperature T, with the purpose of assessing its rele-
vance at the frequency of the signal.

We express the motion of the system, subject to the
mechanical thermal noise force of the rotating springs, in
the inertial x, y reference frame in the frequency domain
and in matrix form as follows:

D ð!Þ ~̂r ¼ F ðRð!spintÞ ~FthðtÞÞð!Þ; (4)

where Dð!Þ is the dynamical matrix of the equations of
motion of the system, F is the Fourier transform operator,
~FthðtÞ is the thermal noise force due to losses in the rotating
springs, and Rð!spintÞ is the 2 by 2 rotation matrix of angle

!spint:

Rð!spintÞ¼ cosð!spintÞ �sinð!spintÞ
sinð!spintÞ cosð!spintÞ

� �

¼ 1

2
ei!spint

1 i
�i 1

� �
þ1

2
e�i!spint

1 �i
i 1

� �
: (5)

By defining

A ¼ 1

2

1 i
�i 1

� �
(6)

we can write

D ð!Þ ~̂r ¼ F ðRð!spintÞ ~FthðtÞÞ
¼ A ~̂Fthð!þ!spinÞ þA� ~̂Fthð!�!spinÞ; (7)

where superscript * denotes the complex conjugate. We
can see that the effect produced on the dynamical systemD
(in the inertial x, y frame) by the rotating thermal noise

force ~Fth is a linear combination of ~̂Fthð!þ!spinÞ and

~̂Fthð!�!spinÞ. The most straightforward way to evaluate

the components of the thermal noise force in the inertial
frame is to write the time average of the cross spectral
density (CSD) matrix. Then—in the reasonable assump-
tion of statistical independence of the different vectorial

and frequency components of the thermal noise force—we
get

h ~̂Fthð!Þ ~̂Fthð!Þyi ¼ 1

2

4KBTk�ð!þ!spinÞ
ð!þ!spinÞ A

þ 1

2

4KBTk�ð!�!spinÞ
ð!�!spinÞ A�; (8)

where ~̂Fthð!Þy denotes the transpose conjugate of ~̂Fthð!Þ.
Let us now consider the signal force of interest ~FsignalðtÞ

acting on the test masses relative to each other at a very low
frequency !signal � !spin in the inertial frame:

~F signalðtÞ ¼ Fsignalð cosð!signaltÞ; sinð!signaltÞÞ: (9)

In the frequency domain (using Dirac � symbol) it reads

~̂Fsignalð!Þ¼ 1

2
Fsignal

�ð!�!signalÞþ�ð!þ!signalÞ
�i�ð!�!signalÞþ i�ð!þ!signalÞ

 !
:

(10)

The CSD matrix of the signal is then

h ~̂Fsignalð!Þ ~̂Fsignalð!Þyi ¼ 1
2F

2
signal½�ð!�!signalÞA

þ �ð!þ!signalÞA��: (11)

By comparing (11) with (8) we can see that only the
components of noise at the frequency of the signal, i.e.,
those with ! ¼ !signal and ! ¼ �!signal do compete with

it. By evaluating the diagonal matrix elements of (8) at the
signal frequencies we obtain the PSD of the x, y compo-
nents of the noise competing with the corresponding com-
ponents of the signal (11). That is, we must compare

γ

γ

m m

b

a

y

x

k k

spinω

FIG. 1 (color online). Sketch of the 2D rotating oscillator for
which thermal noise is evaluated. The proof masses are concen-
tric and rotate—together with the springs—at angular velocity
!spin. They are assumed for the moment as perfectly centered on

the rotation axis. The springs are modeled as ideal springs of
elastic constant k; to each spring is associated a corotating
thermal noise force generator Fth and an ideal noiseless damper
�. x, y is the inertial frame; a, b is the rotating one.
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1

2

�
4KBTk�ð�!signal þ!spinÞ

ð�!signal þ!spinÞ

þ 4KBTk�ð�!signal �!spinÞ
ð�!signal �!spinÞ

�
with

1

2
F2
signal: (12)

Since we are in the condition!signal � !spin, it is apparent

that in (12) the dependence on !signal disappears and only

that on !spin remains; moreover, the off diagonal elements

of the CSD (8) are very small. In these conditions the x, y
components of the thermal noise force are almost uncorre-
lated and by averaging the x with the y component of the

signal we gain a factor
ffiffiffi
2

p
in the signal-to-noise ratio.

Thus, the spectral density of the thermal noise force com-
peting with the signal is

hjF̂thji ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4KBTk�ð!spinÞ

!spin

vuut (13)

and the actual thermal force after an integration tint is

F0
thð!signal�!spinÞjtint ’

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4KBT�!2

n�ð!spinÞ
!spin

vuut 1ffiffiffiffiffiffi
tint

p (14)

the major advantage with respect to (3) being that the
frequency of the signal is now replaced by the much higher
rotation frequency of the oscillator; in addition, losses at
higher frequency are found to be smaller than at lower
frequency.

Though we have taken great care in a rigorous derivation
of this result there is nothing mysterious about it: the
energy of thermal noise is the same as at zero spin—
simply, its component at the frequency of the signal is
much smaller than at zero spin due to the frequency
dependence (2) of internal damping.

An example of thermal noise reduction by rotation
comes from torsion balances used to test the Equivalence
Principle by detecting the twist angle produced by tiny
differential forces acting in the horizontal plane. Quite
remarkably, they have been able to reach the level of
thermal noise ([4], Fig. 20), finding that thermal noise
competing with the signal obeys (13) at the rotation fre-
quency of the balance (which is about 2=3 of its natural
torsion frequency, and is the frequency at which the signal
is shifted to) and that it has the same 1=

ffiffiffiffi
!

p
dependence at

lower frequencies, at which thermal noise dominates (at
higher frequencies read out noise dominates instead). Their
([4], eq. 57) computed at the rotation frequency of the
balance is the same as our (13); obviously, they measure
a thermal noise torque, not force, and k is a torsion con-
stant. By rotating the balance with a period of about 20 min
they have improved by a factor 70 as compared to relying
on the 24-h rotation of the Earth, reducing the integration
time by the same factor. Traditional attempts at reducing
thermal noise from internal losses have involved
cooling down the apparatus in order to reduce the thermal

equilibrium temperature T. However, cryogenics can re-
duce the integration time by a factor 100 at most, while
rotation can do much better than that, and rotating torsion
balances have already achieved almost that much.
So far we have referred to a 2D rotating oscillator in

which the proof masses are perfectly centered on the
rotation axis. In reality perfect centering is impossible;
we represent such manufacturing imperfections by an off-
set vector ~� of the reduced mass � from the rotation axis
( ~� is fixed in the rotating frame). At equilibrium the
position vector reads

~r eq ¼ 1

1� ð!spin=!nÞ2
~�; (15)

which for rotation at frequency much higher than the
natural one becomes

~r eq ’ � ~�

�
!n

!spin

�
2
; (16)

showing that the center of mass of the rotating body
reaches equilibrium much closer to the rotation axis than
it was by construction, by the factor ð!n=!spinÞ2 � 1. This

autocentering property is what makes fast rotation more
advantageous than the slow one. However, the minus sign
indicates that for the equilibrium position to be reached the
center of mass of the body must be allowed to move in the
rotating plane till it sets itself antiparallel to ~�, as required
by (16): if constrained along a single direction it will not
autocenter and be strongly unstable, as it has been known
since a long time ([5], Ch. 6).
Let us now write and solve the equations of motion of

the 2D rotating oscillator around the equilibrium position
in the presence of a force, like the signal, of very low
frequency. In the inertial frame they read

�€~rþ �!spin
ð _~r� ~!spin � ~rÞ þ k~r ¼ ~F; (17)

where �!spin
is the small internal damping (2) of the oscil-

lator rotating at!spin; ~F is the signal force whose frequency

is so small compared to both!spin and !n that we assume a

constant force for simplicity. In the two-body oscillator of
Fig. 1, if the bodies have equal mass m the reduced mass is

m=2, the natural frequency is !n ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k=ðm=2Þp

with the
external force acting between them. In the assumptions
made (!spin � !n and very small internal losses) the solu-

tion of the homogeneous part of (17) is

~r wðtÞ ’ A0e
�!spin

!nt=2 cosð!ntþ ’AÞ
sinð!ntþ ’AÞ

� �

þ B0e
��!spin

!nt=2 cosð�!ntþ ’BÞ
sinð�!ntþ ’BÞ

� �
(18)

(with amplitudes and phases determined by initial condi-
tions), showing that in the inertial reference frame the
oscillator performs a combination of a forward and a
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backward orbital motion—known as whirl motion—at the
(slow) natural frequency !n, and the radii of such orbits are
exponentially decaying in the case of the backward whirl
and exponentially growing in the case of the forward one.
We have written the exponential behavior in terms of the
small loss angle:

�!spin
’ �!spin

!spin

�!2
n

¼ �!spin
!spin

k
: (19)

The forward whirl is then a very weak instability. Every
natural (or whirl) period the radius of the forward whirl
grows by the fraction ��!spin

, hence the tangential force

which produces the growth is—in modulus—�!spin
kr,

which is a very small fraction of the elastic force, requiring
a correspondingly small force to stabilize it. Its frequency is
the natural one and does not interfere with the signal
(see [6,7]).

In the presence of an external constant force ~F, the
equations of motion (17) show that (in the inertial frame)
the body is displaced to the position

~r FðtÞ ¼ 1

1þ �2
!spin

!2
spin

k2

� ~F
k
� �!spin

k2
~!spin � ~F

�

’ ~F

k
��!spin

~!spin

!spin

� ~F

k
: (20)

As we can see, the applied force ~F gives rise to a

displacement ~F=k (i.e., the displacement is inversely pro-
portional to the natural frequency squared) and unaffected
by rotation, with an additional effect in the orthogonal
direction due to rotation which is negligible because of
the very small loss angle�!spin

. In the rotating frame of the

oscillator this constant displacement observed in the iner-
tial one appears at the rotation frequency !spin � !n, yet

it is apparent that no attenuation occurs. Instead, it is well
known that for an oscillator with 1 degree of freedom, the
displacement due to a force at frequency!spin � !n drops

off as ð!n=!spinÞ2. Note that the signal-to-thermal noise

ratio is the same in the two cases, since the displacement
due to the signal and that due to the thermal noise force are
either both unchanged (by the 2D oscillator) or both atte-
nuated (by the 1D oscillator). When dealing with ex-
tremely weak effects a signal whose strength is not
attenuated by rotation has the advantage to loosen the
requirements on the performance of the read out, as long
as rapid rotation takes care of reducing thermal noise.

The general solution of the 2D rotating oscillator in the
inertial frame—including the autocentered position (16)
fixed on the rotating oscillator itself—is

~rðtÞ ’ � ~�ð!spintÞ
�
!n

!spin

�
2 þ ~F

k
��!spin

~!spin

!spin

� ~F

k

þ A0e
�!spin

!nt=2 cosð!ntþ ’AÞ
sinð!ntþ ’AÞ

� �

þ B0e
��!spin

!nt=2 cosð�!ntþ ’BÞ
sinð�!ntþ ’BÞ

� �
; (21)

which is helpful to comment as follows. Assume zero losses
and no external force: only the first term is not zero and the
solution is the autocentered position rotating at frequency

!spin; if the force signal ~F is added—still with zero losses—

the term ~F=k is not zero and the oscillator is displaced by
this vector with autocentering holding as before; finally, if
small losses occur—after the backward whirl has died out,
and neglecting the small effect / �!spin

—the forward whirl

slowly grows around the displaced position at frequency!n.
By controlling this weak instability, rotation (and signal
modulation) at a frequency much higher than the natural
one are achieved with no signal attenuation and thermal
noise reduction according to (13).
These findings indicate that mechanical oscillators with

concentric proof masses weakly coupled in 2D and rapidly
rotating can play a major role in physics experiments for
the measurement of extremely weak forces. There is no
question that having 2 degrees of freedom—as sketched in
Fig. 1—instead of being constrained in 1 direction (while
rotating perpendicular to it), is the key dynamical feature
of the oscillator which makes fast rotation physically pos-
sible, thus ensuring up-conversion of the signal to much
higher frequency where the competing thermal noise due
to internal losses is much smaller.
In this 2D vs 1D analysis, torsion balances are a special

case. As a torque sensor the balance has 1 degree of freedom,
hence any torque applied above its (low) torsion resonance
frequency is attenuated. However, as a pendulum it has 2
degrees of freedom, with an oscillation period of few sec-
onds. By spinning the pendulum above its oscillation
frequency—being allowed to move in the plane—it will
self center on the rotation axis minimizing disturbances due
to centrifugal forces; this equilibrium position will be stable,
save for the weak whirl instability which can be controlled.
Torques due to imperfections of the balance in rotation must
still be taken care of, but this is an interesting physical
property of the torsion balance—in addition to its low torsion
frequency and nearly perfect rejection of common mode
forces—which has gone unnoticed so far. Although the ro-
tation frequency required to achieve self centering is much
higher than the current one, by a few orders ofmagnitude, if a
clever solution is found to improve the read out enough to
overcome signal attenuation, this possibility is worth inves-
tigating as a very effective alternative to cryogenics, consid-
ering the reduction of signal-to-thermal noise ratio.
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