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Abstract We consider the possibility of testing the equivalence principle (EP) in the
gravitational field of the Earth from the orbits of LAGEOS and LAGEOS II satellites,
which are very accurately tracked from ground by laser ranging. The orbital elements
that are affected by an EP violation and can be used to measure the corresponding
dimensionless parameter η are semimajor axis and argument of pericenter. We show
that the best result is obtained from the semimajor axis, and it is limited—with all
available ranging data to LAGEOS and LAGEOS II—to η � 2 × 10−9, more than
3 orders of magnitude worse than experimental results provided by torsion balances.
The experiment is limited because of the non uniformity of the gravitational field
of the Earth and the error in the measurement of semimajor axis, precisely in the
same way as they limit the measurement of the product G M of the Earth. A better
use of the pericenter of LAGEOS II can be made if the data are analyzed searching
for a new Yukawa-like interaction with a distance scale of one Earth radius. It is
found that the pericenter of LAGEOS II is 3 orders of magnitude more sensitive
to a composition dependent new interaction with this particular scale than it is to a
composition dependent effect expressed by the η parameter only. Nevertheless, the
result is still a factor 500 worse than EP tests with torsion balances in the gravitational
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field of the Earth (i.e. at comparable distance), though a detailed data analysis has
yet to be performed. While EP tests with satellite laser ranging are not competitive,
laser ranging to the Moon has been able to provide a test of the EP almost 1 order of
magnitude better than torsion balances. We show that this is due to the much greater
distance of the test masses (the Earth and the Moon) from the primary body (the Sun)
and the correspondingly smaller gradients of its gravity field. We therefore consider
a similar new experiment involving the orbit of LAGEOS: testing LAGEOS and the
Earth for an EP violation in the gravitational field of the Sun. We show that this test
may be of interest, though it is a factor 300 less sensitive than in the case of the Moon
due to the fact that LAGEOS is closer to the Earth than the Moon and consequently its
orbit is less affected by the Sun. The limitations we have pointed out for laser ranging
can be overcome by flying in low Earth orbit a spacecraft carrying concentric test
masses of different composition with the capability, already demonstrated in ground
laboratories, to accurately sense in situ any differential effects between them.

1 Introduction

The equivalence principle (EP) is usually tested by testing the Universality of Free
Fall (UFF) which can be expressed by the dimensionless Eötvös parameter η defined
as the differential acceleration �a between two test bodies of different composition
freely falling with acceleration “a” (usually referred to as driving acceleration) in the
gravitational field of a given source mass:

η ≡ �a

a
. (1)

If η = 0, UFF holds and there is no EP violation. From (1) it is apparent that the
larger the driving acceleration, the more sensitive the EP test. Yet, the best laboratory
results (η<∼10−12) have so far been obtained by the Eöt–Wash group in a remarkable
series of precision experiments using test masses suspended on a rotating torsion
balance in the gravitational field of the Earth [1] and of the Sun [2]. In these cases the
driving acceleration is 1.7 × 10−2 m/s2 and 6 × 10−3 m/s2 at most, whereas it is 9.8
m/s2 in Galileo-like mass dropping tests in the gravitational field of the Earth. This
is because, in spite of the smaller driving signal, torsion balances are inherently very
sensitive and, for EP tests, also differential instruments; in addition, signal modulation
obtained by rotating the balance on a turntable up-converts the frequency of the signal,
thus reducing 1/ f noise.

One could think of exploiting the larger driving acceleration of the Earth on unsus-
pended test masses by putting them in low orbit around it, so as not to be limited by
the short duration of the time of fall. LAGEOS satellites are the best existing example
of test masses orbiting in the field of the Earth. They are designed as spherical, dense,
cannon balls covered by corner cube reflectors to allow laser ranging from Earth. The
area-to-mass ratio is minimized in order to reduce non gravitational perturbations. The
orbiting altitude is not very low (about 1 Earth radius), in order to reduce drag effects
from residual Earth atmosphere, but still the gain in terms of driving acceleration (in
the field of the Earth) is a factor 400 with respect to torsion balance tests if they are
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Limitations to testing the equivalence principle with satellite laser ranging 1535

performed in the field of the Sun and a factor 150 if they are performed in the field of
the Earth.

In Sect. 2, we provide the correct theoretical framework for EP tests based on
LAGEOS-like satellites, which is that of a 2-body gravitational problem treated in the
general case in which the EP might be violated. The possibility of testing the EP with
test masses freely orbiting around the Earth has been investigated in the recent past
by several authors [3–5]. All previous results can be set in a common framework once
the correct theoretical bases are given. These theoretical bases are used in Sect. 3 to
establish how accurately the EP can be tested by measuring the effects of a possible
violation on the size of the orbit and on the pericenter of LAGEOS-like satellites. The
conclusion is that these LAGEOS-based EP tests are far from being competitive with
the results provided by torsion balance experiments, in spite of the much stronger
driving signal of the Earth and the very long integration time.

For completeness, in Sect. 4 we investigate also the effects on the orbit of LAGEOS-
like satellites of an EP violation due to a new Yukawa-like interaction which, in addition
to being composition dependent, would act at the particular distance scale of one Earth
radius. In this 2-parameter framework we find that the effect of such a new interaction
on the pericenter of LAGEOS II is 3 orders of magnitude bigger as compared to the
effect on the same keplerian element of an EP violation based on the η parameter
only. However, since the latter provides very poor results (as established in Sect. 3),
it is found that an EP test based on a Yukawa-like interaction is also far from being
competitive with torsion balance tests in the field of the Earth [1].

In Sect. 5 we briefly address Lunar Laser Ranging (LLR) versus Satellite Laser
Ranging (SLR) as far as EP testing is concerned, to show how LLR has been able
to achieve—for the Moon and the Earth freely falling in the gravitational field of the
Sun—an EP test even slightly more sensitive than those obtained with torsion balances,
namely to � 10−13. This naturally leads us to assess the sensitivity achievable in a
new EP experiment using LAGEOS and the Earth in the gravitational field of the
Sun, which turns out to be about 2 orders of magnitude worse than it is for the Moon
and the Earth. Finally, we consider both SLR and LLR—from a conceptual point of
view—versus space tests of the EP which can be carried out inside spacecraft such as
the proposed GG, µSCOPE, STEP and GREAT [6–9]. We show the potentiality that
these experiments have, by allowing the relative motion of the test masses to be very
accurately sensed in situ, to exploit the stronger driving signal of the Earth in order to
significantly improve the sensitivity of EP tests.

2 The 2-body gravitational problem with EP violation

Let us have a primary body of mass M (e.g. the Earth) and a secondary body of mass
m (e.g. one LAGEOS satellite) with m � M , as in the case of artificial satellites of
the Earth. The bodies are assumed to be point masses. To each body it is possible
to ascribe a gravitational mass (the gravitational charge), indicated with subscript g,
and an inertial mass, indicated with subscript i . Any deviation from 1 (more precisely,
from +1) of the ratio gravitational-to-inertial mass will indicate an EP violation.
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For the masses of the primary and secondary body we assume

Mg ≡ Mi (1 + ηp), mg ≡ mi (1 + ηs). (2)

If ηs �= 0 the inertial and gravitational mass of the secondary body do not equate
each other, and therefore it violates the EP; if ηp �= 0, it would be the primary body
(e.g. the Earth) to violate the EP, the respective values of η depending on the materials
each body is made of. It should be noticed however that, in the case of the Earth, the
self-gravitation binding energy is a relatively large fraction of its total mass-energy:

| f⊕| � 3G M2/5R⊕
Mc2 � 4.6 × 10−10 (3)

(with R⊕ the radius of the Earth and c the speed of light). For a very accurate EP test this
value may not be negligible, as it is when both the test masses are artificial laboratory
bodies, and will contribute to the test. The equation of motion of the secondary body,
possibly depending on its composition, is

�̈r = −G Mi

r3 (1 + ηp)(1 + ηs)�r (4)

which, since the product ηp ηs is totally negligible, can be written as:

�̈r = −G Mi

r3 (1 + η)�r (5)

where
η = ηp + ηs, (6)

thus involving the composition of the Earth (dominated by its iron-nickel core) and the
composition of the satellite (an aluminum sphere with a brass core for both LAGEOS
and LAGEOS II).

Note that torsion balance experiments are designed to measure the effect of a dif-
ferential acceleration �a (in the horizontal plane) which would arise if the test bodies
on the balance were attracted by the Earth with different intensity because of their
different composition. In this case, we have: �a/a = η2 − η1, where η2, η1 for the
two bodies are defined by m2g ≡ m2i (1 + η2), m1g ≡ m1i (1 + η1), and the products
ηp η2, ηp η1 have been neglected. Similarly, EP tests to be performed with weakly
coupled concentric test bodies of different composition placed inside a spacecraft in
orbit around the Earth, would measure a relative differential acceleration equal to the
difference η2 − η1 for the two bodies (again neglecting the products ηp η2, ηp η1).
Instead, two LAGEOS satellites are not concentric and do not have the same initial
conditions (in particular, they do not fly at the same altitude). Thus, each orbit is deter-
mined independently, from an equation of motion whose leading term at second hand
member (to which in a real experiment a number of gravitational and non gravitational
perturbations need to be added) is given by (5), with ηp + ηs1 for one satellite and
ηp + ηs2 for the other, having neglected the products ηp ηs1, ηp ηs2 in each case. Two
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Limitations to testing the equivalence principle with satellite laser ranging 1537

LAGEOS satellites in orbit (or even more in the future) would allow us to combine
the orbital elements that are relevant for EP testing (semimajor axis and argument of
pericenter) so that some error source may be eliminated, but this is not a differential
experiment and one should be careful, by writing the equations of motion properly, as
to what kind of composition dependence the experiment is actually testing.

From (5) it is apparent that a value of η different from zero—i.e. an EP violation—
would be equivalent to a change of the mass of the primary body (more precisely
to a change of the product G Mi ), while the force is still a central force obeying the
classical inverse square law. Depending on the sign of η, it would be as if the central
body were more or less massive than in the classical η = 0 case. As a result, an EP
violation would rescale the satellite orbit, changing only its size. In this context, we
find it appropriate to refer to the case η �= 0 as non galilean, since it would violate
the Universality of Free Fall—first tested by Galileo—hence the EP. Instead, if η = 0
we are back to the classical 2-body gravitational problem of Celestial Mechanics in
which UFF and the EP hold, and we therefore refer to this case as classical.

Since the gravitational force is a central force, the orbital angular momentum (per
unit of inertial mass mi ) �J ≡ �r × �̇r (7)

is conserved and therefore the motion is planar. Moreover, since the effect of an
EP violation is a (small) variation of the intensity of the gravitational attraction, the
direction of the angular momentum vector—i.e. the orbital plane and its inclination in
space—are unaffected. The angular momentum modulus is

J = r2θ̇ (8)

where (r, θ ) are polar coordinates in the orbit plane. In these coordinates, using the
angular momentum integral of motion to eliminate θ̇ , we get the equation of motion
in the r variable only (from now on we use simply M to mean Mi ):

r̈ = −G M

r2 (1 + η) + J 2

r3 (9)

We then introduce the Lenz vector in the general form

�e ≡ 1

G M(1 + η)
�̇r × �J − êr (10)

which is an integral of motion as in the classical η = 0 case, namley

�̇e = �0 . (11)

Being an integral of motion, the Lenz vector provides a fixed direction in the orbital
plane, which turns out to be the symmetry axis of the orbit. It is worth stressing
that (11) holds only as long as gravitation obeys the inverse square law, which is the
case with (5) where the deviation from the classical 2-body problem is only in the
dependence on composition. Thus, the scalar product of the Lenz vector with the radial
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unit vector provides (like in the classical η = 0 case) the equation of the orbit in the
(r, f ) polar coordinates, f being the true anomaly of the secondary body, namely
its angular position as measured from the (fixed) direction of the Lenz vector. The
equation of the orbit so obtained is:

r = J 2/[G M(1 + η)]
1 + e cos f

. (12)

This is the equation of a conic (just as in the classical η = 0 case) of which the
Lenz vector is the symmetry axis (see the dependence on cos f ), pointing towards the
position of minimum distance from the primary (the pericenter), its modulus being
the eccentricity of the conic. And the eccentricity is not affected by the value of η

because only the size of the orbit is affected by it.
Note that also the direction of the Lenz vector in the orbit plane is unaffected by an

EP violation. This must be the case because of symmetry reasons: since the direction
of this vector is the direction of the symmetry axis of the orbit, any effect due to
η �= 0 must be the same on the two equal halves of the orbit. A direct proof that the
direction of the Lenz vector is independent from η can be obtained starting from its
definition (10) and then computing it at pericenter in the two cases η = 0 and η �= 0
(being an integral of motion, we can choose any position along the orbit to compute it).

The linear size of the conic along its symmetry axis is

2a = r( f = 0) + r( f = π) (13)

hence
J 2 = G M(1 + η)a(1 − e2) (14)

which gives the orbital angular momentum integral as function of the eccentricity e
and semimajor axis a of the orbit. Note that we use the italic font “a”, typically used
in Celestial Mechanics to indicate the semimajor axis of the orbit, while the roman
font “a” was used in (1) to indicate the acceleration of the free falling test body. As
in the classical case, orbits are closed if e = 0 (circular) or 0 < e < 1 (elliptic). By
using (14) we can rewrite the equation of the orbit as:

r = a(1 − e2)

1 + e cos f
(15)

and then in the form
r

a
= 1 − e2

1 + e cos f
(16)

which is independent of η, thus expressing the fact that a value η �= 0 would rescale
the satellite orbit.

The energy function (per unit of inertial mass mi ) is

E = 1

2
v2 − G M(1 + η)

r
. (17)

123



Limitations to testing the equivalence principle with satellite laser ranging 1539

Since the system is isolated and there is no dissipation, the energy is an integral of
motion whose value can be obtained by combining the value of the angular momentum
given by (14) and the value of the Lenz vector, which is given by:

e2 = 1 + 2E J 2

(G M)2(1 + η)2 (18)

so that the energy integral is:

E = −G M(1 + η)

2a
. (19)

For closed orbits the third law of Kepler is derived, as in the classical 2-body
problem, starting from the orbital period P written as the ratio between the area of
the ellipse πa2(1 − e2)1/2 and the velocity Varea (area of the ellipse scanned by the
radial vector per unit time), which is in effect an integral of motion since it is half the
angular momentum modulus:

Varea ≡ 1

2
r2 ḟ = 1

2
J. (20)

We therefore have, using (14) for the angular momentum integral:

P = 2πa2(1 − e2)1/2

J
= 2πa3/2

(G M)1/2(1 + η)1/2 (21)

which is the third Kepler’s law, usually written in terms of the mean motion n = 2π/P
(the average orbital angular velocity):

n2a3 = G M(1 + η). (22)

In summary, the 2-body problem with EP violation is described by the same formu-
las derived in the classical 2-body problem, provided that whenever they contain the
product G M , we substitute it with G M(1+η). The result is a change in the orbit size.
If η = 0 (i.e. no EP violation), all results naturally yield the corresponding expected
results of the classical 2-body problem.

Note that the results of this Section are not limited to the case—assumed at the start
of the Section—that the secondary mass be negligible compared to the mass of the
primary. If the two masses are comparable, the equation of motion (5) becomes

�̈r = −G Mtot

r3 (1 + η)�r (23)

which is now written per unit of the (inertial) reduced mass µi = Mi mi/(Mi +mi ) of
the system and where Mtot = Mi +mi is the total inertial mass of the two bodies. As in
the approximated case, the dimensionless parameter η expresses a dependence on the
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composition of the interacting bodies, including –if they are large celestial bodies—
the contribution from their self-gravitation binding energies. This is the equation of
motion of the general 2-body problem (with EP violation) once it has been reduced—
with no loss of generality—to the motion of a single body, whose mass is the reduced
mass of the system, orbiting around a fixed body, of mass equal to the total mass of
the two bodies, separated by the relative position vector at the relative velocity vector
of the real bodies. All formulas then follow from (23), just like formulas (7) to (22),
simply by replacing the inertial mass M of the primary with the total inertial mass
Mtot, and remembering that they are now written per unit of reduced (not secondary)
mass. If the secondary mass is negligible, the reduced mass is the secondary mass, the
total mass is the mass of the primary and we are back to the previous case.

3 Testing the EP with LAGEOS-like satellites

Within the theoretical framework developed in Sect. 2 we can now address the problem
of using LAGEOS-like satellites for testing the EP. The problem is formulated in the
following way.

Let us consider one LAGEOS satellite, and ask the following question: is it pos-
sible to establish from its orbital motion a deviation from zero in the value of the
dimensionless η parameter as it appears in the equation of motion (5), hence, an EP
violation? And if yes, to what accuracy?

In the motion of LAGEOS around the Earth, like in the motion of planets around
the Sun and of natural satellites around their own planet, the best measured physical
quantity is the orbital period. We can therefore assume the orbital period of LAGEOS
to be known exactly. For all its other physical quantities we shall write a relationship
between each quantity in the presence of composition dependence (UFF and EP vio-
lation to the level η �= 0, subscript ng standing for non galilean as introduced at the
beginning of Sect. 2), and the corresponding quantity in the classical, no EP violation
case (η = 0, subscript c). Whenever needed, we shall expand these relationships in
terms of η, and since we know from torsion balance experiments that η must be smaller
than 10−12 we shall retain only terms to first order in η.

We already know that the unit vectors of the orbital angular momentum and the
Lenz vectors Ĵ and ê (i.e., the orbit plane and the symmetry axis of the orbit) as well as
the eccentricity of the orbit cannot be used to measure η because they are not affected
by a possible EP violation

Let us then start from the third Kepler’s law (22) and write it in the η �= 0 and
η = 0 case, for the same (exactly known) mean motion n = 2π/P . By equating the
orbital period in the two cases we obtain the relationship between the semimajor axis
of the orbit in the non galilean η �= 0 case and its value in the classical, η = 0, one:

ang � ac

(
1 + 1

3
η

)
. (24)

This immediately gives, for the energy integral (19):

Eng � Ec

(
1 + 2

3
η

)
(25)
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and for the angular momentum integral (since the eccentricity is independent from η):

Jng � Jc

(
1 + 2

3
η

)
(26)

The same relationship must hold, because of (20), for the velocity at which the elliptic
orbit is scanned by the radius vector:

Varea−ng � Varea−c

(
1 + 2

3
η

)
(27)

The area of the ellipse, because of (24), depends on η just like this velocity:

Areang � Areac

(
1 + 2

3
η

)
(28)

and from this fact it follows that the orbital angular velocity is independent from η:

ḟng = ḟc (29)

which is consistent with the fact we stressed at the beginning of Sect. 2, namely that
the ratio r/a must be independent of η. In fact:

r2
ng ≡ Jng

ḟng
� r2

c

(
1 + 2

3
η

)
(30)

yielding, for the modulus of the radius vector:

rng � rc

(
1 + 1

3
η

)
(31)

and, in combination with (24)

( r

a

)
ng

=
( r

a

)
c

. (32)

Note that, since the ratio of the satellite radial distance from the primary at any time
and the major semiaxis of its orbit is independent of η, no position along the orbit has
any special physical meaning, not even the initial one, though it has been very much
emphasized in the previous literature on the subject.

The effect of an EP violation, as expressed by the dimensionless parameter η, on
the various physical quantities which characterize a LAGEOS satellite with orbital
period P , can be summarized as follows.

The physical quantities which are independent from η (hence, do not allow it to
be measured) are: Ĵ (the orbit plane); ê (the symmetry axis of the orbit) and e (the
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eccentricity); the angular velocity along the orbit; the ratio r/a at any time along the
orbit.

The physical quantities which depend on η to first order (and would in principle
allow it to be measured) are: the major and minor semiaxes (in the same way), in
fact, the modulus of the radius vector at any time; the energy and the orbital angular
momentum, per unit of inertial mass of the satellite (in the same way); the area of the
elliptical orbit and the velocity at which it is scanned by the radius vector (in the same
way).

We now define:

�aEP ≡ ang − ac (33)

as the difference in semimajor axis between the value it would have in case of an EP
violation to the level η and its value in the classical η = 0 case. With this definition, by
means of (24), we can quantitatively relate the dimensionless parameter of EP violation
η to the fractional difference in the semimajor axis of the satellite orbit caused by such
violation, namely:

η � 3
�aEP

ac
(34)

and by means of this relationship, we can re-write all the quantities which turned out
to depend on η in terms of �aEP/ac instead:

Eng � Ec

(
1 + 2

�aEP

ac

)
(35)

Jng � Jc

(
1 + 2

�aEP

ac

)
(36)

rng � rc

(
1 + �aEP

ac

)
(37)

Areang � Areac

(
1 + 2

�aEP

ac

)
(38)

Varea−ng � Varea−c

(
1 + 2

�aEP

ac

)
. (39)

Thus, any difference between the classical and the non galileain case is a difference
in energy, angular momentum modulus and orbit size, area of the elliptic orbit and
velocity at which it is scanned by the radius vector, and such a difference is of the
order of �aEP/ac.

However, it is obvious that, while �aEP—according to our definition (33)—is due
to an EP violation, it could simply be due to measurement errors in the semimajor
axis in the classical case with η = 0. In the latter case, from the third law of Kepler
in the classical form (i.e. as in (22) with η = 0) and the assumption that the mean
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motion is perfectly known, while the semimajor axis is known with a measurement
error �ameas, we have

�(G M)

G M
= 3

�ameas

ac
(40)

which expresses the well known fact that an error in the measurement of the semimajor
axis of the satellite around the Earth determines the level to which the product G M of
the Earth is known. However, if we do not know a priori whether the satellite satisfies
the EP or not, it is apparent from (34) and (40) that such a satellite would allow us to
test the EP only to the level

ηmin � 3
�ameas

ac
(41)

�ameas being the error made in the measurement of its semimajor axis. Values of η

smaller than this will be undetectable.
Note that having two LAGEOS-like satellites of different composition around the

Earth would not help because, in spite of the fact that the central body is the same,
the uncertainty in G M remains: each LAGEOS provides independently a value for it
which is affected by the error in the determination of its own semimajor axis, an error
which is similar for the two satellites.

The dimensionless factor ηmin � 3�ameas/ac therefore sets the limit to which
LAGEOS-like laser tracked satellites can be used to test the EP. To put it another way,
since the effect of an EP violation is to change the size of the satellite orbit, there is
no way to detect such a change as long as it is within the error with which the size of
the satellite orbit is measured.

Satellite Laser Ranging (SLR) presently allows the major semiaxis of LAGEOS to
be recovered to about 1 cm. Thus, we expect EP tests with LAGEOS to be limited to

ηminSLR � 3
10−2m

1.23 × 107m
� 2.4 × 10−9. (42)

If we now use (40) and (41) as a way of obtaining a limit to the sensitivity in testing
the EP with LAGEOS, and take the official values for G M and �(G M) given by the
International Earth Rotation and Reference System Services ( [10], p. 12) based on
data from both existing LAGEOS satellites, we get:

G M = 3.986004418 × 1014 m3s−2 (43)

�(G M) = 8 × 105 m3s−2 (44)

hence
�(G M)

G M
� 2 × 10−9. (45)

This is the best determination of η achieved with all laser ranging data available so far
to LAGEOS and LAGEOS II, a result by far not competitive with EP tests performed
in the lab using torsion balances, which have systematically found no violation to
10−12.
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More in detail, single shot ranging data collected at the various SLR stations around
the world are compressed in a format agreed within the community to provide the so
called “normal points” (see e.g. [11]), currently accurate to 1 ÷ 3 mm. The orbital
elements of LAGEOS satellites are then determined by best fit to the normal points of
orbital arcs whose individual duration is typically 15 days; individual arcs of longer
duration are not suitable because the accumulated errors due to the difficulty in accura-
tely modelling non gravitational perturbations would degrade the orbital elements. At
present, any such orbital arc allows the semimajor axis of LAGEOS to be determined
to about 1 ÷ 2 cm. With long integration times many orbital arcs are available and the
statistics improves. The orbital period of LAGEOS being about 3.8 h, in 15 days it per-
forms about 94 orbits around the Earth; with a number Narcs of such 15 d orbital arcs,
we expect to reduce the error in semimajor axis, hence to improve the sensitivity in
EP testing with

√
Narcs. Since, as we have shown above, an EP violation would affect

the size of the orbit, i.e. both the major and minor semiaxis, by taking both of them
into account in the data analysis we expect to improve the accuracy in determining
the orbital parameters by a further factor

√
2. Yet, if we would like to achieve with

LAGEOS-like satellites a sensitivity in EP testing of 10−12 —which ground based
torsion balances have already achieved— starting from the current state given by (45),
we would need an integration time of about 120, 000 years, which obviously rules out
such an experiment.

However, one could think of performing a different EP test, based on the observation
of a physical quantity which, unlike the semimajor axis, shows a secular variation,
also affected by an EP violation.

It is known that in the presence of an oblate primary body, i.e. in the presence of a
primary with a non zero quadrupole coefficient

J2 = C − A

M R2⊕
(46)

where C is the moment of inertia of the primary with respect to its rotation/symmetry
axis, A its moment of inertia relative to any axis in its equatorial plane (C > A for
an oblate spheroid like the Earth), and R⊕ the equatorial radius (larger than the polar
one), an artificial satellite orbiting around it with major semiaxis a, eccentricity e and
inclination I will have a long term motion of its pericenter axis (the Lenz vector). The
accumulation of this effect with time might allow many years of laser ranging data
to be better exploited. In this case one should use the pericenter of LAGEOS II and
not that of LAGEOS since the latter is poorly determined because of the small orbital
eccentricity (eL � 0.0045, eL I I � 0.014).

It can be shown that, in the general case with η �= 0, the rate of change of the
argument of the pericenter is:

ω̇ � −3

4

(G M(1 + η))1/2

a7/2 J2 R2⊕
1 − 5 cos2 I

(1 − e2)2 (47)

and the relationship between the classical and the non galilean, η �= 0 rate of change
turns out to be (using (24) for the semimajor axis, and the fact that the eccentricity
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and the orbital plane—hence the inclination—are all unrelated to η):

ω̇ng � ω̇c

(
1 − 2

3
η

)
(48)

where ω̇c is obtained from (47) with η = 0 and ac for the semimajor axis. Thus, the
effect of η �= 0 on the rate of change of the argument of pericenter can be written as
a fraction of ω̇c (in modulus):

ω̇η � 2

3
η ω̇c. (49)

Making the favorable assumption that only the error in J2 of the Earth contributes
to the error in the measurement of ω̇c, the quantity which competes with ω̇η given
by (49), from which we want to measure η, is

�ω̇J2 � ω̇c
�J2

J2
. (50)

By equating (50) to (49) we obtain the minimum value of η that can be measured with
this experiment due to the error in the measurement of J2 of the Earth. This value is:

ηJ2 � 3

2

�J2

J2
(51)

It is interesting to note that, while the relative error �(G M)/G M limits the best EP
test with LAGEOS based on the measurement of the size of its orbit, the relative error
�J2/J2 limits the best EP test that the measurement of the pericenter of (an eccentric)
LAGEOS can provide. Thus, the two largest multipole moments of the Earth (the
monopole and the quadrupole) are physical quantities deeply related to any deviation
from the EP that we can try to extract from the orbit of a LAGEOS-like satellite around
the planet.

The current best determination of J2 is given by [12] and amounts to �J2/J2 �
10−7 (obtained using the calibrated values and not the formal errors, as discussed by
the authors), from which we get

ηJ2 � 1.5 × 10−7 (52)

which is 2 orders of magnitude worse than the value (45) obtained from observation
of the orbit size.

However, if another LAGEOS satellite is launched, with rather large eccentricity
so that its pericenter can be observed and combined with that of LAGEOS II, then,
since J2 of the Earth (as well as its equatorial radius) are the same for both orbits, by
combining the rates of change of the two satellites one can construct an observable
physical quantity (depending on the composition of the Earth and the two satellites)
where J2 has been eliminated and therefore the error in J2 is no longer relevant. Then,
the next relevant sources of error would be the error in J4 of the Earth (the next
zonal harmonic to affect the pericenter of the satellites) and the error �ameas in the
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measurement of the semimajor axis of each satellite (which appears along with the
orbital inclination and eccentricity) in the classical rate of change of the argument of
the pericenter ω̇c.

The contribution from J4 to the rate of change of the pericenter of LAGEOS II
(aL I I � 12, 163 km, eL I I � 0.014, IL I I � 52.65o) as calculated by [13] is:

ω̇J4 � 6 × 10−5 J4 rad/s (53)

while the contribution from J2 (computed from (47) with η = 0) is

ω̇J2 � 8.2 × 10−5 J2 rad/s. (54)

Since J2 � 10−3 and J4 � 1.6 × 10−6 [12], the contribution from J2 is about 3
orders of magnitude bigger than the contribution from J4 (ω̇J2 � 8.2 × 10−8 rad/s;
ω̇J4 � 9.6 × 10−11 rad/s). However, once the error due to J2 has been eliminated, the
error due to J4 must be taken into account. This reads

�ω̇J4 � ω̇J4

�J4

J4
(55)

where �J4/J4 � 7.3 × 10−6 according to the best determination of the geopoten-
tial [12]. By equating (55) to (49) we obtain the minimum value of η that can be
measured with this experiment due to the error in the determination of J4, namely

ηJ4 � 3

2

ω̇J4

ω̇J2

�J4

J4
� 1.28 × 10−8. (56)

As for the contribution from the error in the measurement of the semimajor axes of
the satellites, we obtain it by expressing ω̇c (with the contribution from J2 alone) as

ω̇c � −3

4
n

(
Re

ac

)2

J2
1 − 5 cos2 I

(1 − e2)2 (57)

from which a measurement error �ameas in semimajor axis yields:

�ω̇a � −2
�ameas

ac
ω̇c. (58)

By equating it to (49) (in modulus) we obtain the minimum value of η that can be
measured because of the error in measuring the semimajor axis, namely,

ηmin � 3
�ameas

ac
(59)

which is the same as (41) and therefore leads to the same limiting value of 2 × 10−9.
Since this value is 1 order of magnitude smaller than ηJ4 computed above, we must
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conclude that an EP test based on the observation of the pericenters of LAGEOS II
and of a future eccentric LAGEOS-like satellite, would be limited by the error in J4
of the Earth to about η � 10−8, which is 4 orders of magnitude worse than EP tests
already achieved, since many years, by torsion balances. As for the present time, with
LAGEOS II only, an EP test based on its pericenter is limited to 10−7 see (52), a value
even worse by 1 order of magnitude.

In summary, the best test of the EP achievable with the LAGEOS satellites is obtai-
ned from the measurement of the orbit size and we have shown that the corresponding
value of the parameter η is the same as the relative error in the measurement of G M
of the Earth, currently � 2×10−9. EP tests performed with torsion balances are more
than 3 orders of magnitude better than that. A different EP test based on the observa-
tion of the pericenter of LAGEOS II would be limited by the relative error in J2 of
the Earth, which is 2 orders of magnitude worse than the error in G M , thus yielding
also an EP test 2 orders of magnitude worse. If the pericenter of LAGEOS II were
combined with the pericenter of another eccentric LAGEOS yet to be launched, J2
could be eliminated and the limiting source of error would then come from the zonal
harmonic coefficient J4 of the geopotential, resulting in an EP test to � 1.25 × 10−8,
only 1 order of magnitude better than using the pericenter of LAGEOS II alone and 4
orders of magnitude worse than torsion balance tests.

4 Test of a new Yukawa-like interaction with LAGEOS II

So far our analysis has referred to the case in which the EP that is at the foundation of
General Relativity is tested by searching for a deviation from the Universality of Free
Fall as function of one parameter only (η) in the 1/r potential of their mutual gravi-
tational attraction. The existence of a new interaction has been suggested, expressed
by a Yukawa-like potential (see e.g. [14])

VY u(r) = −α
G Ma Mb

r
e−r/λ (60)

(Ma and Mb the masses of the interacting bodies) with a distance scale given by
the parameter λ and proportional to a dimensionless parameter α. In the presence of
this new interaction, a small satellite orbiting around the Earth of mass M would be
subjected to an additional radial force (per unit of its inertial mass)

	Y u(r) = −α
G M

r2

(
1 + r

λ

)
e−r/λ. (61)

In the general case α may or may not depend on the composition of the interacting
bodies (i.e. the Earth and the satellite). In the first case—which is the one relevant to
our current analysis—a non zero value of α would indicate an EP violation. However,
unlike EP violation expressed by the parameter η that we have analyzed in the previous
Sections, the force (61), often referred to as “5th force”, would affect a satellite only
if its orbit size matches the particular distance scale λ of this new interaction. In
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other words, a given satellite is sensitive only to one particular value of λ, which for
LAGEOS is 1 Earth radius (about half its semimajor axis).

The additional perturbing force (61) is still a central force, hence the satellite motion
is still confined to a plane. However, it has a dependence on the mutual distance of
the interacting bodies which deviates from 1/r2. In this case, as noticed in Sect. 2,
Eq. (11) no longer holds, i.e. the Lenz vector is no longer an integral of motion. As a
result, the pericenter direction is no longer fixed in the orbit plane and we therefore
expect a non zero rate of change of the argument of pericenter even in the presence
of a point-like or spherically symmetric central body (see [15] and [16]). The Lenz
vector not being an integral of motion, the orbit equation in the form of a conic (12)
can no longer be derived.

Since any expected deviation is extremely small, we can compute the dynamical
effects of the new force with the perturbative methods of Celestial Mechanics, by
writing the variational equations of the osculating orbital elements, in particular the
semimajor axis and the argument of pericenter. Since the perturbation (61) acts only
in the radial direction, it is convenient to write the variational equations in the form of
Gauss (see e.g. [17], Chap. 3.2), which yield

ȧY u = e
2

n
√

1 − e2
	Y u(r) sin f (62)

and

ω̇Y u = −
√

1 − e2

ena
	Y u(r) cos f (63)

where the orbital elements appearing at the second-hand member are those of the
osculating orbit of the classical 2-body gravitational problem, and the time dependent
relative distance r in 	Y u(r) is expressed by the conic equation of the osculating
(unperturbed) orbit:

r = a(1 − e2)

1 + e cos f
. (64)

It is then very important to establish whether the time varying effects (62) and (63)
caused by the new Yukawa-like interaction have a non zero secular component or
not. In order to compute the secular effects in semimajor axis and the argument of
pericenter one has to average ȧY u and ω̇Y u over the orbital period, hence over the true
anomaly f appearing as sin f , cos f in (62) and (63) and also through r , as given by
(64). This can be done by expanding sin f and cos f as Fourier series in the mean
anomaly M (an angle measured from the pericenter, like f , whose rate of change is the
mean motion n) with coefficients containing higher powers of the eccentricity for the
higher harmonics (see e.g. [18], Chap. IV) and then averaging over the mean anomaly.
The result obtained by [16] for ω̇Y u is

ω̇Y u � n
α

4
e−a/λ

[
1

e
I1 − α

λ

(
1 − e

2

)
I0 − α

2λ
(e − 1)I1 · · ·

]
(65)
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where

In = 2

π

2π∫
0

cos(nM)e(ae/λ) cos M d M (66)

are the Bessel functions in integral form. For ω̇Y u their contribution is different from
zero, which means that there is a non zero secular variation of the rate of change of
the pericenter. Instead, a similar calculation for ȧY u yields zero, namely, no secular
variation in semimajor axis arises due to a new interaction such as (61).

For LAGEOS II the secular effect (65) peaks at a distance of about 1R⊕, while
falling off rapidly for any such interaction acting on a scale λ larger or smaller than
that. The accuracy to which the pericenter of LAGEOS II can be determined will
constrain the parameter α of a new interaction acting at the distance scale of 1R⊕,
and if α is composition dependent this would be a test of the EP at 1 Earth radius.
The relevance of such a test must therefore be assessed by comparing the value of
α which can be determined in this way (depending on the composition of the Earth
and the satellite) with the experimental results obtained for the Eötvös parameter η by
means of rotating torsion balances in the gravitational field of the Earth [1], yielding
η � 10−12.

According to [16] and further calculations by one of us (D.M.L), a numerical
evaluation of (65) for the orbit of LAGEOS II yields a peak value at λ � 1 R⊕
amounting to

ω̇Y uL I I � 1.3 × 10−4 α rad/s. (67)

Though this effect would be there even if the Earth were point-like and the satellite
orbit a perfect ellipse, in reality, since the Earth is neither point-like nor spherically
symmetric, the pericenter of LAGEOS II undergoes a secular rate of change also in
absence of any new Yukawa interaction, the largest contribution coming from J2 of
the Earth (see (57)). In order to compare (67) with the effect that would be produced
on the pericenter of LAGEOS II by an EP violation expressed by the parameter η

(see (49)) it is worth comparing the following quantities:

ω̇Y uL I I

ω̇c
� 1.7 × 103 α,

ω̇η

ω̇c
� 0.7 η. (68)

The comparison shows that, once normalized to the classical pericenter rate of change
due to J2 of the Earth, the effect of a Yukawa-like interaction on the pericenter of
LAGEOS II (provided it has the distance scale of 1 Earth radius) would be 3 orders of
magnitude bigger than the effect of an EP violation given by the η parameter. Thus,
having considered the effect on the pericenter of a new interaction depending on two
parameters rather than 1, makes it possible to improve considerably the potentiality
of the test over the very poor result (52).

For a quantitative assessment, let us first assume that the only source of error in
ω̇c is J2. In this case we get an error �ω̇c � ω̇c �J2/J2 � 8.2 × 10−15 rad/s (with
�J2/J2 � 10−7 as given by [12]) to compete with (67) for the determination of α.
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By imposing that they equal each other we get

αmin � 6.3 × 10−11, (69)

namely, the minimum value of α that could in principle be measured from the rate of
change of the pericenter of LAGEOS II.

This limit has been calculated assuming that only J2 contributes to the classical rate
of change of the pericenter. In fact, all zonal harmonics of the Earth do, and a number
of non gravitational forces contribute as well. A detailed error budget, including both
gravitational and non gravitational effects, has been computed by [16]. The author
concludes that seven years laser data of LAGEOS II would provide

α7yr � 4.9 × 10−10 (70)

which is almost 1 order of magnitude worse than the estimate (69) based on the effect
of J2 alone, and only a factor 4 better than the value η � 2 × 10−9 derived from the
orbit size determined from all LAGEOS and LAGEOS II data (Sect. 3, (45)).

Note that we have assumed J2 as determined independently with a given error.
However, J2 competes directly with the new interaction in affecting the pericenter,
and it is itself determined from LAGEOS data, so it is a circular argument to take it as
given while determining α, because an error in J2 can be absorbed by the parameter
α and viceversa. A thorough analysis of LAGEOS II laser ranging data, including α

and λ as solve-for parameters in addition to all usual parameters of gravitational and
non gravitational effects, has yet to be performed, to provide a more reliable value
of α. However, even the current estimate (70) of α is about a factor 500 worse than
the results already available for η from torsion balances in the gravitational field of
the Earth [1]. We see no possibility that having in the future another more eccentric
LAGEOS in orbit could significantly change this situation.

Instead, the pericenter of LAGEOS II can provide the best constraint on a new
Yukawa-like interaction with 1 Earth radius range. A systematic analysis of all real
data available is worth carrying out in order to reliably establish such constraints.

5 Concluding remarks

It is apparent from the work reported here that an experiment to test the EP with
LAGEOS-like satellites is by far not competitive with torsion balance tests.

The best EP test with LAGEOS satellites is obtained from the measurement of
the semimajor axis, and the level achieved is the same as the relative error in the
product G M of the Earth, namely 2 × 10−9 (as obtained from laser ranging data to
LAGEOS and LAGEOS II). Using the pericenter of the satellite orbit in the hope
that the secular effect of an EP violation would help in measuring it, does indeed
provide a result 2 orders of magnitude worse, unless another eccentric LAGEOS were
launched in the future, in which case this result would improve but only by 1 order of
magnitude. A better use of the pericenter is made if the data are analyzed searching
for a new Yukawa-like interaction with a distance scale of 1 Earth radius. Error budget
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calculations performed for the pericenter of LAGEOS II indicate that, as an EP test, the
result is only a factor 4 better than that provided by the semimajor axes of LAGEOS
and LAGEOS II, and it is not competitive (by a factor 500) with torsion balance tests in
the gravitational field of the Earth (i.e. at the same distance). However, the pericenter
of LAGEOS II allows the new interaction to be constrained more stringently than in
the past and a careful analysis of the actual LAGEOS II laser ranging data is needed
to provide more realistic results than the estimates reported here on this issue.

These being the facts, the question arises as to how it is possible that, contrary to
SLR, Lunar Laser Ranging (LLR) has allowed scientists to test the EP for the Earth
and the Moon falling in the gravitational field of the Sun to � 10−13 using only about
three decades of laser ranging data [19]. This question can be answered by looking at
the minimum detectable value of η, given by (41), which should now be written in the
case of LLR. While laser ranging to the Moon is at present almost as good as laser
ranging to LAGEOS, the orbital distance of the free falling bodies (the Earth and the
Moon) from the primary (the Sun) is no longer about 2 Earth radii but instead 1 AU.
As a consequence, taking about 1 cm measurement error, we have

ηminLLR � 3
10−2m

1.5 × 1011m
� 2 × 10−13 (71)

thus showing no contradiction between the discouraging results obtained in Sect. 3
for LAGEOS and the remarkable achievements of Lunar Laser Ranging in testing the
EP. Note that in this experiment the η being tested is the difference between the Earth
and the Moon, thus depending on their difference in composition (as well as in self
gravitation binding energy due to the large masses involved).

It is natural at this point to consider testing the EP with a new experiment, invol-
ving the Earth and one LAGEOS-like satellite in the gravitational field of the Sun: if
LAGEOS and the Earth differ in composition and EP is violated, the satellite orbit
around the Earth will be polarized along the Earth–Sun direction, towards the Sun or
away from it depending on the sign of η. The orbit polarization phenomenon has been
widely investigated for the orbit of the Moon ([20–23]). Within a first order perturba-
tion analysis of the lunar orbit (assumed circular and planar), in the presence of an EP
violation η �= 0, the amplitude of polarization of its orbit is (see e.g. [23]):

|δrp| =
1 + 2nsat

nsat−n⊕
n2

sat − (nsat − n⊕)2
n2⊕d⊕
η (72)

where d⊕
 is the Earth–Sun distance, n⊕ is the mean angular velocity (mean motion)
of the Earth around the Sun and nsat −n⊕ is the synodic mean motion of the satellite—
the Moon in this case—around the Earth (nsat being its sidereal mean motion). This
equation can be rewritten in terms of the dimensionless parameter

m = n⊕
nsat − n⊕

(73)
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in the form

|δrp| = 3

2
m

1 + 2
3 m

1 + 1
2 m

d⊕
η. (74)

Since m is a small parameter (m � 1/12.5687 for the Moon, and much smaller for
LAGEOS whose orbital period around the Earth is only � 3.8 h), Eq. (74) can be
expanded in powers of m to become:

|δrp| = 3

2
m

[
1 + 1

6
m − 1

12
m2 + · · ·

]
d⊕
η (75)

In the case of the Moon the contribution from terms to order higher than 1 in m has
been found (by neglecting second order terms in the lunar and solar eccentricities) to
increase the effect to first order in m by a factor 1.62201 (see [23]). In the case of
LAGEOS, m � 1 and second order terms can be neglected. The ratio between the
polarization of the orbit of LAGEOS and the polarization of the orbit of the Moon is
therefore, for the same value of η:

|δrpLAGEOS|
|δrpMoon| � nMoon − n⊕

nLAGEOS

1

1.6
� 1

300
(76)

meaning that an EP violation of the same extent as for the Moon would require to
detect, in the case of LAGEOS, a polarization of its orbit about 300 times smaller than
the polarization of the lunar orbit. This is due to the fact that LAGEOS is much closer
to the Earth than the Moon (by about a factor 30, because it is devoted to geodynamics
studies) and therefore its orbit is much less affected by the Sun than the orbit of the
Moon.

Since SLR data allow the orbit of LAGEOS to be recovered to an accuracy com-
parable to (or somewhat better than) the accuracy to which the orbit of the Moon is
recovered from LLR data, we conclude from (76) that it should be possible to test
the EP between LAGEOS and the Earth, freely falling in the gravitational field of
the Sun, to about 10−11. Though this result would not be competitive as compared to
either EP tests with LLR or to torsion balance tests, it would in fact be of interest for
both LLR and SLR scientific communities. The LLR community can test the methods
developed for the Moon on each LAGEOS (and other such satellites), in which case—
though the technology of laser tracking is similar—the orbit and physical model are
very different. For instance, non gravitational effects are more relevant for LAGEOS
than for the Moon, while lunar librations and tidal evolution effects are not there for
LAGEOS, and any contribution to EP violation from its self gravitational energy is
negligible. It is like conducting an experiment—previously limited to the only existing
natural satellite of our planet—with a substantially different apparatus characterized
by different systematics. On the other hand, the SLR community has the possibility
to test the physical model, parameters and data analysis methods developed and used
for over three decades, by searching also for an EP violation, since it is expected that
they should find no evidence for such an effect to about 10−11.

Finally, it is worth going back to (41) and (71), since they raise an important issue:
while an improvement is possible in EP tests with LLR by improving the technology
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of laser ranging to the Moon (hence, by reducing the measurement error which appears
at the numerator on the right hand side of (71)) no breakthrough can reasonably be
expected. Gaining one order of magnitude in laser ranging accuracy requires conside-
rable efforts. The real ultimate limitation—particularly to SLR—as far as EP testing
is concerned, is the fact that measurements are performed from Earth, in which case
1 mm accuracy of laser ranging is a great achievement.

The alternative is obvious: EP tests require to measure differential accelerations (see
definition (1) of the Eötvös parameter η)—and the displacements they give rise to—of
the test masses relative to one another. The semimajor axes of their individual orbits
around the Earth are not relevant for testing the EP. Thus, if the test masses are placed
inside a spacecraft and differential measurements are performed in situ with apparata
similar to those used in the lab to detect relative displacements of macroscopic bodies,
the accuracy achievable is many orders of magnitude better than by laser ranging.
This is why proposed space experiments such as GG, STEP, µSCOPE, GReAT can in
fact aim at far more accurate tests of the EP which are unthinkable of with SLR and
beyond laser ranging technology even for LLR.
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Unfortunately, an error occurred in Eq. (65). The correct version is given here:

ω̇Y u � n
α

4
e−a/λ ·

[
1

e
I1 − a

λ

(
1 − e

2

)
I0 − a

2λ
(e − 1)I1 · · ·

]

The online version of the original article can be found under doi:10.1007/s10714-007-0560-x.
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