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Abstract

Experiments to test the equivalence principle (EP) in low Earth orbit require to detect the effects of an extremely sm
classical differential acceleration between test masses of different composition. In all proposed experiments the test m
concentric coaxial cylinders, so as to reduce classical tidal effects which are differential too. Perfect centring being im
tidal effects need to be carefully investigated as they impose severe constraints on the basic features of the experime
The present analysis shows that with free flying (uncoupled) test masses an EP violation signal could be detected if
conditions of the masses were finely adjusted for them to remain at a fixed distance relative to each other while orbitin
the Earth. However, such an experiment is severely limited by non-gravitational effects. If the test cylinders are weakly
in 2D in the plane perpendicular to their symmetry axis (close to the orbit plane), while rapidly spinning around it, a pos
relative equilibrium is provided by physical laws which makes tidal effects widely separated from the signal. Weak cou
1D along the symmetry axis (to lie and slowly rotate in the orbit plane) is viable but less advantageous.
 2003 Published by Elsevier B.V.

Keywords: Equivalence principle; Tidal effects; Rotordynamics

1. Introduction

The equivalence principle (EP) is tested through its most direct consequence, the universality of free fal
whereby in a gravitational field all bodies fall the same regardless of their mass or composition. UFF expe
therefore require two test masses in the gravitational field of a source body plus a read-out system to d
effects of tiny, non-classical differential forces acting between the two. If the experiment is carried out w
test masses enclosed by a spacecraft orbiting the Earth at low altitude the driving signal is much stronge
is for suspended bodies on the surface of the Earth. However, unless the centers of mass of the orbitin
are perfectly coincident, classical (differential) tidal effects arise which might compete with a non-class
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violation signal. This is why in all proposed EP experiments in space the test masses are “concentric”
cylinders [1–3]. However, since perfect centering is impossible to achieve, the signature and amplitude
effects must be carefully assessed, as they might compete directly with the target signal of a putative EP v
For the space missions under study the goals are to perform an EP test to: 10−15 with µSCOPE [3], 10−17 with
“Galileo Galilei” (GG) [1], 10−18 with STEP [2].

We proceed by investigating, using analytical as well as numerical methods, different model cases of in
complexity. We start in Section 2 with the case of free flying (uncoupled) test masses, showing that tida
and EP violation signal have the same frequencies. For the relative displacement of an EP violation to be
with certainty the initial conditions of the bodies should be adjusted so that they orbit the Earth with the sam
angular velocity while remaining fixed relative to each other. Non-gravitational effects due to electric char
the test masses make it very hard to realize this configuration.

In Section 3 we demonstrate that one way to separate the EP violation signal from the tide is to cou
test masses in the orbit plane, e.g., with a mechanical spring, thus introducing a natural frequency of dif
oscillation of the test masses with respect to one another. In this case, while the EP signal is still detect
orbital frequency, tides are at the natural differential frequency, and at this frequency plus or minus twice th
frequency. This is the case of the proposed “Galileo Galilei-GG” space experiment, where the natural diff
frequency is about a factor 10 away from the orbital frequency, which makes it easy to separate tidal effects
signal. The need for all EP experiments in space to spin the spacecraft in order to provide a frequency modu
the signal is discussed in Section 4. In Section 5 the GG experiment is analysed under realistic conditions, i
the rotation of the system in super-critical regime, to demonstrate that indeed an EP violation signal woul
masked by tidal effects. While the well-known self-centring property of super-critical rotors is exploited in GG
is not possible in the STEP and µSCOPE experiments discussed in Section 6 because the test bodies are c
to 1D motion. Being in sub-critical regime, they would then be too much off-centred at equilibrium, which m
it necessary to actively force their centres of mass as close as possible to each other. The masses a
maintained in their fixed position and the force required to do that is the observable from which a possible s
violation should be extracted. In this case tidal effects are at twice the orbital/EP-violation-signal frequen
they are separated by a factor 2), and they are larger than the signal because of the difficulties of active
Overall this design is less elegant and advantageous than the GG design, the main issue being that the
not rotate around their symmetry axis.

2. EP violation signal and tidal effects on free-flying test masses in low Earth orbit

If two test masses of different composition, falling in the gravitational field of the Earth with an acceleraa
and the same initial conditions, experience a non-classical differential acceleration�a it means that there is an E
violation to the levelη =�a/a. However, exactly the same differential acceleration might be due to a diffe
�r in the orbital distancer of the two bodies at initial time such that�r/r � �a/a, with no EP violation. We
demonstrate this fact by analyzing the case of an initial separation�r and no violation (case (i)), and then th
case with a violation to the levelη and zero initial separation (case (ii)). We investigate also an ideal exper
configuration such that, having reached appropriate initial conditions, the test masses remain fixed with re
each other while freely orbiting the Earth. Then, by measuring their fixed relative displacement it should be p
to tell if there is an EP violation or not. Non-gravitational effects appear to be a major limitation to achievin
maintaining such fixed configuration.

2.1. Test masses separated by �r; no EP violation (case (i))

In absence of EP violation inertial and gravitational mass are the same. Body 1, with massmi1 = m
g

1 �M⊕,
starts its motion around the Earth at an orbital distancer1(0)= r and with the corresponding Keplerian veloc
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v1(0)= √
GM⊕/r perpendicular to its position vector, whereas body 2, with massmi2 = m

g

2 �M⊕, is released
at r2(0) = r + �r with 	v2(0) = 	v1(0). Therefore, while body 1 performs a circular orbit with constant ang
velocity (mean motion)n1 = n1(0)=

√
GM⊕/r3, body 2 moves along an elliptic orbit with major semiaxisa and

eccentricitye satisfying the relationship:

(1)a(1− e)= r +�r.

Referring to Appendix A for details, we obtain

(2)�n≡ n2 − n1 � −n1 · 3�r

r

for the relative mean motion of the two bodies. Since the orbital periodsP1 = 2π/n1 andP2 = 2π/n2 are slightly
different, the bodies’ separation in longitude around the Earth will grow with time.

We have computed the time-evolution of the relative positionsX ≡ x1 − x2 andY ≡ y1 − y2 of the two bodies
by numerically integrating the equations of motion

(3)miαẍα = − GM⊕mgαxα
(x2
α + y2

α)
3/2
, miαÿα = − GM⊕mgαyα

(x2
α + y2

α)
3/2

with miα =m
g
α andα = 1,2. The orbit of body 2 relative to body 1 is shown in Fig. 1. It is a spiral, and the rel

distance grows with time at the orbital frequency.

2.2. Test masses with the same initial conditions but with an EP violation η (case (ii))

Body 1 and body 2 start their motion with identical initial conditions, namely, at distancer1(0) = r2(0) = r

with initial velocity v1(0)= v2(0)= √
GM⊕/r along the tangential direction. In this case though, there is a

violationη such that:

(4)m
g

2 =mi2(1+ η).

Thus, while the equations of motion for body 1 is the same as (3), those for body 2 are modified into

(5)mi2ẍ2 = −Gm
i
2(1+ η)x2

(x2
2 + y2

2)
3/2

, mi2ÿ2 = −Gm
i
2(1+ η)y2

(x2
2 + y2

2)
3/2

.

As a result, to first order inη the Keplerian elementsa ande of orbit 2 and the difference�n in mean motion are
(see Appendix B):

(6)e� −η, a � r(1− η), �n� 2η.

Again, since the orbital periods of the two bodies are slightly different, the motion of body 2 relative to b
is a spiral, but in this case it starts from the origin. By comparing the expressions for�n in (6) and in (2), it turns
out that under the condition:

(7)η= −3

2

�r

r

the relative orbit resulting from the classical tidal effect of case (i) and the one with an EP violation of case (i
at the same rate. This is shown in Fig. 2, while Fig. 3 shows that the dominant frequency in the relative displa
of the test cylinders is the orbital one, both in the classical case with tides and in the non-classical case wi
violation (with relation (7) between�r andη).

Case (i) represents a space-fixed-like configuration. We now consider the case in which the two bodies
same initial angular velocityn1 = n2 =√

GM⊕/r3 but they are released at different altitudes (Earth-pointing-
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Fig. 1. Case (i): test bodies with initial separation�r and no EP violation. Orbit of body 2 relative to body 1 for 15 orbital periods having ta
�r = 1× 10−6 m andr = R⊕ + h with h= 500 km. Inset: close-up of the relative motion in the first half period.

configuration). The initial conditions for body 1 being the same, for body 2 we take:

(8)r2(0)= r +�r, v2(0)= n1(r +�r).

The difference in mean motions in this case is (see Appendix C for details):

(9)�n� −n1 · 6�r

r
.

The motion of body 2 relative to body 1 in the Earth-pointing case is quite similar to that of the spac
configuration, the only difference being that the relative distance grows twice as fast. Again, the initial sep
�r mimics an EP violation if

(10)η= −3
�r

r
.

Expression (10) differs from (7) by the same factor of 2. In any case, the value�r of the release error of the te
masses which would result in a classical effect as large as the targets of the proposed missions is of the o
nanometer for the least ambitious goal of µSCOPE, and even smaller (to the level of a few tens of picomete
several picometers in GG and STEP). Release errors as small as these are impossible to achieve. The u
with which initial conditions (and the orbital elements) can be determined would set the limiting sensiti
EP testing with these experiments. The same conclusion is reported in [4,5]. How is it possible, then, th
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Fig. 2. (Figure is in colour on the web.) Blue curve: orbit of body 2 relative to body 1 forη = 2.1 × 10−13 after 15P1 of integration time
(case (ii): identical initial conditions in the presence of an EP violation). The classical orbit of case (i) with�r = −2rη/3 = 10−6 m is shown
as a red curve for comparison. The value ofr is the same as in Fig. 1.

laser ranging (LLR) data can be used to search for EP violations in the Earth–Moon–Sun system of free
by checking whether the Earth and the Moon fall the same in the gravitational field of the Sun? LLR test
equivalence principle have been able to reachηLLR � 10−13 [6] because at this level, at the 1 AU orbital distance
the Earth–Moon system from the Sun,�r must of the order of a few mm, which is just in the present capabil
of current lunar laser tracking technology.

2.3. An ideal EP experiment with free falling test masses

In order to avoid the spiral motion of Figs. 1 and 2, it is possible in principle to adjust the initial conditions
test bodies so that their relative position vector remains fixed with respect to the centre of the Earth while
around it (i.e., the test bodies must have the same orbital angular velocity). Then, by measuring their se
distance it would be possible to tell whether there is an EP violation or not: if there is a non-zero separatio
�	r pointing to the center of the Earth, and in addition the masses remain fixed with respect to each other (n
along track), this means that there is an EP violation to the levelη��r/r (provided that the motion is dominate
by gravity). The experiment requires: first to be able to reach the initial conditions which make the test
orbit the Earth in a fixed configuration; then to measure their relative displacement; and finally to make s
there is no relative motion along track due to gravitation. The first step appears to be the most difficult one
of the electrostatic effects caused by the well-known phenomenon of electric charging of the test masses (
that charging changes with time in an unpredictable way). As for checking that there is no relative motio
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Fig. 3. FFT of the signals in the inertial reference frame. Solid curve: the orbit corresponding to case (ii) of two bodies starting with
initial conditions in the presence of an EP violation. The orbit corresponding to case (i) with�r = −2rη/3 = 10−6 m is shown as a dashe
curve for comparison. In the inertial reference frame, the tidal effect end EP signal would be detected atνorb and 2νorb. The main contribution
is at the orbital frequency.

track, this might be difficult because of the competing effect of residual air drag along the orbit of the sa
whose effect is a linear displacement growing quadratically with time. If the test masses are free flying air
the spacecraft gives rise to the same inertial acceleration on both test masses (common mode); however,
differential displacement is detected by the read out if the common mode one is much larger than the targ
Drag compensation is needed, and can be realized, but the problem remains of how to separate with ce
along track motion of pure gravitational origin whose presence in this experiment would rule out EP vio
We conclude that an EP experiment in space with free falling, uncoupled, test masses would have to fac
limitations.

3. EP violation signal and tidal effects with test masses coupled in the orbit plane

We now show that if the test bodies are coupled in the orbit plane, tidal effects and EP violation signal a
different frequencies, which makes it possible to separate them out. Let us consider a spacecraft orbiting
with radiusr and Keplerian angular velocity

(11)ωorb =
√
GM

r3
.

Let the test massesm1 andm2 be separated by�r in their initial orbital distance, and be coupled to each ot
with a positive stiffnessk (the coupling may be of different nature, e.g., mechanical, electrostatic or magne
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the orbit plane. The suspension is assumed to be rigid (in reality it is only much stiffer) along the orbit n
We investigate their motion in the reference frame of the orbiting satellite. The frame is centered on the c
mass of the Earth, with thex axis in the Earth-to-satellite direction, thez axis perpendicular to the orbit plane a
they axis to complete the Cartesian system. In this frame we call	r1 and	r2 the test masses position vectors w
respect to the center of mass of the spacecraft, and	ρ1 = 	r + 	r1, 	ρ2 = 	r + 	r2 their position vectors with respect
the center of mass of the Earth. The bodies have the same inertial mass but different composition. In add
assumed that there is a violation of the equivalence principle to the levelη, namely:mi1 =mi2 ≡m andmg1 =m,
m
g
2 =m(1+ η). The Lagrange function is:

L= 1

2
m
[
ṙ2
1x + ṙ2

1y + 3ω2
orbr

2
1x +ωorb(r1x ṙ1y − r1y ṙ1x)+ ṙ2

2x + ṙ2
2y + 3ω2

orbr
2
2x +ωorb(r2x ṙ2y − r2y ṙ2x)

]
(12)− 1

2
k
(
r2
1x + r2

1y + r2
2x + r2

2y − 2r1xr2x − 2r1yr2y
)−mω2

0rηr2x + 1

2
mω2

0η
(
2r2

2x − r2
2y

)
.

Tidal effects can be singled out by puttingη = 0 in (12) (i.e., no EP violation), and then deriving the equation
motion of the test masses in their relative coordinatesX= r2x − r1x andY = r2y − r1y :

(13)

{
Ẍ− 2ωorbẎ + (

ω2
n − 3ω2

orb

)
X = 0,

Ÿ + 2ωorbẊ+ω2
nY = 0.

The angular frequencyωn = √
2k/m appearing in (13) is the natural frequency of oscillation of the test ma

relative to one another in the orbit plane due to the coupling stiffnessk: the weaker the coupling stiffness, th
more sensitive the test bodies are to differential forces, such as those due to tides or EP violation. In spac
to weightlessness, the coupling can be very weak, much weaker than on the ground where suspension
stiff enough to withstand local gravity. Hence, the natural differential frequency can be much lower in spa
in the lab. Yet, it is always much larger than the orbital frequency, which in all proposed space experim
about 1.7× 10−4 Hz (typical orbital periods in low Earth orbit are 6000 s). By combining Eq. (13) into one s
equation of higher order, we obtain

(14)
....
X + (

ω2
orb + 2ω2

n

)
Ẍ+ω2

n

(
ω2
n − 3ω2

orb

)
X = 0,

whose eigenvalues are:

(15)Λ1,2,3,4 = ±i
√
ω2
n +ω2

orb/2∓ 2ωorbωn

√
1+ω2

orb/
(
16ω2

n

)
.

These eigenvalues give the angular frequencies of tidal effects in the reference frame of the satellite whi
around the Earth atωorb. For the EP experiments in space it isωn � ωorb, and these frequencies become:

(16)Λ1,2,3,4 = ±i(ωn ±ωorb).

If seen in the inertial reference frame (centered on the center of mass of the Earth and fixed in space), tid
would therefore appear at frequencies:

(17)νn, νn ± 2νorb

(ν = ω/2π ). Hence, the effect of coupling the test masses in the orbit plane is to shift the tidal signal from the
frequencyνorb of the uncoupled case (see Fig. 3), to the (typically much larger) natural differential frequenνn
introduced by the coupling. What about the effect of coupling on an EP violation signal?

In order to answer this question we considerη �= 0 in the Lagrange function (12) and find that in this ca
there exists a position of relative equilibrium of the test masses in the Earth-to-satellite direction (thex axis of the
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orbiting reference frame). The coordinates of the test masses at equilibrium are:

(18)




r0
1x = ω2

nrη

6(ω2
n−3ω2

orb)+2η(ω2
n−6ω2

orb)
,

r0
2x = r0

1x

(
1− 6

ω2
orb
ω2
n

)
,

r0
1y = r0

2y = r0
1x

(
ω2
n

ω2
n+2ηω2

orb

)
.

Since the equilibrium position (18) due to an EP violationη is fixed in the orbit plane of the reference frame
the orbiting satellite, it is apparent that in the inertial reference system the EP violation signal is at the
frequency (as in the case of uncoupled test masses), while tides are now close to the natural differential f
due to coupling. Since the orbital frequency is several times lower than the natural one, we conclude that—
to coupling in the orbit plane—an EP violation signal can be well separated from classical tidal effects.

4. Signal modulation

For high accuracy EP tests in space the spacecraft should also rotate, so as to modulate the signal at i
frequency relative to the Earth (the synodic frequency). EP tests require weak suspensions and large
rates: weak suspensions increase the sensitivity of the test masses to applied forces; fast rotation prov
frequency modulation and reduced “1/f ” noise. Conceptually, the problem is that of a rotating oscillator mad
a body of massm whose center of mass is suspended with stiffnessk from a point located a vector	ε away from
the rotation axis.	ε is the inevitable offset due to construction and mounting errors, and is fixed with the
Two frequencies are relevant for equilibrium: the spin frequencyωs and the natural frequencyωn = √

(k/m).
Equilibrium is achieved at a position	req where the centrifugal force is balanced by the restoring force of
suspension:

(19)	req= 1

1− (ωs/ωn)2
· 	ε.

If ωs/ωn < 1 (“sub-critical” rotation),	req ‖ 	ε andreq> ε: the equilibrium position moves farther away from t
rotation axis than the original offset. Ifωs/ωn > 1 (“super-critical” rotation),	req ‖ −	ε and|	req|< |	ε|: equilibrium
is achieved on the opposite side of the rotation axis with respect to	ε and closer to it than obtained by constructio
Note that in this case equilibrium is not possible if the body is constrained to motion in one dimension, as
demonstrated long time ago in Chapter 6 of [7]. If, moreover,

(20)
ω2
s

ω2
n

� 1

as it is desirable for very accurate EP tests, then:

(21)	req� −	εω
2
n

ω2
s

and self-centering occurs since the original offset is reduced by the large factorω2
s /ω

2
n � 1. The same line o

reasoning holds for two rotating coupled masses, whose relative position at equilibrium is as in (19),ωn now being
the frequency of differential oscillations. This is the case of the GG experiment design, for which tidal effe
EP violation signal are analyzed in detail in Section 5. Note that, since the offset vector	ε is fixed with the rotor,
the position vector of relative equilibrium is also fixed with the rotor, and therefore the corresponding tidal e
(in the rotating reference frame) at twice the spin frequency, just as lunisolar tides on the surface of the Ea
periodicities of 12 h (solar tide) and 12 h 25 min (lunar tide).
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5. EP violation signal and tidal effects in the GG space experiment design

Let us now analyze EP violation signal and tidal effects in the case of the GG experiment in space.

5.1. The GG apparatus

The GG satellite is planned to fly at an altitude of about 520 km on a circular sunsynchronous orbit
the Earth with inclinationI = 97.494 degrees (see [8]). The satellite spins around its symmetry axis at a
high frequency (2 Hz with respect to the center of the Earth) and this rotation provides passive stabilizatio
spacecraft attitude because the axis of symmetry is also the axis of maximum moment of inertia. Becau
flattening of the Earth, the orbit plane of an inclined satellite is known to precess around the normal to the E
in sunsynchronous orbits inclination and orbital radius are chosen so that the orbit plane follows the Su
annual motion around the Earth (at about 1◦ per day). Since the spin axis of GG remains fixed in space (due t
very high energy of spin), the angleθ that separates it from the orbit normal will also increase by about 1◦ per day.
In GG θ is maintained within±10◦, allowing about 20 days duration for each experiment run before realign
of the spin axis along the orbit normal is performed.

The test masses—referred to with subindexes 1 and 2—are two concentric, coaxial hollow cylinders,
axes along the spin/symmetry axis of the spacecraft and weighing 10 kg each (planned to be made of
CuBe). They are coupled as in a beam balance by means of mechanical suspensions which are stiff alon
axis but very soft in the orthogonal plane, where high sensitivity to differential accelerations has to be pr
The mechanical suspensions also allow electric grounding of the test masses, so that no discharging mec
required (which would disturb the experiment).

Note that:νs = ωs/2π = 2.000175 Hz is the spin frequency of the satellite around its symmetry axis
respect to a star fixed reference frame;νorb = ωorb/2π = 1.75× 10−4 Hz is the orbital frequency around the Ea
andνprec=Ωprec/2π = 3.17×10−8 Hz is the frequency of precession of the normal to the orbit around the no
to the equator (too small to be detected in 20 days of integration time).

5.2. Whirl motion and tidal frequencies in the sensitive plane

In super-critical regime mechanical suspensions are known to undergo deformations (and therefore to
energy) at the spin frequency. Energy dissipation makes the spin rate to decrease, together with the spi
momentum. Since the total angular momentum must be conserved, the bodies develop a whirl motion of in
amplitude around each other at a frequency close to the natural differential one due to the coupling. The
the losses (i.e., the higher the quality factorQ), the slower is the growth rate of the whirl. GG relies on highQ (for
slow growth) and on active whirl damping (see [9,10, Chapter 6]).

We use a simplified model, as sketched in Fig. 4 and write the equations of motion in the inertial re
frame(X,Y,Z) centered on the center of the Earth, theX-axis along the nodal line of the satellite’s orbit at init
time, theY -axis perpendicular to it in the orbit plane at initial time and theZ-axis along the spin axis, coincidin
with the orbit normal at initial time.	ρ1 = (x1, y1,0) and 	ρ2 = (x2, y2,0) are position vectors of the test mass
with respect to the center of mass of the Earth while the satellite orbits around it with a constant radiusr. The
bodies have the same inertial mass but different composition, and there is a violation of equivalence to theη,
namely:mi1 =mi2 ≡m andmg1 =m, mg2 =m(1 + η). They are coupled to each other by a dissipative spring
elastic constantk and quality factorQ. An offset vector	ε = ε(cos(ωst + φ), sin(ωst + φ),0), due to construction
and mounting, locates the suspension point of the spring with respect to the center of mass of body 2; it
with the rotor, and therefore spins with angular frequencyωs in the inertial reference frame. The dissipative fo
is proportional to the relative velocity through the coefficientcr = k/Qωs (sub-index “r” stands for “rotating
friction”, since it is determined by losses in the rotor).
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Fig. 4. Simplified model of the GG coupled test masses. The reference system is centered on the center of mass of the Earth; theX-axis is the
line of nodes of the satellite orbit at initial time;(X,Y ) is the orbit plane of the satellite at initial time; theZ-axis (not shown) is the spin axis
coinciding with the orbit normal at initial time;m1 andm2 are the test bodies, connected by a spring, with position vectors	ρ1 and 	ρ2 from the
center of mass of the Earth. The offset error due to inevitable construction and mounting imperfections is indicated asε. The figure is obviously
not to scale.

The equations of motion are:

	̈ρ1 = k

m
( 	ρ2 − 	ρ1 + 	ε)− cr

m

( 	̇ρ1 − 	̇ρ2 −ωs × ( 	ρ1 − 	ρ2)
)− GM 	ρ1

| 	ρ1|3 ,

(22)	̈ρ2 = − k

m
( 	ρ2 − 	ρ1 + 	ε)+ cr

m

( 	̇ρ1 − 	̇ρ2 −ωs × ( 	ρ1 − 	ρ2)
)− GM 	ρ2(1+ η)

| 	ρ2|3 ,

which we have integrated numerically with initial conditions:

	ρ1(0)= (r + x0,0), 	̇ρ2(0)= (r − x0,0),

(23)	̇ρ1(0)=
(
0,ωorbr +√

k/mx0
)
, 	ρ2(0)=

(
0,ωorbr −√

k/mx0
)

representing a system in which whirl radiusrw = 2x0 at initial time. (ωn = √
k/m is the natural differentia

frequency of the coupling.) For demonstration purposes the numerical integration is carried out with a ve
whirl radius rw = 2.5 × 10−4 m and assuming a very high level of violationη = 10−11. Instead, the natura
differential period of the coupling (also the whirl period) isTw = 540 s as in GG, the quality factor isQ= 20000
as originally assumed in GG (though better values have been measured), andε = 10−6 m. Since at this point we
are interested only in frequencies much faster than the precession frequency, the numerical integration tim
short and precession is not included.

The resulting FFT of the relative displacement between the test bodies is shown in Fig. 5(a) where
expected peaks are visible: whirl motion appears atνw = 0.00185 Hz ≈ νn, tidal effect atνw, νw + 2νorb =
0.00220 Hz,νw − 2νorb = 0.00150 Hz and EP signal atνorb = 0.000175 Hz (EP signal has a peak atνs too due to
the offset). The FFT of the relative acceleration between the test masses is plotted in Fig. 5(b).

We now derive the same results by analytical methods, taking into account also precession. Let(s1, s2, s) be a
reference frame fixed with the satellite, wheres is in the direction of the spin axis (coinciding with the orbit norm
Z at initial time),s1 is along the nodal line at initial time (same asX-axis) and(s1, s2) is therefore the sensitiv
plane of the instrument. In the reference system identified by the equatorial plane of the Earth and by its
axis it is:s1 = (1,0,0), s2 = (0,sinI,cosI) ands = (0,−sinI,cosI) and the unit position vector of the satelli
at timet is:

(24)r̂ = cos(ωorbt + ϕ)

(cos(Ωprect)

sin(Ωprect)

0

)
+ sin(ωorbt + ϕ)

(−cos(I)sin(Ωprect)

cos(I)cos(Ωprect)

sin(I)

)
,
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Fig. 5. (a) FFT of the relative displacement where all four expected peaks are visible, which are assigned to whirl m
νw = 0.00185 Hz ≈ νn, to the tidal effect atνw , νw + 2νorb = 0.00220 Hz,νw − 2νorb = 0.00150 Hz and to an EP violation signal
νorb = 0.000175 Hz. (b) FFT of the relative acceleration in the presence of an EP violation to the levelη = 10−11, which is sensed atνorb,
while whirl motion is atνw and tides are atνw andνw ± 2νorb.
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Table 1
Tidal acceleration components in the sensitive plane of the GG system

Component Frequency
GM⊕
r3

3rweωwt/(2Q) cos(ωwt)cos2(ωorbt)cos2(Ωprect) ωw, ωw ± 2ωorb ± 2Ωprec

ωw ± 2ωorb, ωw ± 2Ωprec
GM⊕
r3

3
2rwe

ωwt/(2Q) sin2(I )sin(ωwt)sin(2ωorbt)cos(Ωprect) ωw ± 2ωorb ±Ωprec

−GM⊕
r3

rwe
ωwt/(2Q) cos(ωwt) ωw

GM⊕
r3

3rw sin2(I )cos(I )eωwt/(2Q) sin(ωwt)sin2(ωorbt)sin(Ωprect) ωw ±Ωprec,ωw ± 2ωorb ± 2Ωprec
GM⊕
r3

3
2rw cos(I )eωwt/(2Q) sin(ωwt)cos2(ωorbt)sin(2Ωprect) ωw ± 2Ωprec,ωw ± 2ωorb ± 2Ωprec

−GM⊕
r3

3
2rw cos(I )eωwt/(2Q) cos(ωwt)sin(2ωorbt)sin(2Ωprect) ωw ± 2ωorb ± 2Ωprec

GM⊕
r3

3
2rw cos2(I )eωwt/(2Q) sin(ωwt)sin(2ωorbt)cos(2Ωprect) ωw,ωw ± 2ωorb ± 2Ωprec,ωw ± 2Ωprec,ωw ± 2ωorb

GM⊕
r3

3
2rw cos2(I )eωwt/(2Q) cos(ωwt)sin2(ωorbt)sin2(Ωprect) ωw ± 2ωorb ± 2Ωprec

GM⊕
r3

3
2rw cos3(I )eωwt/(2Q) sin(ωwt)sin2(ωorbt)sin(2Ωprect) ωw ± 2Ωprec,ωw ± 2ωorb ± 2Ωprec

while whirl motion is described by the vector

(25)	p = rwe
ωwt
2Q

( cos(ωwt)
sin(ωwt)cos(I)
sin(ωwt)sin(I)

)
.

Then, the tidal (differential) acceleration between the test bodies is:

(26)	a = −GM
r3

{−3rwe
ωwt
2Q sin(ωwt)

[
(r̂ × ŝ) · ŝ1

]
r̂ − 3rwe

ωwt
2Q cos(ωwt)(r̂ · ŝ1)r̂ + 	p}

and its components in the sensitive plane are:

as1 = 	a · ŝ1 = −GM
r3

{−3rwe
ωwt
2Q sin(ωwt)

[
(r̂ × ŝ) · ŝ1

]
(r̂ · ŝ1)− 3rwe

ωwt
2Q cos(ωwt)(r̂ · ŝ1)2 + 	p · ŝ1

}
,

(27)

as2 = 	a · ŝ2 = −GM
r3

{−3rwe
ωwt
2Q sin(ωwt)

[
(r̂ × ŝ) · ŝ1

]
(r̂ · ŝ2)− 3rwe

ωwt
2Q cos(ωwt)(r̂ · ŝ2)(r̂ · ŝ1)+ 	p · ŝ2

}
.

Using (24) in (27) we can list all the frequencies at which the whirl-related tides take place. Acceleratas1
can be seen as the sum of the nine signals listed in Table 1. The same holds foras2.

The table shows that tides between the test masses occur at angular frequenciesωw, ωw ± 2ωorb, ωw ± 2Ωprec,
ωw ± 2ωorb ± 2Ωprec, andωw ± 2ωorb ±Ωprec. In the case of GG, however,Ωprec is too tiny to be detected. Thu
the relevant frequencies of the tides in GG areωw andωw ± 2ωorb, in agreement with the numerical simulation

We conclude this analysis by showing in Fig. 6 the time evolution of the EP violation signal comp
aEP
s1 = −(GM⊕/r3)η(	r · ŝ1) as compared to the same component of the tidal effect, giving the correspo

FFT analysis in Fig. 7. It is apparent that the wide separation in frequency allows an EP violation signa
recovered even if it is much smaller than tidal effects.

5.3. Tides due to relative displacements along the spin/symmetry axis

Even if the GG system is stiff along the spin/symmetry axisZ, perturbations acting along this direction a
present (e.g., due to solar radiation pressure or to coupling of the Earth’s monopole with higher mass m
of the test bodies) which may produce a displacement between the centers of mass of the test cylinder
the spin axis remains all time exactly perpendicular to the orbit plane (which is not the case in GG), a c
mass separation along its direction will give a tidal signal also in the sensitive plane. We use the same a
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Fig. 6. Time evolution of the EP violation signal (above) and of the tidal signal (below) along thes1 direction in the sensitive plane. All signa
are given in units of(GM⊕/r2) · η= 1.

procedure as in Section 5.2 to describe the resulting tidal signal. The tidal acceleration	a corresponding to the
relative separation vector(0,0,�z) with respect to the satellite center-of-mass, can be written as

(28)	a = −1

2

GM⊕
r3 �zŝ + 3

2

GM⊕
r3 �zr̂(r̂ · ŝ).

In the reference frame(s1, s2, s), we have

as1 = 3

2

GM⊕
r3

�zrx
(
ry sin(I)− rz cos(I)

)
,

(29)as2 = 3

2

GM⊕
r3

�z

[
1

2

(
r2
y − r2

z

)
sin(2I)− ryrz cos(2I)

]
.

The corresponding time evolution and FFT analysis are reported in Figs. 8 and 9. In this case, tidal eff
detected at frequency 2νorb, while the EP signal is still atνorb. The peak at 2νorb in Fig. 9 does not resolve th
contributions at 2νorb ± νprec and 2νorb ± 2νprec.

We end this section noticing that, although the frequency analysis of tidal effects is useful in order to und
the physical nature of these subtle perturbations, in the actual GG experiment the measurement data pr
the capacitance bridges, rotating with the test cylinders and the whole spacecraft at a nominal frequency
are transformed (using the reference signal provided by the Earth elevation sensor onboard the spacec
an Earth pointing, non-rotating reference frame centred in the centre of mass of the spacecraft. In this f
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Fig. 7. FFT analysis of the data shown in Fig. 6. The amplitudes of the tidal peaks are about 20 times larger than the EP signal. Ne
the differences between the orbital and the whirl frequency allows us to recover the EP signal from the FFT analysis.

EP violation signal appears as a constant offset (for zero orbital eccentricity) in the satellite-to-Earth d
while tidal disturbances appear at a frequency close to the natural differential frequency of the test cylind
therefore average out to zero.

6. EP violation signal and tidal effects with test masses coupled and controlled in one dimension: the STEP
and µSCOPE cases

In STEP and µSCOPE the test cylinders are sensitive only along the symmetry axis, which lies and ro
order to modulate the signal) in the orbital plane. Being constrained to motions in 1D the test bodies ar
to sub-critical rotation, with no self-centering (see Section 4). Sub-critical rotation is indeed confirmed for
by the values of the rotation and oscillation frequencies reported in [11]. Since the original offsetε can hardly be
smaller than 1 µm, the residual tidal acceleration would exceed the signal by orders of magnitude. Furth
the center-of-mass separation—hence the tidal effect—are not exactly constant because radial oscillatio
plane perpendicular to the sensitive axis, are excited by residual spacecraft motion. Thus, a component of
tidal disturbance would appear at the signal frequency as well. This is why tides must be reduced, i.e., the
must be actively centered.

Let us therefore calculate this control force, assuming no spacecraft rotation at first. In the inertial re
frame(X,Y,Z) centered on the center of mass of the Earth the satellite orbits in the(X,Y ) plane and its position
vector is	r = r(cos(ωorbt),sin(ωorbt),0). For simplicity, the first test mass is assumed to coincide with the ce
of mass of the satellite, while the second one is separated from it by the vector�	r =�rX̂ along theX direction.
A force equal and opposite to the tidal one must be applied in order to maintain the second mass fixed in its
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Fig. 8. Time evolution of the EP signal (above) and tidal signal due to a center of mass offset along the spin axis (below) in thes1 direction of
the sensitive plane. All signals are given in units of(GM⊕/r2) · η= 1.

The tidal force to be reduced to zero is:

(30)	FTide
2 = −GMm

( 	r +�	r
|	r +�	r|3 − 	r

r3

)
= −GMm

r3

(
�	r − 3

	r�	r
r2 	r

)
= −mω2

orb

(
�	r − 3

	r�	r
r2 	r

)

or else, after making the time-dependence explicit,

(31)	FTide
2 = −mω2

orb

[
�r
(
1− 3 cos2(ωorbt)

)
,−3

2
�r sin(2ωorbt),0

]
.

It is apparent from (31) that the tidal force, as well as the control force required to make it vanish, are
frequency 2νorb in the inertial reference frame.

Let us now assume that the test masses are perfectly coincident, while there is an EP violation s
m2 = m(1 + η). In this case the control force required to maintain the second mass fixed is equal and o
to the EP violation force

(32)	FEP
2 = −GMm

r3 η	r = −mω2
orbη	r,

which is at frequencyνorb. In this case too, as in GG, we can distinguish the tidal effect from the EP viola
However, typical orbital periods of the spacecraft are of the order of 6000 s, resulting in a separation as
1.7× 10−4 Hz in the FFT spectrum. In STEP and µSCOPE too the spacecraft spins in order to modulate the
Note, however, that the rotation axis is not the symmetry axis of the test cylinders—which is the sensitive ax
is perpendicular to it. After demodulation of the output signal (i.e., in the non-rotating reference frame),
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Fig. 9. FFT analysis of the data shown in Fig. 8. For a center of mass separation along the spin axis tidal effects appear in the sensit
frequency 2νorb, while the EP signal is still atνorb.

violation signal is still at the orbit frequencyνorb, as it is apparent from (32), where the position satellite-to-E
vector	r is obviously unaffected by the rotation of the spacecraft. Instead, the tidal force (30) contains the
position vector�	r between the test masses, which rotates with the spacecraft at its spin angular frequencωs . Its
coordinates in the non-rotating frame are:

(33)�	r =�r
(
cos(ωst),sin(ωst),0

)
and the tidal force becomes:

(34)	FTide
2 = 1

2
mω2

orb�r
[(

cos(ωst)+ 3 cos
(
(ωs − 2ωorb)t

))
,
(
sin(ωst)− 3 sin

(
(ωs − 2ωorb)t

))
,0
]

thus showing that tides are (in the non-spinning frame) at frequenciesνs and 2νs − νorb. This means that they ca
be separated from the EP violation signal at frequencyνorb; however, if the spacecraft rotates slowly (with a s
period not much smaller than the orbital one) as it is the case in STEP and µSCOPE the separation in f
between the two is still small, and due to the difficulties of active centering, the residual tide is still much
than the target signal. It is also worth noticing that, in this design in which the test masses are actively fo
remain in a fixed relative position, the observable from which a possible EP violation signal can be extra
the control force equal and opposite to the differential force of an EP violation. However, the latter is in th
(32) if the test masses are allowed to move in the orbital plane around the Earth. Instead, they are forced
along one direction only (the symmetry axis) of this plane, while the suspension is very stiff in the other dir
How this stiff suspension does influence the motion (hence the control force) along the sensitive axis is a m
concern for the STEP scientists (see [12,13]).

Electric charging of the test masses is a problem with electrostatic and magnetic suspensions. In µSCO
gold (conductive) wire is added to ground the masses [14], while the STEP masses need active dischargin
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We end this section by noticing that a fixed relative position of the test masses could also be prov
gravitation only. This was suggested in [15] for a short distance EP test exploiting the Lagrangean eq
configuration of equilibrium for a primary body and two test masses (of different composition) inside a
altitude spacecraft. In this case a composition-dependent effect would show up as a deviation from the eq
triangle of classical equilibrium.

7. Conclusions

Experiments to test the equivalence principle inside a spacecraft in low Earth orbit require classic
(differential) effects between the test masses to be separated from a non-classical differential signal
possible violation of equivalence. If the test bodies are free flying inside the spacecraft tidal effects have t
frequencies as an EP violation signal. However, if the initial conditions are adjusted until the test bodies
fixed configuration relative to each other while orbiting around the Earth, then only by measuring their r
displacement it would be possible to tell whether the equivalence principle is violated or not. The displa
measurement can be very accurate, but such a fixed configuration is hard to reach and to maintain du
gravitational forces, primarily the electrostatic forces caused by electric charging of the test bodies.

The frequencies of tides can be widely separated from the frequency of an EP violation signal by (w
coupling the test masses (concentric coaxial cylinders) in the orbit plane. In this case the signal is at th
frequency while tides are at the natural differential frequency of the coupling (several times larger than the
one) and at this frequency plus or minus twice the orbital frequency. If the spacecraft spins in order to m
the signal, weak coupling in 2D allows (fast) rotation in super-critical regime around the symmetry axis
cylinders. In this regime a self centered position of relative equilibrium exists by physical laws, and tidal
due to whirl motion around it are again widely separated from the signal (the whirl frequency is very close
natural differential frequency of the coupling). This is the GG experiment design.

If the test masses are weakly coupled in 1D tides are at twice the orbital frequency, i.e., a factor 2 away
frequency of EP violation. However, when spinning the spacecraft for signal modulation 1D motion only
(slow) rotation in sub-critical regime. In this regime the relative distance between the test masses at equ
would be far too large to be acceptable (it would produce too large tidal effects), and therefore they nee
centered actively, and to be maintained fixed in that configuration. During rotation tides are at the spin fre
and at the spin frequency minus twice the orbital one, which under this condition of slow rotation are close
other. Tides are also larger than the signal due to the difficulties of active centering. This is the STEP and µ
experiment design. Its limitations appear to derive from the fact that rotation is not along the symmetry axi
test cylinders.
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Appendix A

Let us start from Eq. (1) in Section 2.1, namely,a(1− e)= r +�r.
The angular momentum per unit massJ is expressed as

(A.1)J 2 =GM⊕a
(
1− e2)
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the
and is a conserved quantity, so that

(A.2)J 2 = J 2(0)= r2
2(0)v

2
2(0)=GM⊕r

(
1+ �r

r

)2

.

By equating (A.1) and (A.2), it follows:

(A.3)a = r(1+�r/r)2

1− e2 .

Eliminatinga from (1) and (A.3) we obtain the exact expression

(A.4)e= �r

r

for the eccentricity of body 2, valid to any order in�r/r.
After substituting (A.4) into (A.3) and expanding to second order in�r/r, the major semiaxis turns out to be

(A.5)a = r
1+�r/r

1−�r/r
� r

(
1+ 2

�r

r
+ 2

�r2

r2

)
.

The mean anomalyn2 is obtained from Kepler’s third law, namely:

(A.6)n2
2a

3 =GM⊕
with the major semiaxis given by (A.5). To first order in�r/r,

(A.7)n2 =
√
GM⊕
r3 ·

(
1+ 2

�r

r

)−3/2

� n1 ·
(

1− 3
�r

r

)
resulting in the difference�n

(A.8)�n≡ n2 − n1 � −n1 · 3�r

r
.

Appendix B

In the caseη �= 0, Eq. (A.1) is modified into

(B.1)J 2 =GM⊕(1+ η)a
(
1− e2),

while the initial condition isJ 2(0)= r2
2(0)v

2
2(0)=GM⊕r. The energy per unit of inertial mass is instead

(B.2)E = −GM⊕(1+ η)

2a

and the eccentricity satisfies the relation

(B.3)e2 = 1+ 2EJ 2

G2M2⊕(1+ η)2
.

Finally, the Kepler’s third law in Eq. (A.6) is changed into

(B.4)n2
2a

3 =GM⊕(1+ η).

Combining Eqs. (B.1)–(B.4), expanding to second order inη and retaining only the linear terms, we obtain
relations (6) of the main text.
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Appendix C

Eqs. (1) and (A.2) with the initial conditions (8) give us the exact expressions for the Keplerian elements
orbit of body 2. These are

(C.1)a = r(1+�r/r)4

1− e2

for the major semiaxis,

(C.2)e=
(

1+ �r

r

)3

− 1

for the eccentricity, and

(C.3)n2 =
√

GM⊕
(r + 4�r)3

= n1

(
1+ 4

�r

r

)−3/2

for the mean anomaly. After expansion of equations (C.1)–(C.3) to second order in�r/r, we obtain

(C.4)a � r

(
1+ 4

�r

r
+ 18

�r2

r2

)
, e� 3

�r

r
+ 6

�r2

r2
, �n� −n1 · 6�r

r
.
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Errata corrige:  
 
Tidal effect in space experiments to test the equivalence principle: implications on the experiment 
design, Physics Letters A, 318, 251-269, 2003 
 
Page 266, first line after Eq. (34): 
 
2 s orbν ν−  should read 2s orbν ν−  
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