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2. THE GG SPACE EXPERIMENT

2.1 EXPERIMENTAL CONCEPT

2.1.1 TEST BODIES, EXPECTED SIGNAL AND PGB LABORATORY

GG is an experiment in space to test the Equivalence Principle through a test of the so called
Universality of Free Fall, namely that two bodies of different composition orbiting around the
Earth should move with the same acceleration, hence along the same orbit. In order to
eliminate major, purely classical, differential effects due to non uniformity of the gravity field of
the Earth the test bodies are concentric hollow cylinders, as they were in the STEP project
since its very beginning.

How an EP violation signal would affect the GG test bodies (in the plane perpendicular to their
spin/symmetry axis) is shown schematically in Fig. 1.1 where most details have been omitted
in order to show the essence of the experiment. The test cylinders are weakly coupled by
mechanical suspensions (not shown here; see Fig. 2.1); if the Equivalence Principle is violated
and one of the bodies is attracted by the Earth more than the other, the two centers of mass
reach equilibrium at a position displaced by EPx

&∆  (towards the center of the Earth) where the
new force is balanced by the restoring force of the suspension. For a given value of the
differential force (on one body with respect to the other) the weaker is the suspension, the
larger will be the displacement. Since our goal is to be sensitive to extremely small differential
forces in order to test the Equivalence Principle to 1 part in 1017, it is apparent that the
mechanical coupling between the test bodies must be as weak as possible. As the whole
system orbits around the Earth at angular velocity ωorb (see Fig. 1.1), the displacement vector

EPx
&

∆  keeps pointing to the center of the Earth. Therefore, in absence of spin, the EP signal
has constant intensity (perfectly constant if the orbital eccentricity is exactly zero) and a
direction changing at the frequency of the orbital motion around the Earth (≅ 1/5700 sec).

HIGH FREQUENCY SIGNAL MODULATION.  How can the signal caused by the mechanical
displacement EPx

&

∆  be modulated at a frequency higher than the orbital frequency? The
mechanical displacement is transformed into an electric potential signal by the capacitance
read−out whose plates are located in between the coaxial test cylinders. If the capacitance
plates spin at angular frequency ωs, this is sufficient to modulate the electric potential signal at
the spin frequency. However, in space it is a good rule not to have a satellite with components
rotating at different speeds one with respect to the other; while stabilizing a spacecraft by one-
axis rotation is well known as the simplest possible attitude control (at the beginning of the
space age most satellites were stabilized by spin around the principal axis). We therefore
choose to spin the whole GG satellite (the outer spacecraft, the suspended laboratory
enclosing the test bodies −that we call Pico Gravity Box, PGB− the test bodies and the read-
out sensors) at the spin frequency of 2 Hz, hence providing a modulation of the signal a  factor
≅ 104 times higher than its original (orbital) frequency. The sensors will detect a time changing
relative distance ∆x between the test bodies of the form:

)⋅+∆=∆ )cos()( EPsEP txtx φω                                                                                        2.1

where φEP is the known phase of the EP violation signal (the displacement vector EPx
&∆  points

to the center of the Earth around which the satellite moves at angular velocity  ωorb), and the

numerical factor ¨sintorb
22 )(cos1 ⋅−= ω)  depends on the angle θ  between the

spin axis of the satellite and the orbit normal. If  θ =0, )  has its maximum value ()  =1) all
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along the orbit, otherwise (θ p0) this happens only twice per orbit, when the plane
perpendicular to the spin-axis −the plane of the signal− passes through the center of the Earth.

WEAK MECHANICAL COUPLING OF THE TEST CYLINDERS.  In order to be sensitive to the
differential force of an EP violation, as shown in Fig. 1.1, the GG test cylinders must be
coupled mechanically, and very weakly. The way they are coupled is shown in Fig. 2.1. This
Figure is to scale for the case of an inner hollow cylinder made of Pt/Ir  (21.56 g/cm3 density)
and an outer one (much less dense) made of Be (1.848 g/cm3). Once the practicalities of
manufacturing the test bodies have been taken into consideration, this material choice is a
good one from the viewpoint of maximizing the effect of EP violation, because a new
interaction is generally expected to couple to baryon number. A very large density difference is
an important assembling constraint in the GG experiment design, as it is apparent in Fig. 2.1
because the room available is very limited. From the viewpoint of cost, a more realistic choice
is for the inner test cylinder to be made of Cu rather than Pt/Ir (testing composition
dependence with Be and Cu is a frequent choice in ground EP experiments) and this is our
current baseline.

Absence of weight in space allows the test bodies to be suspended with mechanical
suspensions of extremely low stiffness (helical springs and flat elastic gimbals), which is ideal
for detecting an EP violation effect to high accuracy because it makes the corresponding
relative displacement between the test bodies appreciable by the capacitance read−out. In the
current baseline and finite element simulation of GG (see Chap. 6)  the helical springs and flat
gimbals have stiffness, respectively, k=10-2 N/m (10 dyn/cm) and ktor=4⋅10-6 N⋅m (40 dyn⋅cm).
Helical springs and gimbals with elastic properties close to these nominal values have been
manufactured in CuBe by a small Italian company (DG Technology Service, Parma) (Figs. 2.2
and 2.3). The helical springs have been carved out of a single piece of CuBe by electroerosion
in 3D with special equipment, followed by Brush−Wellman heat treatment and ultrasound
cleaning. The flat gimbals are also made in CuBe by electroerosion, with the same heat
treatment and ultrasound cleaning. This very careful manufacturing is required in order to
obtain a good mechanical quality (high quality factor Q) of the suspensions of the test masses
and to avoid the release of accumulated stress and consequent time varying elastic properties.
A high Q is very important to reduce the thermal noise of the test bodies and also, in the GG
rotating system, to decrease the growing times of whirl motions (see Sec. 2.1.5 for whirl
motions and Q measurements).

It is worth noticing that no electric signal goes through the helical springs; this avoids electric
insulation of the springs (with plastic or glue) which would certainly impoverish their
mechanical quality. The only electric connection from the PGB laboratory to the test bodies
(needed for commanding the piezoelectric actuators) is through the flat gimbals, and this is
possible without applying any insulation on the thin torsion wires of the gimbals, which again
would reduce the mechanical quality. The flat gimbals have 6 wire sectors (see Fig. 2.3); each
sector is connected to the inner clamping ring on one end and to the outer clamping ring on the
other. Since 3 electric wires are sufficient, 3 of these 6 sectors are used in alternation, which
means that they can be electrically insulated on the clamping rings, rather than on the thin
wires themselves, thus avoiding negative effects on their mechanical quality.
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Figure 2.1 (to scale) Section through the spin axis of the GG test cylinders (10 kg each) and the capacitance plates
of the read-out in between. The lower density cylinder (21 cm in height) encloses the higher density one. Inside the
inner cylinder is a narrow tube rigidly connected to a laboratory (also of cylindrical shape) called PGB (Pico Gravity
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Box) enclosing the test bodies and the read-out capacitance plates shown here. The PGB in its turn is
mechanically suspended inside the spacecraft (not shown; see Fig. 2.8 for an overall view). For coupling the test
bodies there are two “coupling” arms (shown in light blue) located inside the PGB tube but not in contact with it;  the
inner test cylinder is suspended from the coupling arms at its center by means of two helical springs; the outer one
is also suspended from the arms with helical springs, one at the top and one at the bottom of its symmetry axis. The
only connection between the coupling arms and the PGB laboratory is via two flat gimbals at the midpoints of each
arm. Being pivoted on torsion wires the gimbals allow conical movements of the coupling arms around their
midpoints, e.g. in response to a differential force between the test bodies. The piezoelectric actuators shown next to
the gimbals are for adjusting the length of the two halves of each coupling arm. The capacitance plates of the
read−out are shown in between the test cylinders; they are connected to the PGB tube and have inch−worms for
adjusting their distance from the surfaces of the test cylinders. On the PGB tube are shown the mechanical stops
which constrain the test bodies to only slight movements. The small capacitance sensors/actuators (with plates of
about 2 cm2) are for sensing and damping the slow whirl motions of the test bodies with respect to the PGB (see
Sec. 2.1.5 and Chap. 6).

Figure 2.2 One of the 4 helical springs to be used for suspending the  GG test bodies; two such springs are needed
for each test body (as shown in Fig. 2.1). This spring has been manufactured in CuBe by DG Technology Service,
Parma (Italy) according to our design. They have manufactured the spring by electroerosion in 3D from a single
piece of CuBe with special equipment, and then have applied Brush-Wellman heat treatment and ultrasound
cleaning. The elastic properties are close to the desired ones. Each spring is clamped by the thick rings at its ends.
It is well known that most energy losses (which reduce the mechanical quality) occur at the clamping, no matter
what clamping means are used −screws, welding, glue…; if clamping takes place far from where deformations
occur during the oscillations (such as the thick rings in this case), this will reduce clamping losses significantly.  Half
turns of this spring are clockwise and the other half counter−clockwise; this is for de-coupling torsional from
longitudinal (axial) oscillations.

Figure 2.3 One of the two flat gimbals to be used for coupling the GG test bodies (as shown in Fig. 2.1). The outer
ring is clamped to the PGB tube and the inner one to the coupling arm (in Fig. 2.1 the PGB tube is shown in dark
green and the coupling arm in light blue). There are 6 wire sectors in between the clamping rings; 3 of them (in
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alternation) carry electric signals and are insulated at the clamping (on the outer and inner clamping rings); no
electric insulation is needed on the thin wires themselves where deformations occur. The manufacturer of the
gimbals is the same as for the helical spring; the same heat treatment and cleaning procedure have been applied.

The way each gimbal is mounted is shown schematically if Fig. 2.4, where it is apparent that it
allows conical movements of the coupling arm at its midpoint. By commanding the
piezoelectric actuators it is possible to change the relative axial position of the centers of mass
of the test bodies, allowing axial centering; in addition, it is possible to change the length of the
two halves of the arm, which is extremely important for balancing the test bodies under the
effect of the residual drag (Sec. 2.1.4, Fig. 2.13). Note that, if inch-worms are used rather than
ordinary piezo, it is possible to switch off the electric potential once the desired adjustment has
been achieved; in this way they will not disturb the EP measurements nor produce joule
heating inside the PGB (small force gravitational experiments should be as passive as
possible).

Figure 2.4 Schematic view of one flat gimbal pivoted on torsion wires. The inner ring of the gimbal is clamped on
the coupling arm (in light blue) and the outer one on the PGB tube (of which only a section is shown). The length of
the two halves of the arm can be changed by means of the piezoelectric actuators (schematized by their end faces).
Torsion of the wires allows conical movements of the coupling arm at its midpoint.

LOW NOISE SUSPENDED LABORATORY (PGB).  As shown in Fig. 2.1 that the only connection
between the (coupled) test bodies and the “outside world” is through the flat gimbals. It is very
important for such a connection not to be directly to the spacecraft, but through an
intermediate stage, in its turn suspended from the spacecraft. This intermediate stage is a
cylindrical laboratory whose mechanical suspension from the spacecraft (also a very weak
suspension, as it is possible in space), provides an effective,  passive (i.e. at essentially no
cost) vibration isolation above its natural frequency of oscillation. This laboratory is shown in
Fig. 2.8 under the name of PGB (Pico Gravity Box), from the original name given to a passive
noise attenuator of this kind to be used for low gravity experiments, typically in a box of
available volume,  on board the space station (Nobili et al., 1991,  Catastini et al., 1992).

The PGB laboratory shown in Fig. 2.8 is suspended from the spacecraft with 2 helical springs,
one of which is shown in Fig. 2.5. It is made of 1 steel wire of 0.15 mm diameter, which provides
the stiffness, and Cu wires (0.12 mm diameter each) for the required electric connections from
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the spacecraft to the laboratory (3 in this spring; 6 are needed in the GG experiment, 3 through
each PGB spring); each Cu wire has a resistance of 1.5 Ω and is insulated to better than 20
MΩ. All wires are glued with epoxy and made into a helical spring as shown in the picture with
elastic properties (both in the longitudinal and the transversal direction) very close to the
nominal ones in the current GG baseline, namely 10-2 N/m (10 dyn/cm). This is easily obtained
by playing with the parameters which determine the elastic properties of helical springs,
namely the thickness of the wire, the number of turns, the diameter of each turn, the total
length of the wire (45 cm in this case). Although this spring is very soft, two of them can very
well suspend the PGB laboratory and the test bodies apparatus inside it, all together a mass of
several tens of kg. This is because, in absence of weight, the largest force that the GG
spacecraft is subject to is due to air drag, which is about 108 times smaller than 1-g on Earth.
The largest  deformation that the PGB springs will undergo, before drag compensation, is very
minute compared to their length and size (less than 0.7 mm); there is certainly no danger to
overcome their elasticity regime.

Figure 2.5 One suspension spring of the PGB laboratory

In GG an EP violation signal is modulated at the spin frequency of the sensors. Vibration noise
at this frequency (or close to it), i.e. noise which acts at 2 Hz with respect to  the Earth, hence
at 4 Hz or DC in the rotating frame, is effectively attenuated by the mechanical suspensions of
the PGB laboratory inside which the experiment is carried out. As seen in the fixed frame, the
system is transparent to DC and low frequency effects (like the signal, the residual
atmospheric drag and its low frequency fluctuations...) but is very efficient in attenuating
vibration noise above its threshold frequency, particularly around the spin frequency. The
transfer function of the system, when viewed in the rotating frame, shows a sharp peak of
value 1 at 2 Hz (Fig. 2.6), meaning that the system is perfectly transparent at the signal
frequency (see Catastini et al., 1996 for details).  In this way the signal is not affected, in
amplitude, by the spin; also the low frequency drag effects (of the fixed frame) are up-
converted to high frequency with no amplification (and no reduction either, of course).  The
only difference, and indeed big advantage, with respect to the non rotating case being that the
detecting instruments work much better at higher frequency. So the sharp peak at 2 Hz is a key
feature of GG.  But how can the peak at 2 Hz be so sharp? Simply thanks to the fact that the
PGB provides good attenuation at its sides, at lower and higher frequencies, i.e. around 4 Hz
and 0 Hz (w.r.t the rotating frame). This means good attenuation of perturbations which are at 2
Hz w.r.t  the fixed frame.  The need to attenuate these perturbations should not be neglected.
Although in space a motor is obviously not needed, we cannot forget that the FEEP thrusters



** 3KDVH $ 5HSRUW� &KDSWHU ���� (;3(5,0(17$/ &21&(37

** 3KDVH $ 5HSRUW� &KDSWHU �� 7+( ** 63$&( (;3(5,0(17 20

will act at about 2 Hz (to reduce the main along track effect of drag at the orbit frequency, and
also its low frequency components). Since the FEEP thrusters compensate low frequency drag
effects while spinning at 2 Hz, any mismatches and imperfections in their firing will give rise to
spacecraft perturbations at 2 Hz w.r.t. the fixed frame (hence at 4 Hz and 0 Hz in the rotating
frame). Sonic noise of the GG spacecraft structure will be peaked at much higher frequency,
but a tail at the spin/signal modulation frequency should not be excluded, and will be
attenuated.

The transfer function of the rotating PGB for a quality factor Q of the suspensions of 90 and 400
is shown in Fig. 2.6, in the non-rotating frame (upper plot) and in the rotating one (lower plot).
Q=90 is the value measured in the laboratory for the PGB spring shown in Fig. 2.5 (see Q
measurements in Sec. 2.1.5). This low Q value of the PGB springs (as compared to the Q of
the springs which suspend the test bodies) is due to the fact that the PGB springs have to
carry wires and their insulation. A Q value higher than this, e.g. Q=400, can be easily obtained
by manufacturing the PGB helical springs with separate wires insulated at the clamping; these
will have a lower dissipation and therefore a higher Q.

In summary, the weak mechanical suspensions of the PGB −which can be used only thanks to
weightlessness− provide an effective, passive means of isolation from the (relatively) high
frequency vibrations around the spin/signal modulation frequency; in addition, they provide
electric grounding (see Sec. 2.2.4) and make the PGB laboratory essentially thermally de-
coupled from the spacecraft (see Sects. 5.4 and 4.4). All of these are very important
advantages for the purpose of achieving a high accuracy test of the Equivalence Principle.

AMPLITUDE OF THE EXPECTED SIGNAL.  In the GG numerical simulation (see Sec. 6.1.10), with
the nominal elastic properties of the suspensions given above (and close to those of the
suspensions in CuBe shown in Figs. 2.2 and 2.3) the natural frequency for differential
oscillations of the test bodies (differential mode) is ωdm ≅ 1.15⋅10-2 rad/sec, corresponding to a
natural period of about 545 sec (Table 6.4). The resulting amplitude of the relative displacement
of the test bodies in response to an EP violation to the level η=10-17 (current target of GG)
−yielding an acceleration signal EPa  as in  Eq. (1.2)− is

Angstrom103.6
a

x 3
2

dm

EP
EP

−⋅≅
ω

=∆                                                                                     (2.2)

modulated at the spin frequency according to Eq. (2.1). As a mechanical displacement,  ∆xEP ≅
6.3⋅10-3 Å is incredibly small; however, once it has been transformed into an electric potential
signal via a relative change of capacitance in the read-out  capacitance bridge, it can be
detected, as we have verified experimentally (see Sec. 2.1.3 and Chap. 3). It is clear, however,
that the very weak mechanical coupling of the test bodies achievable in space (a natural
differential period of 520 sec is very long, meaning that the coupling is very weak indeed)  is
crucial in order to get a displacement value within the reach of a capacitance read−out.

Finally, as mentioned in Sec. 1.4, mechanical suspensions allow electric grounding of the test
bodies and eliminate the major effects of electric charging. There are no floating bodies in GG,
as it is shown in Fig. 2.8.
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Figure 2.6  Transfer function of the GG Spacecraft/ PGB system as seen in the non rotating frame (upper figure and
in the frame rotating at 2 Hz (lower figure) together with the whole system. The noise reduction factor plotted on the
vertical axis is the ratio: amplitude of disturbing vibration at the PGB level to amplitude of vibration at the GG
spacecraft level. The lower this ratio, the lower the platform noise of the experiment, since the experiment is carried
out inside the PGB.  We consider the two cases Q=90 (currently measured) and Q=400 (readily achievable). In both
figures we plot also the transfer function in the zero-spin case (i.e. PGB suspended inside the spacecraft with the
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system not spinning) to recover the familiar shape of the transfer function, with noise attenuation above the natural
oscillation frequency of the system and the resonance peak; the peak height is low for a finite, low, Q. As viewed in
the non rotating system (top), the transfer function is not changed very much by the spin because it depends on the
elastic properties of the suspensions, and rotation does not  bring in any dramatic changes (deformations are
minute). It is apparent that the system is transparent to frequencies lower than the natural  frequency of the system,
such as the orbital frequency while it provides good attenuation close to the spinning frequency (the modulation
frequency of the EP violation signal). When viewed in the rotating frame (bottom) there is a peak with value 1 at the
spinning frequency, showing that vibrations at very low frequency w.r.t. the fixed frame, particularly the DC ones,
are not attenuated; the observer co-rotating with the system sees these DC perturbations as 2 Hz, and finds that
the suspension does not reduce them, namely that it is transparent to 2 Hz effects. Perturbations which are seen at
2 Hz by the non rotating observer (and attenuated), have frequencies 0 and 4 Hz for the rotating one, and in fact he
too finds that they are attenuated.

ALTERNATIVE WEAK COUPLING DESIGN.  Although helical springs and flat gimbals have many
advantages and allow to weakly couple the GG test cylinders as it is required for high accuracy
EP testing, they are not the only solution. An alternative design to the one shown in Fig. 2.1
and discussed above, is shown in Fig. 2.7, based on thin, curved laminar suspension strips to
be manufactured from a CuBe  foil in the required curved shape shown in the figure (they
should not be bent elastically) so as to avoid release of accumulated stress. The advantage of
this design is to be more sensitive to differential forces and stiffer in common mode. The
laminar suspensions should also be easier to manufacture and handle.
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Figure. 2.7  Alternative design, with respect to the baseline one shown in Fig. 2.1, for a weak coupled suspension of
the GG test cylinders; section through the spin/symmetry axis. The two balancing arms are twice as long as in Fig.
2.1, which increases the sensitivity by a factor of 4. The bodies are coupled by thin, curved laminar suspension
strips; there are 3 of them at each level, symmetrically placed around the axis (there can be more, but always
symmetric). The particular geometry of mounting them ensures that the pivoting points of the two balancing arms
are  well defined and that those at the center of the rotor coincide well one with the other (at the cross shown).
These suspensions are very soft for lateral differential oscillations of the two test masses and at the same time are
particularly rigid for unwanted motions, like common mode lateral oscillations and rotational oscillations around the
spin axis. They have enlarged ends for clamping (so as not to add dissipation at the clamps), and those in the
central part of the rotor are fastened by electrically insulating clamps, so that these suspensions can be used as
conducting leads between the PGB tube and the two balancing arms for the driving voltages of the four axial inch-
worms, which are used for balancing the two rods and for adjusting the axial position of the two test masses. Once
the desired balancing has been achieved the driving voltages of the inch-worms are switched off, leaving them
blocked; in this way they will not disturb the EP measurements nor produce joule heating inside the PGB laboratory.
The small capacitance sensors/actuators for sensing and damping the whirl motions, and the capacitance plates of
the read-out  are shown, as in Fig. 2.1.
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2.1.2 IMPLICATIONS ON SPACECRAFT, ATTITUDE  AND ORBIT

NEED FOR A SPIN STABILIZED SPACECRAFT IN LOW EARTH ORBIT.  The test bodies, their
mechanical coupling and the capacitance read-out are the core of the GG mission. Once the
experimental design outlined in the previous section has been conceived, the features of the
required spacecraft, its attitude and orbit are also identified. In the first place, the cylindrical
symmetry of test bodies and PGB and the request to spin, suggest a spacecraft of cylindrical
symmetry too, stabilized by one-axis rotation along the symmetry axis. The nature of the signal
(see Fig. 1.1 and Eq. 2.1) requires the spin axis to be as close as possible to the orbit normal;
the need to reduce non gravitational perturbations on the spacecraft surface (Sec. 2.2.1)
suggest that it should be small and compact (which in addition helps reducing its cost); the
need to reduce perturbations on the test bodies from nearby moving masses suggests to use
thrusters of high specific impulse (such as FEEP; see Sec. 4.2) in order to reduce the amount
of propellant required for drag compensation during the mission.

A section of the GG satellite through its spin/symmetry axis showing how the PGB and the
experimental apparatus is accommodated, in a nested arrangement inside it, is shown in Fig.
2.8; a 3-D view is given in Fig. 2.9 (see Chap. 5 for details). The spacecraft is 1 m wide and 1.3
m high. The area of the external (cylindrical) surfaces covered by solar cells is dictated by the
power needs of the mission (somewhat more than 100 W); the compactness of the spacecraft
(similar to a spinning top in shape) is for maximizing the moment of inertia with respect to the
symmetry axis whereby providing passive spin stabilization around it. The current nominal spin
rate is 2 Hz (120 rpm), yielding a peripheral acceleration of about 8 g, which is well doable.
From the viewpoint of the EP experiment the modulation frequency of the signal, hence the
frequency of spin, should be as high as possible: the higher the better,  to reduce mechanical
noise and low frequency “1/f” electric noise. In addition, a higher spin rate, with very weak
suspensions at it is possible to use in space, makes the test bodies closer to being free, ideal
rotors (see Sec. 2.1.5), which is advantageous  for the EP experiment. However, there are
practical constraints which is better not to push to their limits in order to reduce the complexity
and cost of the spacecraft. A spin frequency of 5 Hz, with spacecraft dimensions close to the
current ones, was the original choice for GG (Nobili et al., 1993; Nobili et al., 1995). The
current baseline is safer and poses no problems. Indeed, the first Italian satellite, SIRIO, flown
more than 20 years ago, was very similar to GG: cylindrical in shape, passively stabilized by
one axis rotation, with mass, spin rate and maximum peripheral acceleration very close to
those of GG. In any case, a spin frequency of 2 Hz already provides a modulation of the
expected EP signal about 104 times higher than ever achieved.

From Eq. (1.2), which gives the intensity of the expected signal acceleration for an EP violation
expressed by the adimensional Eötvös parameter η, it is apparent that the lower is the orbiting
altitude the stronger is the signal. The altitude h of the satellite orbit is chosen having in mind
two competing needs. On one side there is the need for an orbit altitude as low as possible, as
this increases the strength of the signal; however Eq. (1.2) shows that the dependence on h of
the acceleration signal is very slow for low Earth satellites (R⊕>>h).  On the other hand, the
altitude should be high in order to reduce the relevant disturbing effect from the residual
atmosphere, at least as long as this becomes comparable to the effect of solar radiation
pressure, which cannot be avoided anyway. The value of h is much more relevant for air drag
acceleration than it is for the strength of the signal, because of its linear dependence on air
density. In the current baseline we have h ≅ 520 km. It is worth noticing that in the case of GG
the only concern about a higher altitude is for a slightly weaker signal; there is no special
concern on charged particle effects (as it is the case in STEP) because there are no relevant
electrostatic effects (Sec. 2.2.4).
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Figure 2.8  Section through the spin axis of the GG satellite. The solar panels are shown, in two cylindrical halves at
the two ends of a girdle which is the central part of a very compact spacecraft of cylindrical symmetry, resembling a
spinning top, −made of the central girdle, one truncated cone above and one below− all to be manufactured in
carbon fiber composite (see Fig. 2.9 for a 3-D view of the GG spacecraft with and without the solar panels). Inside
the spacecraft is shown the PGB laboratory with its helical suspension springs and small capacitors for sensing its
relative position with respect to the spacecraft, both along the symmetry axis and in the transverse plane. The rôle
of the passive compensation masses is discussed in the Section and shown in Fig. 5.7. A blow up of the cylindrical
test bodies and the read-out sensors located inside the PGB is shown in Fig. 2.1
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Figure 2.9 The GG spacecraft with solar panels (left) and without (right), showing its compact “spinning top”−like
shape The outermost cylinder is 1 m wide and 1.3 m high. On the central girdle are located some electronic boxes,
the Earth/Sun Sensors and the FEEP thrusters. One of the two antennas can be folded to reduce the required
fairing space at launch.

WHY AN EQUATORIAL ORBIT.  Due to the flattening of the Earth any satellite orbit whose
inclination Ι over the equator is different from exactly 0 or π/2 is subject to the regression of its
line of nodes. The dominant effect on the longitude Ω of the ascending node of the satellite
orbit is due to the zonal harmonic ⊕2J  of the gravity field of the Earth (which expresses its

polar flattening) with a rate of change:
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where ωorb is the orbital angular velocity of the satellite at altitude h around the Earth. The
formula is valid for small values of the orbital eccentricity e (e2 terms neglected) and non-zero
inclination (for symmetry reasons, there is no such effect at Ι = 0); there is either regression or
advance of the line of nodes depending on whether Ι is smaller or bigger than 90°; there is no
motion of the nodes for an exactly polar orbit (Ι = π/2). For any inclination 0 < Ι < π/2, assuming
the spin axis unit vector of the satellite ω̂  to be initially parallel to the orbit normal orbω̂  (and
neglecting at this point all perturbations on ω̂  (see below) the two vectors will be an angle 2Ι
away from one another after a time Ω�/π  i.e. after half period of the regression of the nodes
(see Fig.2.10). For low orbit altitude and inclinations of 5 to 20 degrees half the period of the
nodes is from 25 days to about 1 month, to be compared with a mission duration of 7 months,
which means that the higher the orbit inclination the more important would be −in order not to
loose in signal strength− to perform attitude maneuvers so as to keep the spin axis close to the
orbit normal. No such maneuvers are needed at inclination close to zero, and this is why an
equatorial orbit is preferable. An orbit very close to a polar one would also be suitable from this
point of view; however, it would offer no major advantages from the viewpoint of launch while it
is certainly less advantageous for ground operation from the Italian equatorial station of
Malindi. Although GG is a mission far from heavy on data rate (see Chap. 7) its operation if
close to equatorial orbit is definitely easier for the Italian ground station.
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Figure 2.10 The figure shows the relative position of three unit vectors: the spin axis of the Earth ⊕ω̂ , the spin axis
of the GG satellite sω̂  (both fixed in time) and the normal to the orbit plane of GG  orbω̂  for a given orbital

inclination Ι. The orbit normal is drawn in two positions: at initial time, as orb
$ω̂  assuming that it coincides with sω̂

and after 1/2 period of the nodes, as orb
)2/1(ω̂ . It is apparent that the originally aligned axes become an angle 2Ι

apart. The higher is the inclination (0<Ι<π/2), the larger their angular separation will be.

The price to pay for this choice is to deal with severe thermal variations due to the satellite
coming in and out of the shadow of the Earth every orbit. And to be without sun power for a
significant fraction of the orbital period. The only orbit which would solve (yet not totally) this
problem is sun-synchronous, which however cannot (by definition) have zero motion of the
node line (since its orbital plane is meant to follow the Sun) and is therefore incompatible with
the GG need for a spin axis close to the orbit normal during the entire mission and no attitude
maneuvers. However, we have found (see Sects. 4.4 and 4.5) that the GG thermal problems
can be solved, thanks to the fast spin of the spacecraft and good vacuum inside it, using, in
addition, passive insulation and a spacecraft structure in carbon fiber composite (with very low
thermal expansion coefficient). The required thermal stability can be met by purely passive
means.

A circular orbit is preferable, but a small eccentricity can be accepted in order not to put
stringent requirements on the performance of the launcher. Residual eccentricity from the
launcher can be as low as 0.01, a value which is acceptable for GG. An  orbit inclination of no
more than 0.2° is within the current launcher performances; as for having the spin axis close to
the orbit normal, active maneuvers can be performed (before spin up to the nominal rate)
reaching a deviation <1°. Apart from the regression of the line of nodes, and its consequences
on the strength of the EP signal, perturbations on the GG orbit do not have any relevant
consequences over the 7 months nominal duration of the mission. The pericenter will precess;
the orbit will circularize and spiral in due to air drag; orbital effects of radiation pressure in
semimajor axis will average out every orbit (Milani HW DO. 1987, Chap. 4). All these non
gravitational effects are significantly reduced by FEEP drag compensation; in any case, none
of them is of any concern for of the experiment and the mission. No precise satellite tracking is
required; tracking with an ordinary accuracy of several km along track is sufficient for the
purposes of the EP experiment.

PASSIVE COMPENSATION OF DIFFERENTIAL ROTATION. With this choice of the orbit (almost
equatorial, almost circular with the spin axis close to the orbit normal) there is an effect
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induced by eclipses which gives rise to an angular phase lag between the spacecraft outer
shell and the payload suspended inside it, and it must therefore be taken care of (Lund, 1995).

The spin rate ωos of the outer shell will change if the moment of inertia of the shell changes
while the spin angular momentum remains constant. This indeed happens every orbit due to
temperature variations of the outer shell as the GG satellite gets in and out of the Earth
shadow, which is not the case for the PGB laboratory since it is very well insulated and
thermally de-coupled from the spacecraft (see Sects. 4.4 and 5.4). Hence, a differential
rotation rate of the outer shell with respect to the PGB is to be expected. The relative change
of the angular velocity of the outer shell ωos with respect to its nominal spin angular velocity ωs

must equal the relative change of its moment of inertia Jz with respect to the symmetry/spin
axis (due to the conservation of spin angular momentum), and it must be:
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                                                                                                       (2.4)

where αos is the thermal expansion coefficient of the outer shell and ∆T its temperature
variation due to the eclipse. Because of the low torsion constant of the PGB springs the natural
period for torsion oscillations of the spacecraft/PGB systems is longer than the eclipse duration
(about 1/3 of the orbit period); as a consequence, a differential rotation rate will accumulate
over the eclipse passage, yielding a corresponding phase lag between the two bodies. We
shall have:

eclipsesoseclipseos T τωαω ⋅∆⋅⋅≅∆ 2)(                                                                                    (2.5)

for the variation of the spin angular velocity in 1 eclipse passage of duration τeclipse, and a
corresponding phase lag:

eclipsesoseclipse T τωα ⋅∆⋅⋅≅Θ                                                                                               (2.6)

The GG thermal model gives ∆T ≅ 30 degrees for the temperature variation of the spacecraft in 1
eclipse passage; if the spacecraft is made of carbon fiber composite it is reasonable to have a
thermal expansion coefficient αos ≅ 0.9⋅10-6/K; thus:

rad8.0eclipse≅Θ                                                                                                                   (2.7)

This result has been confirmed by detailed theoretical and numerical analysis; it is clearly
unacceptable and calls for a solution.  A way to solving it comes from noticing that such a large
phase lag is due to the high spin rate of the spacecraft (together with the fact that the phase
difference grows quadratically in time) while the absolute change in the moment of inertia is
indeed very small. This means that it can be  balanced by a small compensation mass.
Moreover, compensation can be passive (Marchal, 1996); the idea is to have a mass which
expands and contracts in anti-phase with respect to the outer shell of the spacecraft so as to
keep the total moment of inertia (of the outer shell plus the compensation mass) essentially
constant. Since the compensation mass should be small compared to the mass of the outer
shell, clearly its expansion coefficient must be larger than the expansion coefficient of the outer
shell (if the masses  have about the same distance from the spin axis).  Expansion is required
in the radial direction (normal to the spin axis) because this is how the outer shell expands and
contracts. Hence, there must be bars located radially from the cylindrical surface towards the
spin axis, while the bulk of the compensation mass should be as close as possible to the outer
shell in order to give the highest contribution to the total moment of inertia (and thus to its
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variations as well). Also, materials with high expansion coefficients tend to have low density.
From all this we are led to the design shown in Fig. 2.8: a number of bar shaped supports with
large thermal expansion coefficient αbar are located radially from the outer shell surface (in
thermal contact with it) towards the spin axis; from the other ends, getting back towards the
surface of the spacecraft, there are thermal insulating low expansion bars at whose ends the
compensation masses are attached. As the spacecraft outer shell expands outward the
compensation masses are displaced  inward, and viceversa. The compensation masses are
far away from the spin axis thus giving a large contribution to the moment of inertia.  Care
should be taken in maintaining symmetry in  azimuth as well as top/down. Also, thermal
insulation of the top radial bars and insulating masses is necessary not to bring heat inside.
Three possible mass compensation designs are shown in Fig. 5.7. For the total moment of
inertia to remain constant the ratio of the thermal expansion coefficients and the ratio of the
moments of inertia (with respect to the spin axis) must satisfy the equation:
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and, with the design outlined above:
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with mcm the total compensation mass (with bars of negligible mass), mos and r the mass and
radius of the outer shell, rcm the radial distance of the compensation mass from the spin axis,
lbar the length of the high thermal expansion bar. Using materials with αbar a factor 50 to 100
times larger than the expansion coefficient of the outer shell in carbon fiber it is found that a
compensation mass not larger than 5 kg is sufficient. Note that a small compensation mass,
and a small mass for the bar, i.e. a small mass for the entire system means that heat can be
transferred (hence expansion/contraction achieved to compensate for those of the spacecraft)
in a very short time.

How rapidly must this passive mass compensation system work in order to keep the phase lag
between the outer shell and the PGB within a required phase difference rad01.0req ≅Θ
(namely, 1/10 of the of angle available by the mechanical stops)? Assuming the temperature
change to be linear in time we get a quadratic growth of the phase lag angle with acceleration:

27
sos rad/sec104.3T2  ⋅≅ωα≅Θ −���                                                                                      (2.10)

giving about 240 sec for the response of the compensation system. Materials with thermal
expansion coefficient as large as  10-4/K  to be used for manufacturing the bars tend to have
low thermal conductivity; they can have a thermally conductive inner bar so as to increase the
surface of thermal contact with the expanding/contracting outer shell of the spacecraft thus
reducing the response time. In any case there is sufficient time available. Instead, it is possible
to use bars is special Al  alloy which have somewhat smaller thermal expansion coefficient but
high thermal conductivity and need no inner bar. The gravitational perturbation on the test
bodies of all the moving mass  (from the outer shell as well as the compensation mass) has
been estimated and found not to be a problem (Sec.  2.2.5).

In the conservative assumption that 10% of (2.10) is not compensated passively, for the
residual angular acceleration between the spacecraft and the PGB (3.4⋅10-8 rad/sec2) the
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response time is 770 sec; it can be sensed and corrected. It is sensed by placing a small mirror
on the PGB tube and a photo-detector on the spacecraft (it adds no wire to the PGB); the
angular resolution (� 0.01 rad) is certainly not a demanding one.  The photo-detector can then
drive the FEEP thrusters to correct for the phase lag by spinning the outer shell up or down as
necessary. The torque to be provided is of 10 µN⋅m, well within the capabilities of the thruster
authority of the FEEP. Indeed, the FEEP could correct for the entire effect (no passive mass
compensation), since this requires 100 µN⋅m, but it is preferable to limit the FEEP to fine
adjustments only in order to reduce power consumption.

No such phase lags as those discussed above will take place between the PGB and the test
bodies because of the very good thermal insulation (see Sec. 4.4); spring coupling will take
care of eliminating residual small phase lags (e.g. left out by the unlocking procedure) within 2
weeks (see Sec. 2.1.6).

EFFECTS ON THE SPIN AXIS. We have analyzed the effects of the regression of the nodes on the
relative angle between the orbit normal and the spin axis, assuming the latter fixed in space.
Although the approximation is correct, the spin axis is not exactly fixed in space. This is
because a body with different moments of inertia (the GG satellite) whose spin axis is not
exactly normal to the orbit plane will be forced to precess about the orbit normal by the
monopole gravitational attraction of the central body (the Earth). The effect is similar to the well
known luni-solar precession (with 26,000 yr precession period) of the spin axis of the Earth
about the normal to the ecliptic produced by the monopole of the Moon and the Sun on a
planet Earth which has a non zero quadrupole moment.

For an axisymmetric body having moments of inertia Jz with respect to the symmetry axis and
Jx with respect to any axis in the transversal plane (Jz>Jx), whose spin axis −assumed to be
coincident with the symmetry axis at this point− is at an angle θ with respect to the orbit
normal, it can be shown that the spin axis will precess about the orbit normal with a precession
period Ppr given by (e.g. Afonso et al., 1989):
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This formula has been obtained after averaging over the fast variables, both the true anomaly
and the longitude of the node. Clearly, the more the body differs from a sphere i.e. the larger is
its fractional difference in the principal moments of inertia (Jz-Jx)/Jz, the more relevant this effect
will be (i.e. faster precession).  Once all the bodies have been unlocked, since they are weakly
coupled and have different values for the fractional difference in the principal moments of
inertia (Jz-Jx)/Jz they will precess at different rates, slower the test masses than the outer shell
and the PGB (the test masses are manufactured with lower quadrupole moments). The fastest
precession rate is that of the outer spacecraft, whose precession period amounts to Ppr ≅ 6 yr.
(and it is the shortest of all). This means that the assumption made for the longitude of the
nodes to be a fast variable too was indeed correct. Note that the precession angular velocities
are different for the different bodies due to their different quadrupole moments, but they have
all the same sign (in fact opposite to the sign of the spin angular velocity, which is obviously
the same). The precession rate of the PGB is slightly slower than that of the outer shell, while
those of the test bodies are at least a factor of ten slower. Let us consider the worst possible
case: that of one body precessing at the fastest rate (i.e. the spacecraft outer shell) and
another body with zero precession rate. In a given time interval ∆t the precession angle αpr

covered by the vertex of the spin axis of the spacecraft in its precessional motion in the sky is
αpr = (2π/Ppr)⋅∆t. However, the spin axis is sweeping a precession cone of semi-aperture θ, and
therefore the angular displacement with respect to its original position (also the position of any
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axis not affected, or much less affected by this torque) is Φ=αprθ (all angles in radians). Taking
the entire 7 months nominal duration of the mission as ∆t, we get 9⋅10-3 rad (0.6°) for the total
angular displacement. This value, which is an upper limit, is also much smaller (about 1/10) of
the maximum physical room allowed by the mechanical stops for relative angular movements
(in all degrees of freedom) for the suspended bodies.

However, in the above reasoning we have ignored the mechanical coupling between the two
bodies. Instead, there are coupling springs which will be elastically deformed in response to
the external torque until an equilibrium position is reached. The effect is like the so called
“gyroscopic effect” for rotors on Earth −in the case that the coupled rotors be suspended by
their center of mass−, noticing that on the ground precession would be around the diurnal
angular velocity vector of the Earth, hence yielding a much stronger effect. The problem arises
for the GG prototype experiment in the laboratory and it has been carefully investigated: the
resulting angular displacement at equilibrium between the spin axes is very small even on
Earth (10-5 rad or smaller depending on the arrangement; Comandi, 1998). It will be certainly
smaller in space. Even more important, the GG test bodies in space are suspended from the
center of mass (or symmetrically with respect to it): as a consequence, gyroscopic effects −in
addition to causing very small angular displacements− will not affect the centers of mass of the
test cylinders whose relative displacement is the only physical quantity relevant for the EP
experiment.

The outer shell of the GG satellite is subject also to a number of non gravitational perturbations
that can change its spin axis while not affecting the PGB laboratory and test  masses
suspended inside. As a result, there will be tilts which, although not affecting the centers of
mass, may be unacceptable for the EP experiment. If so one should resort to active control of
the spin, that is, GG should rely on compensation (to some extent) of non gravitational effects
also in angle. From the analysis reported below we conclude that no active control is needed
on the direction of the spin axis.

The main non gravitational torques are due to solar radiation pressure and air drag. Radiation
pressure on the GG top and bottom covers is usually asymmetrical. The Sun is not always at
zero declination over the equator of the Earth, the orbit of GG is not exactly equatorial, the spin
axis is not exactly normal to it. So one cover is illuminated while the other is in the dark.  The
reflected part of this asymmetrical radiation gives a force along the spin axis, hence no tilt.
Instead, the effect due the absorbed fraction has the same direction as the surface-to-Sun
direction, and this has a component perpendicular to the spin axis which, in the case of
asymmetrical illumination, results in a torque that can tilt the spin axis of the outer shell with
respect to that of the PGB inside. The radiation pressure force on a GG cover can be
estimated to be:

( ) ab
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rp )sinr(
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F α⋅δπ⋅Φ≅ sun
cover

                                                                                    (2.12)

where Φsun is the solar flux, c the speed of light, r the radius of the GG spacecraft, δ the
declination of the Sun over the equator of the Earth and αab the absorption coefficient of the
surface. The corresponding torque is:

( )
2

h
FN rp ⋅≅

coverrp                                                                                                              (2.13)

where h is the height of the GG outer shell. In the unfavorable, simplifying assumptions that δ
is always at its maximum, that no shadowing occurs, and with a large value for αab (0< αab<1)
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the maximum value of Nrp is only of few 10-7 N⋅m, to be compared with the enormous spin
energy of the spacecraft, Espin= Jzωs

2 ≅ 5⋅103 N⋅m (a factor at least 1010 bigger). As far as air drag,
is concerned, since the GG spacecraft is highly symmetric only fluctuations in the residual (at
the orbiting altitude) atmospheric density can give rise to a tilting torque. Furthermore, only a
fraction of such fluctuations will produce a tilting torque always in the same direction. In the
very conservative assumption that fluctuations producing a tilting torque always in the same
direction amount to 0.01 of the average air density, the resulting torque would still be of the
same order as in the torque due to solar radiation estimated above; hence, also negligible
compared to the spin energy. For completeness we have estimated also the effect of a
magnetic torque. Any electric charge that were to materialize inside the spacecraft (e.g.
interaction with cosmic rays) will move to the external surface of its outermost conducting
structure because all parts are connected via conducting suspensions and there are no free
floating masses. Since GG is spinning this charge will create a current loop whose magnetic
moment m

&
 (parallel to the spin vector of the spacecraft) will interact with the dipole magnetic

field of the Earth ⊕B
&

 giving rise to a torque ⊕× Bm
&

&

 As a result, the spin axis will precess

around ⊕B
&

. With an upper limit for the electric charge obtained from charging on LAGEOS (an

upper limit, because LAGEOS orbits in the middle of the Van Allen belts) this magnetic torque
turns out to be totally negligible.

Having analyzed all non gravitational perturbing torques (that we are aware of) which can tilt
the spin axis of the GG spacecraft outer shell with respect to the PGB laboratory inside, we
conclude that their effects are negligible by far and that no active control of the direction of the
spin axis in space is needed. Such direction is absolutely stable. The simple physical reason
behind this fact is that the kinetic energy of spin once at the nominal rate of 2 Hz is so high
compared to all perturbing torques that they would need a very long time to even slightly
displace the spin axis; with the addition of the restoring coupling of the springs, these torques
are of no concern at all. From the viewpoint of satellite operation, this result is a very important
simplification; in addition, a reduced complexity of the spacecraft is clearly beneficial for the
experiment. By comparison, the STEP attitude needs to be actively controlled; moreover, it
must be drag free also in angle to very high accuracy.

Besides the precessions caused by external torques (of both gravitational and non
gravitational origin) there is a precession, known as Eulerian or free precession, and also as
Eulerian or free nutation, which takes place in the absence of any external torque. For an axis-
symmetric body with the symmetry axis being the axis of maximum moment of inertia, there is
IUHH SUHFHVVLRQ whenever the body is put into rotation about an axis at non zero angle with
respect to the symmetry/principal axis. The spin axis precesses around the symmetry/principal
axis of the body (moving inside the body itself) at a frequency smaller than the spin frequency
and given by νpr=νspin⋅(Jz - Jx)/Jz. A well known example is the polar motion or Chandler wobble
of the spin axis of the Earth by which the north pole moves on the surface of the Earth along a
circle-like curve of about 6 m radius (0.2 arcsec) every ≅ 420 days. In the case of spinning
spacecraft free precessions must be damped in order to stabilize their attitude. In the case of
GG the presence of low stiffness mechanical suspensions coupling the outer spacecraft to the
PGB can reduce the amplitude of the free precession cones (see Fig. 2.6). The free
precession movement causes forced oscillations (and deformations) of the PGB springs in the
transversal plane, just like any other vibration perturbation; this happens at the free precession
frequency given above, which is higher than the threshold frequency of the system for the
attenuation of vibration noise,  thus reducing the amplitudes of these oscillations and closing
the precession cone.

INNOVATIVE DRAG COMPENSATION. So far the GG spacecraft is standard. However, it is an
innovative spacecraft in that it performs an accurate drag-free control at the orbital frequency.
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The request for drag compensation comes from the experiment, because the effect of air drag
is by far larger −by many orders of magnitude; see Sec. 2.2.1−  than the expected signal.  The
residual atmosphere at the satellite orbiting altitude (as well as radiation from the Sun, the
Earth’s albedo and the infrared Earth radiation) act on the outer surface of the GG spacecraft
but not on the test bodies suspended inside. Since gyroscopic effects are negligible (because
of the very high energy of spin the GG spinning bodies are essentially unaffected by tilts and
torques), these non-gravitational effects appear as inertial accelerations on the test bodies to
which they are transferred via the flat gimbals on the coupling arms (as shown in Fig. 2.1),
ideally −i.e. in case of perfect balancing of the test bodies; see Sec. 2.1.4− equal and opposite
to the acceleration acquired by the spacecraft.  Most of the effect (along-track) is at the
satellite orbiting frequency around the Earth; smaller, low frequency variations are also to be
expected. In the ideal case of perfect balancing of the test bodies air drag effects would cause
no differential displacement of the bodies (with respect to one another), hence not competing
with the EP differential signal. In reality balancing is not perfect, and it is a good strategy that
the burden of dealing with air drag effects be shared between the experiment core, by accurate
balancing of the test bodies, and the spacecraft itself −by making it drag-free, i.e. capable of
compensating for air drag.

In GG drag compensation is performed with FEEP thrusters, whose advantages for high
precision missions in Fundamental Physics devoted to the detection of very small forces, are
numerous: high specific impulse, negligible amount of propellant (few grams for a few months
mission duration), no moving parts, fine electric tuning and consequent high level of
proportionality.  The motion of the PGB with respect to the spacecraft is monitored by small
capacitance sensors (shown in Fig. 2.8) which drive the FEEP thrusters (spinning with the
system) for compensation. The actual configuration of FEEP thrusters on GG for drag
compensation (6 in total) is given in Sec. 5.5 and Fig. 5.15. The drag-free control is based on a
notch filter, and requires the thrusters to fire close to the spin frequency; it has been designed
and implemented in a finite element numerical simulation of the full GG system (see Sec.
6.15). The corresponding vibration noise (close to the signal modulation frequency) is very
effectively reduced by the PGB suspensions according to the transfer function of Fig. 2.6, and
therefore does not reach the test bodies. The FEEP thrusters and their control electronics are
discussed in Sec. 4.2. The current GG requirements on drag compensation are given in Sec.
2.1.1.
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2.1.3 THE READ−OUT SYSTEM

The expected relative displacement  between the centers of mass of the GG test cylinders due
to an EP violation to 1 part in 1017 (the GG target) is given by Eq. (2.2), and it is as small as
5.8⋅10-3 l. Such a displacement can be detected by means of a capacitance (or an LC) bridge
as schematized in Fig. 2.11; we use two bridges, namely 4 sensor plates located  halfway
between the test cylinders at 90°  from one another (only 2 of them are shown in  Fig. 2.11), in
order to double the output data, thus gaining in sensitivity by a factor √2 with respect to
unidirectional sensors. A capacitve detector to test the Equivalence Principle was proposed
also by Pace et al. (1992).

Any displacement of the test masses is the combination of a common mode displacement ∆xcm

(both masses move the same) and a differential mode displacement ∆xdm (of one body relative
to the other), as shown in Fig. 2.12.  For the general displacement the total (relative) change of
capacitance will be given by (see Nobili HW DO., 1998 Sec. 7 for details):
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(Co=C°1=C°2, the initial values of the capacitances; a and b are defined as in Fig. 2.11) from
which the output potential derives. It is apparent from this equation that the measurement is
unaffected by displacements in common mode only if the plates are positioned exactly halfway
between the surfaces of the test cylinders. Therefore, the bridge needs to be mechanically
balanced, i.e. the capacitance plates of Fig. 2.11 must be positioned (and stay) at “equal''
distance from the surfaces of the test bodies with sufficient accuracy for all common mode
displacements to be smaller than the expected differential signal (see Fig. 2.12). If  ∆xEP is the
differential displacement of the expected EP violation signal (as in Eq. 2.2), it must be:
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meaning that, for the bridge to detect a differential displacement ∆xEP in the presence of a
displacement in common mode ∆xcm (at most) the relative off-centering of the plates must not
exceed the ratio ∆xEP/∆xcm as in Eq. (2.15).

The GG requirements for the mechanical balancing of the capacitance bridge are given in Sec.
2.2.1 and can be easily met by means of inch-worms mounted a shown in Fig. 2.1. They will
not disturb the experiment because they can be switched off after having been positioned for
the required balancing has been achieved. Any disturbances from parasitic capacitances
depend on the geometry of the system and therefore act as DC effects, while the signal is
detected at the spin frequency.

A capacitance read-out as schematized in Fig. 2.11 has been designed, built, tested and
mounted on the GGG prototype (see Chap. 3). The capacitance bridge sensor circuit currently
in use on the prototype is shown in Fig. 3.10. It has been demonstrated that it is sensitive to
displacements of 5⋅10-2 l in 1 sec of integration time, with a factor of 10 improvement in 100 sec
integration times. Since integration times of a few thousand seconds are not a problem at all,
the required sensitivity  is already feasible.



** 3KDVH $ 5HSRUW� &KDSWHU ���� (;3(5,0(17$/ &21&(37

** 3KDVH $ 5HSRUW� &KDSWHU �� 7+( ** 63$&( (;3(5,0(17 35

Figure 2.11 Schematic drawing of the two capacitance sensor of the bridge of the GG read out system for detecting
relative displacements of the inner and outer test body with respect to one another. Each capacitor is formed by two
surfaces, one for each of the two grounded bodies, and one plate, to which a sinusoidal voltage is applied. The
other two capacitors of the bridge are fixed capacitors. Any differential displacement of the test masses with respect
to the plates causes a loss of balance of the bridge and therefore an output signal.

Figure. 2.12  The surfaces of the capacitors before and after: a) a common mode displacement and b) a differential
mode displacement. For a non zero (a-b) both a differential and a common mode displacement would contribute to
the (capacitance) unbalance of the bridge, hence to the output potential, as in Eq. (2.14). An EP violation signal
would produce a differential displacement. For it to be detected the contribution coming from a common mode
displacement (e.g. caused by air drag) must be smaller than the contribution of the EP violation, hence leading to
the constraint on the mechanical unbalance of the bridge (a-b)/a (see inequality  2.15).
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2.1.4 BALANCING OF THE TEST BODIES AND COMMON MODE REJECTION

The effect of non gravitational forces, such as air drag and solar radiation pressure, acting
directly on the outer surface of the spacecraft and not on the suspended masses inside, is
twofold. On one side they shake the spacecraft and produce vibration noise whose spectral
distribution covers a wide frequency range and depends on the particular spacecraft.  This is
not a matter of concern for the GG experiment thanks to the PGB mechanical suspension
which is particularly effective at the 2 Hz modulation frequency the signal (Fig.  2.6). On the
other side, non gravitational forces accelerate the satellite itself. Let us consider air drag, which
at 520 km altitude dominates over solar radiation pressure (the effect of the Earth’s albedo is
even smaller). The main component of air drag is in the along track direction of the satellite
with smaller variations at higher frequencies. The spacecraft will loose altitude and accelerate
in the along track direction, with the result that the suspended bodies inside (the PGB
laboratory as well as the test masses) will be subject to inertial translation forces. These are
transferred to the PGB via its helical suspension springs and, from the PGB, via the flat elastic
gimbals connecting the PGB to the coupling arms of the test bodies (see Fig. 2.1), to the test
bodies themselves. We have shown already that the spin axes are essentially unaffected by
the various disturbances because of the high spin energy of the bodies. The lifetime of the
satellite because of its orbit decay is several tens of years, much longer than the 7 months total
mission duration.

The first important fact to learn is that, unlike the forces which act directly on the surface of the
spacecraft, inertial forces on the suspended bodies inside do not depend in any way  on the
surface properties of these bodies. Whatever the non gravitational acceleration on the satellite,
the inertial acceleration transferred to the coupled test bodies is simply opposite to that
acquired by the spacecraft because of drag; and if the test bodies are perfectly balanced, there
is no differential displacement between the two. In such an ideal case, drag would not affect
the expected signal of an EP violation at all since this is differential. The mathematical
dynamical model equivalent to the GG coupled test bodies is shown in Fig. 2.13, from which it
is apparent that the system is in all similar to an ordinary beam balance, save for the fact that it
is a vertical rather than a horizontal balance. Although not perfectly balanced so as to be totally
unaffected by drag, the system can be balanced in order to reject common mode forces (such
as the inertial forces resulting from drag) to very high accuracy, leaving only a much smaller
differential residual disturbance to compete with the signal.  Piezoelectric actuators are well
suited to accurately balance the system, as shown in Fig. 2.14.  The required electric
connections are through the flat gimbals (as discussed  in Sec. 2.1.1) and, by using inch-
worms, all tensions can be switched off after balancing.

Once no further reduction is possible the phase and frequency of the signal must be analyzed
in order to establish whether it is due to an EP violation.  How can one make sure that an EP
violation signal would not be eliminated together with the perturbing effects? This would only
be possible for a competing effect with the same frequency and phase as the signal, and in the
case that it were also constant in time. If the effects of drag and EP violation were parallel to
each other one could, for one particular value of the drag, balance the sum of the two.
However the drag is approximately along track, i.e. approximately at 90° with the EP violation
signal. Since we know the exact direction of the latter (toward the Earth’s center), we can
perform a balancing, exactly at 90°  with respect to it, of the main component of the drag. Once
its main component has been balanced, also a possible component of the drag parallel to the
EP violation signal will be balanced out, as well as all variations of the drag and all other
common mode effects. In this way the EP violation signal will not be affected, and will be the
only remaining.
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It is apparent that the weaker the force, the more accurate can be the balance, hence
balancing the GG test bodies in space is favored by the very weak effect of drag (much
stronger than the expected signal, but much weaker than 1-g on Earth!).  The test bodies of the
GGG prototype have been  balanced to 1 part in 200,000 (see Chap. 3), better than it is
currently required for GG in space (see Sec. 2.2.1 for the requirements)

Figure 2.13 The GG system of coupled test bodies (shown in Fig. 2.1 and discussed in Sec. 2.1.1) is equivalent  to
the mathematical model shown on the right, which is in essence  a vertical balance. F represents any force acting
on the system in common mode  (i.e. the same on both bodies); being the beam of the balance vertical, it can
balance forces in the horizontal plane (i.e. the orbital plane). F represents here the main effect of drag as  the GG
satellite orbits around the Earth (orbit frequency). It is apparent that if the arm lengths and masses were exactly
equal F  would cause no relative displacement of the centers of mass of the bodies one with respect to the other.
An EP violation signal would be also in the horizontal plane,  but at about 90° from F , i.e. about normal to the plane
of the figure.



**�3KDVH�$�5HSRUW��&KDSWHU������(;3(5,0(17$/�&21&(37

**�3KDVH�$�5HSRUW��&KDSWHU����7+(�**�63$&(�(;3(5,0(17 38

Figure 2.14  An enlarged view of the system of piezoelectric actuators placed on the two balancing arms of the GG
test bodies (see Fig. 2.1 for an overall view). The + and − signs represent the intrinsic polarization of the actuators,
i.e. how each one of them must be oriented when mounted. Control voltages are applied to the actuators (when
they are applied with the opposite polarity they should not exceed a certain value, which however is relatively high,
so as not to risk to depolarize the piezoelectrics): the sum V1+V2 determines the relative axial position of the
centers of mass of the test bodies and is used for axial centering.  The voltage difference V1−V2 can be used to
change the lengths of the four halves of the arms so as to balance out the effect of transverse inertial forces (in
particular the along-track component of the air drag).
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2.1.5 SELF-CENTERING, WHIRL MOTIONS AND STABILIZATION

The GG experiment requires the test bodies, as well as the PGB laboratory, to be weakly
coupled and rapidly spinning, which means that the frequency of spin is much higher than all
frequencies of natural oscillation: ωs>>ωn. This is known as supercritical rotation. Rotors in
supercritical rotation are known since the last century to have an equilibrium position very
close to the rotation axis,  which is pivotal in reducing the otherwise destructive effects of
centrifugal forces. In simple terms, a weakly suspended fast spinning rotor tends to spin
around its center of mass, i.e. it behaves more like a free rotor rather than a constrained one.
If the center of mass of the suspended body is located, by construction and mounting, an
offset vector  εr   away from the rotation axis, equilibrium is reached on the opposite side of εr

with respect to the rotation axis, where the centrifugal force due to rotation and the restoring
elastic force of the suspension equal each other. It can be shown that this happens at a
distance from the spin axis smaller than the original unbalance εr  by a factor 2)/( sn ωω  (see

e.g. Den Hartog, Chap. 6, 1985; Genta, 1993). Thus, at equilibrium, the off-centering is:

ε
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The offset vector εr , hence also  the equilibrium position vector, are fixed with the rotor. Since
the pioneer work of Gustaf De Laval about a century ago this relationship has been widely
demonstrated in both theoretical and experimental work on high speed rotors. It shows that
space offers an important advantage, because in absence of weight the natural frequencies of
suspended bodies can be made very low. In GG the ratio ωs/ωn goes from 250 to 1000, hence
the reduction factor of the initial offset given in Eq. (2.16) goes from 10-6 to 1.6⋅10-5. Moreover, it
is purely passive, naturally deriving from physical laws. For an original unbalance ε ≅10 µm this
means that the equilibrium position is within ≅ 1 Angstrom from the spin axis, as we have
indeed verified in the numerical simulation of the GG system (see Chap. 6, Fig. 6.29). It is
important to stress that this equilibrium position, slightly displaced from the rotation axis, is
fixed in the rotating frame of the spacecraft while the signal is modulated at the frequency of
spin.  Possible imperfections on the surfaces of the bodies would also give a DC effect.  The
actual direction of the off-centering in the rotating system depends only upon the location of
the unbalance and is of no importance for the experiment.

Offset values ε significantly smaller than 1µm (even by a factor 100) are achieved with ground
rotors; however, it has been pointed out by Cornelisse (1996) that the system of test bodies
cannot be tested on the ground in exactly its flight configuration; therefore we assume that the
initial offset of the GG bodies, by both construction and mounting imperfections, does not
exceed the value ε=10 µm. It should be realized that, from the viewpoint of modern capabilities
in precision mechanics this is a very conservative assumption.

Perturbations such as air drag and solar radiation pressure acting on the external surface of
the spacecraft produce a non gravitational acceleration of its center of mass. In the reference
frame of the spacecraft the bodies will therefore be subject to inertial forces in the opposite
direction, which will move the masses to new displaced positions of equilibrium where the
perturbation is balanced by the restoring force of the spring. This is shown very clearly in Fig.
6.4 obtained from the numerical simulation (Fig. 6.4 shows also the whirl, that we introduce
below). It is worth noticing that, because of the supercritical state of rotation, the displaced
body will always spin around its own axis, which means that no centrifugal force due to the
spin will result because of this displacement. The only centrifugal force due to the spin come
from the off-centering given by Eq. (2.16) and is balanced by the restoring force of the
suspension springs.
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No matter how good is the mechanical quality of the suspensions and how accurately they are
clamped, as the system rotates they will undergo deformations and, in this process, will
dissipate energy. The only energy that can be dissipated is the spin energy of the rotor, which
means that the spin angular velocity must decrease. As a consequence, the spin angular
momentum also decreases, and since the total one must be conserved, a motion of the two
bodies one around the other (in the same direction as the rotational motion) will develop.
Which is what is observed, and is referred to in the literature on Rotordynamics as whirling
motion. Friction between rotating parts of the system (i.e. friction inside the suspension
springs) is the physical cause of the whirl motion, and it is referred to as rotating damping.
Except in the case of rotating machines with very viscous bearings, the rotor whirls at
essentially its natural frequency (with respect to a fixed frame of reference). In GG there is no
motor, there are no bearings, no fluids, no oils, no greases; only carefully clamped
suspensions of high mechanical quality (particularly for the test bodies) which undergo only
minute deformations. Hence, the GG bodies  whirl at their natural frequencies of oscillation.

As shown in Sec. 2.1.4, it is a key feature of GG that the test cylinders be very weakly coupled
in the plane perpendicular to the spin axis, so as to be sensitive to tiny differential forces in the
transverse plane (close to the orbit plane). The mathematical model typically used in
Rotordynamics literature in order to describe this system is shown in Fig. 2.15, where rw is the
radius of whirl of each body around the common center of mass which, for the purpose of the
present discussion on whirl motion, is shown to coincide with the equilibrium position ("perfect’’
self alignment); this amounts to neglecting the off-centering at equilibrium given by Eq. (2.16),
which is of about 1 � for the test bodies (as it has been confirmed by numerical simulations;
see Fig. 6.29).

Figure 2.15  Mathematical model of a rotor made of two bodies, each of mass m, coupled by weak springs. The
coupling constant is k and the natural frequency of oscillation ωn. Both bodies are spinning at the same angular
velocity ωs around their respective centers of mass O1 and O2. In turn, O1 and O2 are whirling around the center
of mass O of the whole system, at a distance rw (the whirl radius) from it, and at the natural angular velocity ωn. In
the GG case  ωn  ≅ 10-3 ωs.

Can the whirl motion be damped and the rotating  system be stabilized? For more details than
those given in the remaining of this Section see: Bramanti et al., 1996; Nobili et al., 1996;
Nobili et al., 1997b; Nobili et al., 1997c.

If there is nothing else in the system but rotating damping there is nothing to prevent the
amplitude of the whirl motion from growing, and therefore the system is unstable. In rotating
machines on the ground whirl motions are usually damped by non-rotating damping, namely
by  sufficient friction occurring between two parts of the system, both non-rotating as shown in
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Fig. 2.16 (i.e. between two parts of the non-rotating supports, for example friction between the
non-rotating part of the bearings and their fixed supports). This friction generates non-rotating
damping forces which are effective in damping transversal translational oscillations of the
rotor’s axis of rotation (such as the whirl motions), and they do so without  slowing down its
rotation. 1RQ�URWDWLQJ� IULFWLRQ should not be confused with friction in the bearings, also
shown in Fig. 2.16. This is the friction (mostly viscous) between the rotating body and the non
rotating parts, which is obviously effective in slowing down the rotor but almost completely
ineffective at damping whirling motions (and also at producing them). An important advantage
of the GG space experiment is the absence of bearings, hence of bearing friction at all.

Figure 2.16 Sketch of a ground rotating machine showing where rotating damping, non-rotating damping
and friction in the bearings are localized. The different rôles they play in the dynamics of the system are
discussed below.

In the GG space experiment where there are no non-rotating parts an equivalent non-rotating
damping must be provided by an active control system of sensors and actuators fixed with the
rotating bodies. Before any such device can be designed, it is obviously necessary to establish
the magnitude of the forces which destabilize the system and which will therefore need to be
counteracted actively. The actual implementation of the active control forces for the real case,
with realistic errors in all components of the control system, can only be faced once the
magnitude of the destabilizing forces has been firmly established. In turn, this requires to firmly
establish the amount of energy losses in the GG rotating system.

GG is made of rigid bodies coupled by weak suspensions of high mechanical quality
(particularly those of the test bodies) which moreover undergo only minute deformations, from
a few 10-3 µm in the case of the test bodies to ≅ 0.6 mm in the case of the PGB (before drag
compensation); see Sec. 2.2.1. The suspensions are carefully clamped so as to avoid parts
sliding one against the other, which is the main cause of mechanical losses. There are no
bearings, since, after spin up is completed, there is no need of a motor. There are no viscous
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materials: no fluids, no oils, no greases. Therefore the main loss factors (inverse of quality
factor Q) are those due to the very small internal dissipation of the mechanical suspensions as
they undergo minute deformations at the spin frequency. The only other cause of dissipation
are the electrostatic sensors/actuators used to damp the whirl motions, since all other parts
are rigid and have no losses. Calculation of thermal noise in the active dampers shows that
the corresponding losses are by far negligible compared to those achievable with mechanical
suspensions (assuming all parameters  as for the GG experiment and a very conservative
value of 10 for the electric quality factor); see Nobili HW�DO., 1997a; 1998a. Crandall (1997) has
calculated the back-reaction force on the plates of the capacitors from the high-frequency
measurement voltage, finding that the electrical contributions to the mechanical stiffness and
damping are negligible.

A firm estimate of the losses in the GG mechanical suspensions requires them to be
measured experimentally, by setting the springs in oscillation under realistic operating
conditions (oscillation frequency, vacuum, temperature, clamping); note  that there is no need
to perform this measurement with the system rotating (Crandall and Nobili, 1997; from S.H.
Crandall on the subject of damping in Rotordynamics see also Crandall, 1970; Nelson and
Crandall, 1992; Crandall, 1995).

In order to measure, for a given mechanical system, the  quality factor Q (defined as the ratio
of the total energy stored in the system to the amount of energy dissipated in one cycle) the
system is made to oscillate and then the  oscillation amplitude A(t) is recorded as it decays
with time.  Q can also be expressed as follows:

)2/()0()( QteAtA ω−⋅=                                                                                                          (2.17)

where ω  is the frequency of the oscillation and A(0) its amplitude at initial time. Hence:
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which yields the value of Q  from measurements of A1, A2 at times t1 t2. Consider a helical
spring with its (unavoidable) clamping and the attached mass necessary to obtain the
oscillation frequency of interest. Horizontal  oscillations avoid pendulum-like motion due to
local gravity which would yield a higher Q  because gravity contributes to the total energy but
not to the dissipation. In vacuum (≅ 10-5 torr) at room temperature and for oscillation
frequencies from 2 to 10 Hz, the measured Q values of the prototype  springs manufactured for
the suspension of the GG test masses were between 16,000 and 19,000.  Oscillations were
excited with a small electromagnet and their amplitudes were measured optically. Fig. 2.17
shows the Q  measurement apparatus used and the way the helical spring of the GG test
bodies (see Fig. 2.2) was mounted. Although further improvement is possible,  these values
are quite good because of the complex shape of the suspensions. The Q measurement
procedure (by recording the decaying oscillation amplitude) is a standard one, which obviously
does not require the system to be taken into space even though, in this case,  it is designed for
use in space.
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Figure 2.17  One helical spring to be used for suspending the GG test bodies (see Figs. 2.1 and 2.2) clamped and
ready for measuring its quality factor at a frequency of a few Hz. A small mass is attached to the free end of the
spring in order to obtain the desired oscillation frequency. Note that the measurement is done for horizontal
oscillations for the result not to be affected by local gravity

Similarly, the quality factor of one helical spring to be used for suspending the PGB laboratory
has been measure, yielding a value of 90. This low value is due to the fact that this spring has
3 Cu wires for electrical connections insulated and glued with epoxy, as described in Sec. 2.1.1
(Fig. 2.5). As discussed there and shown in Fig. 2.6, this is not a problem from the point of
view of vibration isolation (although a higher Q can be easily obtained using separate wires
insulated at the clamping). It is also not a problem from the point of view of whirl motion, as
shown below and verified in detail with numerical simulations (Chap. 6).

Figure 2.18  One helical spring manufactured for suspending the PGB laboratory clamped and in preparation for
the measurement of its quality factor in horizontal oscillations at frequencies of a few Hz (the small black sheet at
the free end of the spring is for the optical measuring system).

Energy is dissipated because of different types of losses (structural or viscous, in the spring
material as it undergoes deformations, because of imperfect clamping or because of the
resistance of residual air) and  the oscillation amplitude decay is due to all of them.
Consequently, the measured Q is the Q of the whole system and gives a quantitative
measurement of all losses in it: whatever their physical nature.

Since energy losses in the mechanical suspensions are responsible for the onset of the whirl
motion (in order to conserve the total angular momentum of the system) (see Fig. 2.15), the
whirl motion (at the natural frequency ωn  w.r.t. the fixed frame) is nothing but an oscillatory
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motion of growing amplitude, i.e. with a negative quality factor equal and opposite to the
measured quality factor Q of the suspensions. Hence, the radius of whirl will grow, from a
given initial value rw(0), according to the equation:

Qt
ww

nertr 2/)0()( ω⋅=                                                                                                         (2.19)

That is, the larger the Q, the slower the growth of the whirl instability. For large Q, as in this
case, we can write:
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where  (∆rw)Tn is the increase in the amplitude of whirl in one natural period of oscillation Tn. For
the GG test bodies, taking the measured value Q ≅ 19,000 and having Tn ≅ 113 sec (see Sec.
6.1.10), the amplitude of the whirl motion will need 8 days to double: such a very slow growth of
the whirl instability is obviously very important for making the control forces required to damp it
very small. For the PGB, with a Q value of 90 and a natural period of oscillation of about 300
sec the amplitude of the whirl motion needs about 2.4 hours to double; clearly, the whirl motion
of the PGB grows much faster than the whirl motion of the test bodies due to the much poorer
mechanical quality of its suspensions. However,  it is still very slow compared to the spin and
there is no problem in controlling it, as it is found in Chap. 6. The disturbing force resulting
from inaccurate application of the PGB control force acts as a common mode disturbance on
the test bodies (platform noise) and  it is found to be negligible (see Sec. 2.2.6).

The increase in amplitude (∆rw)Tn (during one natural period) is due to an increase of the
along-track velocity of the bodies, which in turn is caused by an average destabilizing
acceleration ad, also along-track,  such that:
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which means, an average destabilizing force (along-track) of magnitude
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Since w
2
nc rmF ⋅ω⋅=  is the centrifugal force, equal and opposite to the elastic force of the

spring wspring rkF ⋅−= , the destabilizing force which generates the unstable whirl motion

depicted in Fig. 2.15 turns out to be
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i.e., only a fraction of the elastic spring force: the higher is the Q of the suspensions (at the
spin frequency) the smaller is the destabilizing force which needs to be damped in order to
stabilize the system. This is well known in Rotordynamics.

The following question becomes relevant at this point: how much energy (per unit time) is
gained by the (destabilizing) whirling motion as fraction of the energy lost by the spinning
rotor? Let us consider the rotor in the two body model of Fig. 2.15. The spin energy of the rotor
is:
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I is the total moment of inertia of the two bodies with respect to the spin axis (perpendicular to
the plane of the Figure). The energy (kinetic plus elastic) of the whirl motion, at the constant
natural frequency ωn with respect to the fixed frame and with radius of whirl rw is:
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The time derivatives of Ew and Erotor are:
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From the conservation of angular momentum it is possible to relate sω&  to wr& . The total spin

angular momentum of the rotor is:

srotor IL ω⋅= (2.27)

The angular momentum of the whirl motion is:

n
2
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Since the total angular momentum has to be conserved, it must be:
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from which, since ωn is constant,  it follows:
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Using Eq. (2.30) for sω& , we get from Eq. (2.26):
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which is a very important result. In the  GG case, where  the frequency of the whirl motion is
very small compared to the spin frequency (ωn ≅10-3 ωs), Eq. (2.31) tells us that the energy
gained by the whirling motion is one thousand times smaller than the energy lost by the rotor.
All the rest, that is 1-(ωn/ωs) ≅ 99.9%!! is dissipated as heat inside the springs; which means
that it is not transferred to the (destabilizing) whirl motion. In simple terms one can say that in
"supercritical’’ rotation the energy balance is essentially between the rotor and the springs; the
rotor looses spin energy and the springs dissipate almost all of it as heat: the faster is the spin,
the larger is the energy dissipated inside the springs, as it can be seen from Eq. (2.26). On the
other hand, the springs do not enter at all in the balance of the angular momentum; the onset
of the whirl motion is inevitable for the total angular momentum to be conserved, but the
energy it gains from the rotor is only the small fraction given by Eq. (2.31). So, the idea one
might have that the faster the spin (as compared to the natural frequency) the higher the
energy gained also by the whirl motion (by which argument the GG system  would be highly
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unstable), is proved to be incorrect. As a consequence, the GG system is not more unstable
than ground based rotating machines because of the smaller ratio ωn/ωs (by one order of
magnitude or more), because the fraction of destabilizing energy is also correspondingly
smaller, as shown by Eq. (2.31).

ACTIVE STABILIZATION AND CONTROL WITH  ROTATING DAMPERS. All the GG bodies spin at the
same rate.  Phase lags between the PGB and the outer spacecraft induced by eclipses are
compensated (see Sec. 2.1.2); initial phase lags between the test cylinders and the PGB due
to unlocking are damped out by the coupling springs (see Sec. 2.1.6). There are no non-
rotating parts, and therefore there can be no non-rotating friction to damp the whirl motions.
They must be damped actively, with dampers necessarily fixed to the rotating bodies. We have
shown (Eq. 2.26) that the destabilizing forces are only a small fraction of the passive spring
forces, which in turn are very small because the suspensions are designed to be extremely
weak (k ≅ 10-2 N/m=10 dyn/cm), as it is in fact possible in space in spite of the fact that the test
bodies have masses of 10 kg each. Small capacitance sensors/actuators (see Fig. 2.19; also
shown in the overall view of Fig. 2.8), with surfaces of about 2 cm2, turn out to be sufficient to
provide the required active forces.

Figure 2.19  Four capacitance plates, at 90Û� IURP�RQH�DQRWKHU�� URWDWH�ZLWK� WKH� V\VWHP�DW� DQJXODU� IUHTXHQF\�ωs.
They provide an electrostatic force F in order to prevent the growth of the whirl motion of the bodies (at a frequency
ωw equal to the natural one ωn). The reaction of the active force on the plate has a small tangential component fa
which spins up the rotor by transferring to it the angular momentum of whirl, which would otherwise grow. The
figure is not to scale; the distance 2.rw between the centers of mass O1 and O2 of the two bodies is in reality many
orders of magnitude smaller than the radius of this device.

Let the whirling motion be damped using electrostatic sensors/actuators fixed to the rotating
bodies. The capacitors are required to provide a force at the whirling frequency ωn while
spinning at angular frequency ωs; therefore, they must actuate at frequency ωs-ωn. By providing
forces internal to the system they cannot possibly change its total angular momentum: they
can only transfer the angular momentum of whirl to the rotation angular momentum of the rotor
by spinning it up. This is what happens if they are made to provide a stabilizing force of the
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same intensity as the destabilizing one given by Eq. (2.23) (in fact a slightly larger one). This
force must always act along the vector of relative velocity of the centers of mass of the bodies
in their whirling motion, as seen in the fixed frame of reference. Since the centers of mass of
the bodies are displaced from the center of mass of the system by an amount rw (see Fig.
2.19), the electrostatic plates will necessarily apply also a small force fa tangent to he surface
of the rotor amounting to a fraction rw/R (R ≅ 10 cm is the linear dimension of the rotor) of the
active force F, of intensity F ≅ (2/Q).|Fspring| (for both bodies), which will damp the relative
velocity of whirl (see Fig. 2.19). Of the corresponding reaction components on the electrostatic
actuators only the reaction to the small tangential component fa ≅ (1/Q).|Fspring|

.(2rw/R) will
produce a non zero angular momentum by spinning up the rotor at the expense of exactly the
angular momentum of whirl:

w
2
w
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which will therefore increase the spin angular momentum of the rotor Lrotor = I.ωs in such a way
that the total angular momentum of the system is conserved. That is:
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thus producing a spin up of the rotor at the rate sω&  given by Eq. (2.32) By integrating sω&  for

the entire duration of the mission Tmission= tf- ti , from intial to final epoch, the ratio ωf/ωi of final-
to-initial spin angular velocity of the rotor is obtained:
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In the case of the GG test bodies, taking the measured value of 19,000 for the quality factor Q
at the spin frequency of 2Hz, rw ≅ 10-2 µm  (although whirl radii are damped below this value)
and 62

spin
2
n 105.2/ −⋅≅ωω  we get, for a 7 month duration of the mission:
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ω
(2.34)

The corresponding angular advance is negligible. The amount of spin energy gained by the
rotor at the end of the mission is vanishingly small. The corresponding (negative) quality factor
for the spin up of the rotor (in absence of any external disturbances to its  spin rate) is
obviously huge (in modulus). The amount of spin angular momentum gained by the rotor in 6
months is, similarly to the spin energy, vanishingly small.

The contribution to the energy of the system by the electrostatic dampers is obtained by
computing the work done by both components (Fa and fa, shown in Fig. 2.17) of the active
force they provide. While only fa will transfer angular momentum from the whirl motion to the
rotor, both components of the active force will provide energy. It can be easily demonstrated
that fa supplies the rotor with the energy necessary to increase its spin rate, while the energy
supplied by Fa balances exactly the energy dissipated by the springs as heat, which would
otherwise slow down the rotor.

The capacitors must also act as sensors in order to recover, from relative position
measurements, the linear relative velocity of the whirling motion which needs to be damped to



**�3KDVH�$�5HSRUW��&KDSWHU������(;3(5,0(17$/�&21&(37

**�3KDVH�$�5HSRUW��&KDSWHU����7+(�**�63$&(�(;3(5,0(17 48

stabilize the system; or, for example (see Fig. 2.19), two of the capacitors can be used as
sensors and the other two as actuators. In GG the capacitors spin (together with the bodies) at
a frequency about 103 times larger than the frequency of whirl. Is it possible, by means of
rotating sensors, to recover the slow relative velocity of whirl as with non-rotating sensors?
This question can be answered in a totally general way. The answer would be "No", if the
rotating observer had no other means of "looking outside" to measure independently (i.e. by
means of some other instrument) its own phase and rotation rate; the answer is "Yes", if the
rotating observer can do that, which is the case in GG using Earth Elevation Sensors (see
Sec. 5.5). An independent knowledge of the phase  and the rotation rate of the sensors makes
it possible to subtract from the measurements of the rotating sensors their own velocity of
rotation, hence to recover the (much slower) relative velocity which would be obtained with
fixed sensors. The problem amounts to that of computing numerically a time derivative,
because the capacitors measure relative displacements while the electrostatic active dampers
require to know the relative velocity of the bodies in the fixed frame. If the velocity were
computed by taking successive measurements of the sensors and computing their difference,
it would be dominated by the rotation velocity, i.e. it would be larger than the velocity to be
damped by a factor about 103 (i.e. the ratio spin-to-natural velocity). If then such a velocity
output were used to drive the electrostatic actuators which must damp it, the required force
would be (correspondingly) about 103 times larger than necessary. Clearly this procedure
would not be appropriate for a system like GG where the spin-to-natural velocity ratio is very
large.

Instead, the problem of reducing the magnitude of the active control forces close to that of the
destabilizing ones (given by Eq. 2.23), is solved as follows. A reference signal is built from a 2
Hz oscillator (clock) synchronized by the Earth Elevation Sensors output averaged over many
spin periods of the spacecraft. Since the spin period is 0.5 sec, it can certainly be considered
constant over time intervals of the order of many times the spin period itself. Note that the
reference signal is continuously synchronized to the output of the Earth Elevation Sensors so
that any error in their measurement of the spin rate will not build up. The reference signal is
needed in order to perform the transformation from the rotating to the fixed frame (and back)
as accurately as possible. A relative displacement of two bodies due to the growing unstable
mode is measured by the rotating capacitance sensors. Instead of taking successive
measurements of the sensors and computing their difference, the difference is computed
between measurements which are 1 spin period apart, using the reference signal. The sensor
signal is sampled a certain number of times per spin period (e.g. 10 to 20), at regular intervals,
and for each sampled point the difference is computed with respect to the sampled point 1 spin
period later. In this way the rotation velocity of the sensors is subtracted from their
measurements; a best fit to the sampled data points (each one is a relative position difference
after 1 spin period) gives the relative velocity vector v

r

 between the two bodies in the fixed
frame. To this velocity corresponds a whirling motion of amplitude rw ≅ v/ωn, and then, taking
into account Eq. (2.22), we can obtain the required stabilizing force, anti-parallel to the velocity
v
r

,

v
r

r

⋅⋅⋅−= nstab m
Q

F ω1
(2.35)

This force will prevent the whirl motion from growing, i.e. it will maintain the system in a steady
condition. To actually damp a whirling motion one has to apply a slightly larger force: for
instance, a force twice as large will damp the whirling motion at the same rate at which it
would grow in the absence of stabF

r

.

Were the capacitance sensors perfect, this would be enough to stabilize the GG bodies, as it
can be also checked with numerical simulations. However, the sensitivity of the sensors in
realistic flight conditions has to be taken into account because, being the growth rate of the
whirl instabilities very slow, the relative displacement during one spin period is so small to be
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dominated by the noise of the sensors. As a result, the recovered velocity vector is also very
noisy, and much larger than its actual  value in the fixed frame. If the actuators were
programmed to damp the velocity vector recovered in this way, the resulting active force would
be driven by the noise, i.e. it would be much larger than the force which destabilizes the
system. Such a controlled system would be dominated by the active control forces rather than
by the very low stiffness passive mechanical suspensions. This is in contrast with the basic
physical design of the GG experimental test of the universality of free fall whereby the test
bodies must be very weakly coupled so as to be sensitive to tiny differential forces.

A better active control can be devised in which active damping is not applied until the (slow)
relative velocity of the whirl motion of the bodies  has been recovered from the noise after
appropriate averaging. To do this, the relative velocity vector is averaged over a few spin
periods (typically a fraction 1/100 of one period of whirl), and then fitted to the whirl period (the
natural period of oscillation) in order to reconstruct its rotation in the fixed frame. Since the
growth rate of the instability is slow, this averaging procedure can be carried on over a large
number of whirl periods (particularly for the test bodies), thus making the determination of the
velocity to be damped more and more accurate. Active control starts only once the small
relative velocity of the bodies w.r.t. the fixed frame has been reconstructed and separated from
the noise.

So far we have outlined the main principles on which active control of the whirl motions should
be based. A dynamical control which allows stabilization of the whirl motions (as well as drag
compensation according to the requirements) has been designed and implemented in a finite
element numerical simulation of the full GG system. The results are reported in Chap. 6 and
are fully satisfactory. They demonstrate beyond question that the analysis of GG by Jafry and
Weinberger (1998), whereby GG would be limited by the active control forces to an accuracy
of 1 part in 1014 in EP testing (3 orders of magnitude worse than the GG target), is incorrect
because their dynamical control is badly designed (see also Nobili et al.,1998b).
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2.1.6 LOCKING/UNLOCKING

All space experiments which involve freely falling or softly suspended bodies require them to
be locked during launch, and properly unlocked once in orbit to start the experiment. First of all
we find it important to avoid any danger of the rotors hitting each other. This is done simply by
having each suspended mass and the PGB laboratory constrained to only slight movements in
all directions by means of mechanical stops  Fig. 4.3 shows, for instance, the mechanical stops
between  the outer test cylinder and the PGB tube. Static lockers capable to survive the launch
phase have been designed both for the PGB (Sec. 5.2) and the test bodies (Sec. 4.1). As for
the forces acting on the springs themselves during launch, their mass is very small and
estimates show that there is no danger for the elasticity regime to be exceeded during launch;
some time for relaxation should probably be allowed at the beginning of the mission. Once the
spacecraft has been injected in its orbit and given the required attitude and spin rate static
lockers can be released and never used again. A symmetrical locking consisting of 4 inch-
worms placed at 90° from one another as shown in Fig. 2.20 is provided, centering the
cylindrical bodies to within their original construction and mounting error ε ≅10 µm (see Sec.
2.1.5). Each inch-worm is equipped with a force sensor sensitive to 10 µN (easy, e.g. with a
spring force sensor) giving a measure of the centrifugal force in that direction, and therefore
providing the driving signal to the inch-worms for reducing the distance offset from the rotation
axis. Once the off centering has been reduced to ≅ 10-9 m, which means a centrifugal force of
10 µN for the PGB, active centering with inch-worms can be stopped; the electrostatic dampers
will then stabilize whirl motions around the equilibrium positions (see Sec. 2.1.5 and Chap. 6).
While the static lockers are meant not to be reused, the inch-worms can be reused to re-center
the system if anything happens during the mission. Together with the mechanical stops they
make the system safe from unexpected occurrences.

The inch-worm unlocking should be done without transferring spin angular momentum to the
bodies, which would induce undesired differential rotations. Ideally, the rotational torque
provided by inch-worms placed at 90° from one another and pointing exactly towards the
central axis, is exactly zero.  This is why this configuration of the inch-worms has been chosen.
The time required to provide the required force is very short (order of seconds). In practice
however, there will be both angular and linear offsets from the ideal inch-worm configuration
resulting in a non zero rotational, spurious torque whose effect on the springs which couple the
bodies must be carefully evaluated.  Most of the spurious torque is induced at the beginning of
the inch-worm unlocking, when the off-centering of the body is dictated by the offset ε of the
test bodies due to construction and mounting imperfections. Assuming, for the angular and
linear offsets of the inch-worms 0.1 rad (6°) and 1 mm (both very conservative with modern
precision mechanics), and a continuos control time of 50 sec, the resulting spurious phase lag
is 0.01 rad. Such a small phase lag, obtained under conservative assumptions, is reduced to
zero by the torsion constant of the coupling springs over timescales of the order of 2 days for
the PGB and 2 weeks for the test masses (Comandi,1998).

The rôle of the coupling springs in damping out small phase lags between the PGB and the
GG test bodies inside it, is very important and should not be overlooked. This is unlike the
phase lags between the outer spacecraft and the PGB laboratory which are induced by
eclipses every orbit; as discussed in Sec. 2.1.2, these phase lags are reduced almost entirely
by a passive mass compensation system, and the small remainder by FEEP control.
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Figure 2.20   Top view (across the spin/symmetry axis) of one set of 4 inch-worm actuators for fine unlocking of the
suspended  GG bodies; this figure refers to unlocking the PGB from the outer spacecraft. The inner tube less than
10 cm in radius (belonging to the PGB) encloses one of the PGB helical suspension spring.  As viewed in Fig. 2.8,
this system is located at the top (or bottom)  of the PGB suspensions. Since Fig. 2.8 is a section through the
spin/symmetry axis, the capacitance active dampers and the inch-worms cannot be shown together (each damper
is  45° from the two nearest inch-worms); Fig. 2.8 shows only the capacitance dampers. Each suspended cylinder
needs 2 sets like the one shown here placed at its two axial ends.
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2.1.7 CALIBRATION PROCEDURE

Once the GG rotors have been properly unlocked, as outlined in the previous Section the small
capacitance sensors/actuators shown in Figs. 2.1 and 2.8 can be put in operation. It is the task
of the fine unlocking inch-worm system described in Sec. 2.1.6 to bring all relative distances of
the GG bodies (the PGB with respect to the spacecraft and the test bodies with respect to the
PGB) within the control capability of the small capacitors (i.e. ¨ 10-2 µm; see Chap. 6). The
dynamical control of whirl motions (as simulated in Chap. 6) can therefore begin. After whirl
control is in operation and working properly, drag-free control can also begin, driven by the
PGB small capacitors which sense the relative displacements of the PGB with respect to the
spacecraft; according to the numerical simulations reported in Chap. 6, full dynamical control
(for both drag compensation and whirl damping) works properly. Note that, for the control to
work properly the value of the spin angular velocity must be known to 1 part in 104 (rms) (see
Chap. 6 and Sec. 5.5); however, the angular velocity is not required to have a specific value,
as long as it is close to the nominal value for which the satellite has been designed.

At this point data taking can begin from the main read-out capacitance sensors shown in Fig.
2.1 through a synchronous demodulation of the 2-phase 2 Hz signal, since we know that the
signal of interest is modulated at 2 Hz. This is in all similar to what we do already with the GGG
prototype in the laboratory (see Chap. 3). The circuits currently mounted and used in GGG for
the 2-phase synchronous demodulation of the signal at the spinning frequency are shown in
Fig. 3.11.

Figure 2.21 Qualitative representation, in the orbital plane, of the differential displacements obtained from the
synchronous demodulation of the 2-phase 2 Hz signal. The X axis is fixed in the Earth-to-satellite direction; in this
non spinning frame the OP  vector represents the expected signal, namely a differential displacement, directed
along the X axis and constant in amplitude, of the two masses due to a violation of the Equivalence Principle
violation.  The perturbation PD due to an unbalanced atmospheric drag will be found in the area between the two
dotted lines crossing in P: The angle between them is about 0.8 rad, due to the fact that the drag has a variable
component in the radial direction because of solar radiation pressure (of amplitude about 0.4 times the atmospheric
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drag and in the Sun-satellite direction). Smaller contributions to the PD vector come from the Earth albedo, the
Earth infrared radiation and, by a smaller amount, from a possible small eccentricity of the orbit.  By finely adjusting
the lengths of the suspension arms (as discussed in Sec. 2.1.4) the point D is displaced up or down inside this area,
and brought close to P.  In doing so, also the radial component of the drag is automatically balanced, as pointed out
in Sec. 2.1.4.  The low frequency variations of the drag (not shown) will oscillate inside the same area. The vector
DQ  shows here the whirl instability before it is damped by the whirl control whose period in this (non spinning)
frame is the natural frequency of oscillation. The circle around point Q represents the error in the measurement due
to thermal noise of the mechanical oscillations built up during the integration time.

Large relative displacements of the test bodies will be detected at first. This means that either
the capacitance bridge is not balanced or the test masses are not balanced (i.e. disturbances
in common modes are not sufficiently rejected), or the axial misalignment between the centers
of mass is too large (see the discussion on tidal disturbances, Sec. 2.2.2), or all of them
together. The calibration phase consists in applying changes with the piezo actuators (to the
capacitance plates, the arms length of the test bodies and the axial positions of their centers of
mass) one by one, detecting the corresponding effect and from it deciding about the next
change. Fig. 2.21 describes graphically how the signal is demodulated and the balancing is
carried out.

With the current requirement on thermal stability and on mechanical balancing of the
capacitance bridge the system may need re-balancing after 2 weeks (the mechanical balance of
the bridge) and 20 days (balance of the test masses for common mode rejection). Axial
centering of the centers of mass of the test bodies needs to be done only at the beginning (see
Sec. 2.2.2).
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2.2 PERTURBATION ANALYSIS, REQUIREMENTS AND ERROR BUDGET

2.2.1 REQUIREMENTS ON DRAG COMPENSATION AND BALANCING

The force due to atmospheric drag on low Earth spacecraft in near circular orbit depends on
the solar cycle (it is maximum when solar activity is maximum) and oscillates every orbit
between a minimum and a maximum because the iso-density surfaces of the atmosphere  are
not spherically symmetric around the Earth (there is an atmospheric bulge).  For a GG mission
starting at the beginning of 2002 (close to solar maximum) in its nominal near circular, near
equatorial orbit at 520 km altitude and the spin axis close to the orbit normal, the maximum
value at each orbit of the atmospheric drag force on the GG spacecraft, as evaluated
according to the ESABASE software model (at 2σ level) amounts to 65.18 µN. The
corresponding (maximum�  acceleration, which is transferred to the suspended bodies inside
the spacecraft as shown in Sec. 2.1.4, amounts to

27
drag sec/m10607.2a −⋅≅                                                                                                (2.36)

The drag force is the largest force that the spacecraft is subject to. Forces due to solar
radiation, Earth albedo (the fraction of sunlight re-emitted by the Earth and hitting the
spacecraft) and Earth infrared radiation, are all smaller (by at least a factor of 2). The value
given above for the (maximum) air drag acceleration on GG close to solar maximum is a very
small fraction (≅ 2.7⋅10-8)  of the acceleration of gravity on the surface of the Earth, but it is also
much larger  (by a factor ≅ 2.5⋅109) than the expected acceleration aEP ≅ 8.38⋅10-17 m/sec2 caused
by a violation of the Equivalence Principle at the level of 1 part in 1017 (as from Eq. (1.2)). This
explains in simple terms why it must be easy to weakly couple and balance the GG test bodies
in space; however, it also makes it apparent that the effect of drag is huge for the required
sensitivity of the EP experiment and must therefore be dealt with very carefully, the only
favorable features being (i) that the resulting effect of drag on the test bodies in inherently
common mode (while the expected EP signal is differential); (ii) that its largest component is at
about 90°  from the signal (see Sec. 2.1.4);

Our strategy for dealing with drag is twofold: to partially compensate the effect of air drag  (by
drag free control, with FEEP thrusters) and partially reject it (by balancing the coupled
suspension of the GG test bodies).

For drag compensation the requirements are:

150

1
,

50000

1
zxy FEEPFEEP =χ=χ                                                                (2.37)

in the x,y transverse plane and along the z spin/symmetry axis of the spacecraft respectively.
Mini FEEP thrusters are capable to provide the required maximum thrust of  about 65.18 µN
with this resolution. FEEP thrusters and their control electronics for GG are presented in Sec.
4.2; the proposed thruster configuration is given in Sec. 5.5 and the drag-free controller  is
presented in Sec. 6.1.15 with results from numerical simulations. Compensation is required at
the orbital frequency (the frequency of the signal vector before modulation), and since the
thrusters spin with the spacecraft, they must act at their spin frequency (relative to the center
of the Earth). A notch filter is therefore used (see Sec. 6.1.15) which appears to work very well;
it shows no difficulty in controlling non gravitational effects also at higher frequencies (i.e. twice
the orbital frequency or the natural differential frequency of the test bodies). It is apparent that
the control compensates for any non gravitational forces acting on the surface of the
spacecraft at the frequencies of the notch filter. Note that, because of firing at the spin
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frequency (or close to it) and of being fixed on the spacecraft outer surface, thruster firing will
induce undesired vibration noise (at the modulation frequency of the signal); however, such
noise is very effectively attenuated by the mechanical suspensions of the PGB, as shown by
the transfer function in Fig. 2.6.

The requirement on drag compensation along the z axis (by a factor 1/150) is dictated by the
necessity of reducing non gravitational effects along the spin/symmetry axis, which would
displace the centers of mass of the bodies, hence giving rise to tidal perturbations from the
Earth; these effects are presented in the next Section where the above requirement is also
derived.

As for balancing the test bodies (see Sec. 2.1.4) in order to reject common mode forces and
leave only a much smaller residual differential effect competing with the signal, the
requirement is:

100000

1
CMR =χ                                                                                                                   (2.38)

With the GGG payload prototype we have achieved so far a balancing level better than this
requirement by a factor of 2 (see Chap. 3). Given that the largest force to be balanced in space
is ≅ 2.7⋅10-8 of the local gravity acceleration to be balanced on Earth, this requirement can be
regarded as well doable.  Indeed, a more stringent one can be posed, either to improve the
sensitivity or in the case that it would become necessary to release the requirement (2.37) on
drag compensation. Although at some point the experiment will become limited by thermal
noise (see Sec. 2.2.7), it is very important to have good margins on the balancing requirement
while using FEEP technology, which is innovative and is subject to further testing. Even more
important is the fact of being able to test the balancing on the ground instead of relying on
calculations only.

There will be air drag disturbances at the natural frequencies of the test bodies (particularly the
one for differential oscillations ωdm) due to air density variations (known air granularities) over
distance scales of about a thousand km. The corresponding density is smaller than average
atmospheric density, typically by at least a factor of 10. For these disturbances to resonate with
the natural frequencies of the system, they must act at a frequency whose distance from the
resonant frequency is within the width of the gaussian, namely ωdm/Q . With Q ≅ 20000 for the
test bodies of the GG experiment (Q measurements reported in Sec. 2.1.5) there is no way
that air granularities over a thousand km can act on the spacecraft so precisely close to the
natural differential frequency of the test bodies.

The amplitude of the displacements caused on the GG suspended bodies by the air drag
(maximum) acceleration (2.36) can be easily computed once the natural frequencies of
oscillation are known. With the current GG set-up the values of the relevant natural
frequencies −and periods− (checked with the numerical simulations reported in Sec. 6.1.10)
are:
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for  −respectively− the PGB, the test bodies in common mode and the test bodies in differential
mode. The PGB is displaced because of drag (relative to the spacecraft) by:
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This is the amplitude of the largest displacement that the PGB will ever be subject to; it is
therefore apparent that, in spite of weighing several tens of kg (with the test bodies, capacitors
etc… inside), the PGB can very well be suspended by means of very weak springs like the one
shown in Fig. 2.5.

Once at the level of the test bodies, air drag effect has been reduced by the drag free control,
hence, the amplitude of the largest displacement of the test bodies (in common mode) is:

P107.1
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x 3

2
cm

FEEPdrag
cm

xy −⋅≅
ω

χ⋅
≅∆                                                                                (2.40)

involving the helical springs and flat gimbals shown in Figs. 2.2. and 2.3. This value allows us
to quantify the requirement to be fulfilled in the mechanical balancing of the read-out
capacitance bridge. According to inequality (2.15) the capacitance plates of the read out  (see
Fig. 2.11) must be positioned halfway between the outer surface of the inner test cylinder and
the inner surface of the outer one to within:

a-b ¨ 1.86  µm                                                                                                                        (2.41)

(if the half-width of the gap is 5 mm), i.e. the requirement for balancing of the bridge is:

4
bridge 107.3 −⋅=χ                                                                                                                (2.42)

With inch-worms actuators adjusting distances with the resolution of about  1µm is no problem
at all.

Having partially compensated and partially rejected the drag, the residual differential
displacement it causes on the centers of mass of the test bodies one with respect to the other
is:

Angstrom1094.3
a

x 3
2
dm

CMRFEEPdrag
dm �

−⋅≅
ω

χ⋅χ⋅
≅∆                                                         (2.43)

This competes with the signal given by Eq. (2.2). However, it is at about 90° from the signal
(the largest drag component is along track while the signal is radial, as shown in Fig. 1.1), and
we have verified in the numerical simulation that this very important information LV�not lost by
the controller during drag compensation (see Sec. 6.15). Thus, after demodulation of the signal
the EP vector and the drag perturbation vector will be as shown in Fig. 2.21, which allows us to
distinguish the residual drag even if it is a factor of 2 larger than the signal. A gain of a factor 2
in distinguishing signals well separated in phase is commonly accepted by experimentalists,
and this is taken into account in the GG error budget given in Tables 2.1 and 2.2.



**�3KDVH�$�5HSRUW��&KDSWHU������3(5785%$7,21�$1$/<6,6��5(48,5(0(176�$1'�(5525�%8'*(7

**�3KDVH�$�5HSRUW��&KDSWHU����7+(�**�63$&(�(;3(5,0(17 57

2.2.2 EARTH TIDAL PERTURBATIONS

The GG mission goal is to detect, or to place a stricter upper limit on, a very small differential
displacement between test bodies of different composition which cannot be accounted for by
FODVVLFDO, known laws of physics. However, tides are a well known FODVVLFDO  phenomenon
producing differential displacements between bodies orbiting around the Earth whose centers
of mass do not perfectly coincide, because the gravitational field of the Earth is not uniform.

Let us first consider tides in the transverse x,y plane. We know that once rotating the GG test
bodies will self-center  to within about 1 Angstrom (see Sec. 2.1.5). More importantly, it has
been stressed that the relative position vector ocx

r∆  given by Eq. (2.16) −anti parallel to the

original unbalance vector ε
r− is fixed in the system, spinning at frequency ωs with respect to the

center of the Earth. As a consequence, the frequency of the tidal differential signal detected by
the spinning sensors is 2ωs , just as it happens to an observer on  the surface of the Earth
because of luni-solar tides (the main effect of lunar tides on Earth is at half the sinodic day of
the Moon, i.e. 12 h and 25 min). The effect is maximum when the unbalance vector ε

r

 points to
the center of Earth  or away from it (which happens twice  per spin period of the spacecraft). If
dissipation, hence whirl, is taken into account and controlled, the relative position vector ocx

r∆
will slowly move at the whirl frequency always remaining close to 1 Angstrom in length, as
shown in Fig. 6.29; the resulting tidal displacement of the test bodies with respect to one
another will still be close to the (faster) 2ωs frequency, hence not competing with the signal
(which is modulated at the spin frequency ωs ) even though it turns out to be about 5 times
larger.

The center of mass of the GG test bodies will not be exactly centered on one another along the
spin/symmetry z axis either. And if  the centers of mass of the test bodies are not at the same
height along the spin axis (z axis) there is a tidal relative acceleration in the transverse plane
(plane of signal) due to the Earth unless the spin axis is exactly perpendicular to the orbit
plane. Since the spin axis (along which a displacement gives rise to a tidal acceleration
component in the transverse plane) is fixed in the inertial space, the tidal effect is detected by
the sensors at their spinning angular frequency ωs; the amplitude of the signal goes from
maximum, to zero, to a negative maximum, in half orbit period of the satellite around the Earth.
With its spin axis at a non-zero angle hn  from the orbit normal, the GG spacecraft  has
"seasons" like the Earth around the Sun. This tidal effect is maximum at the "solstices" and
zero at the "equinoxes" of the GG satellite; the "summer" solstice and the "winter" solstice
differ in that the tidal signal changes sign between the two (i.e., the signal changes sign at
twice the orbital frequency) (see Fig. 2.22).  However, with the sensors spinning much faster,
the two effects differ from one another by a fraction of about 1/10000 and it is therefore better
that this particular tidal effect be below the expected EP signal.

The offset hn of the GG spin axis from the orbit normal is expected not to exceed 1° (see Sec.
5.1).  The corresponding Earth tidal acceleration in the x,y at an orbiting altitude h  is given by:

n3ET 2sinz
)hR(

GM

2

3
a ϑ⋅∆⋅

+
⋅≅

⊕

⊕                                                                                          (2.44)

This tidal signal is detected by the capacitance read-out and it is used in the initial calibration
phase to drive the piezo actuators (as described in  Fig. 2.14) in order to reduce the axial
miscentering ∆z: once the tidal acceleration signal has become too small to be detected it will
also be too small to perturb the EP experiment. The idea of using the tidal signal to drive an
active control  of the centers of mass of the test bodies was initially put forward by P.  Worden
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for STEP. However, there is a component of solar radiation pressure along the z axis which will
cause a corresponding inertial acceleration of the test bodies along z (similarly to what
happens in the transverse plane). This effect is in principle common mode, but we make the
conservative assumption that 1/100 of it will remain as a residual differential effect . It means
that solar radiation will keep displacing the center of mass of the test bodies along z. The effect
is close to zero near the equinoxes of the Earth’s orbit around the Sun and close to its
maximum near the solstices of the Earth. If we now require that FEEP drag free control be
operational also along the z axis (by only a factor 1/150), the amplitude of the largest ∆z
displacement that  solar radiation can give rise to, turns out to be of about 2 Angstrom. With this
value the tidal perturbing acceleration (2.44) is well below the signal and  no  active  vertical
centering of the centers of mass of the test bodies is necessary to be driven by the tidal signal.
In fact, a vertical miscentring up to 5 Angstrom would still be acceptable to avoid recentering.

Figure 2.22   Simple scheme of Earth tidal forces on two test bodies which rotate around the same axis but whose
centers of mass are displaced along it. The figure shows how the component of the tidal force towards the Earth
changes phase by 180° every half orbital period of the satellite around the Earth. Only this component does
produce a differential displacement of the centers of mass which can be recorded by the spinning capacitors. It is
apparent that a differential force due to a violation of the Equivalence Principle would not change sign every 1/2
orbit and would also not go to zero with the separation distance ∆z.

2.2.3 RADIOMETER EFFECTS AND THERMAL REQUIREMENTS

The radiometer effect  is well known in gravitational experiments as a dangerous "experiment
killer".  It is caused by the differential pressure of the residual gas on the cylindrical test bodies,
and therefore one way of reducing it is by reducing the residual pressure. This choice has led
scientists to lower the temperature to very low values, until  almost all gases freeze out and
only an extremely low pressure is left. In GG, since the signal of interest is not along the
symmetry axis of the test bodies, but in the perpendicular plane, the major contribution by the
radiometer effect is zero for symmetry reasons even at room temperature. We have examined
all contributions caused by this effect in GG, and concluded that they do not affect the EP
experiment at the current target sensitivity of 1 part in 1017, as it is summarized below  (see
Comandi et al., 1998 for details)

The perturbing acceleration known under the name of “radiometer effect” is:

dx

dT

T

p
are ⋅⋅= 1

2ρ
�������������������������������������������������������������������������������������������������������������
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with  p, ρ and T the pressure, density and temperature of the body with a gradient along the x
direction. This happens in conditions such as the space ones in which the mean free path of
the gas molecules is much larger than the linear dimension of the vessel. Consider the
concentric  hollow test cylinders of the GG  experiment, with the symmetry axes in the z
direction and the expected EP violation signal in the transverse x,y plane.  A radiometer
acceleration in the x,y plane would compete directly  with the signal. Consider one of the hollow
cylinders with its inner and outer surfaces at temperatures differing by ∆T,  perfect  azimuthal
symmetry and zero temperature gradient along z. For pure symmetry reasons there is no
radiometer  acceleration normal to the axis of the cylinder. If the two cylinders are placed  one
inside the other and their axes are perfectly aligned  there is no differential force between the
two in the x,y plane due to the radiometer effect.  An imperfect centering of the cylinders would
break this symmetry, but we have checked that it would require a very large temperature
difference between the test cylinders to become relevant. We take T=300 K and p=1.1⋅10-7 N/m2

(corresponding to a residual density of 2⋅10-16 g/cm3 ; maximum value close to solar maximum).
Due to the fast spin and with well known insulation techniques azimuth temperature
asymmetries of the test bodies are negligible; the resulting radiometer effect (due to the
resulting break of symmetry) is also negligible.

The only relevant requirement comes from the radiometer effect along the spin/symmetry axes
of the test cylinders. Although the signal is in the transverse plane,  we have just seen in the
previous Section that the vertical misalignment ∆z between the centers of mass of the test
bodies should not exceed a few Angstrom in order not to give rise to a tidal effect competing
with the signal and requiring recentering. If we compute the radiometer effect along the z axis
we get the following inequality:

Kzkz
io

re ∆⋅
−

≤∆
)SP(S

T2
)T( z ���������������������������������������������������������������������������������������

which must be fulfilled by temperature gradients along z, So  and Si being the cross sections, in
the x,y transverse plane of the outer and inner cylinder respectively, and kz the elastic constant
of the suspensions along z. Temperature gradients along z (over the height of the test bodies)
must not exceed a few degrees.

The radiation pressure effect along z leads to a similar requirement on ∆Tz : if the two faces of
a test cylinder have different temperatures they will emit differently, and this will result in a net
force along the symmetry axis of the cylinder. This effect will be different for the two bodies,
hence resulting in a differential  acceleration (and a differential displacement) along the z
direction. The inequality to be fulfilled by the axial temperature gradients because of this effect
is:

Kzkrp ∆⋅<∆ z3ST

c
T

σε
�����������������������������������������������������������������������������������������������

(c the speed of light,  σ  the Boltzmann constant, ε  the emissivity −about 0.03 for gold coating−
S the cross section of the body in the x,y transverse plane). It is more stringent for the outer
body, due to the larger S, and leads again to a few degrees.

Yet another requirement on temperature gradients along z , this time along the coupling arms
of the test bodies (see Fig. 2.1), is due to the fact that temperature gradients change the length
of the arms, whereby impairing the balancing of the test  bodies. It is enough to choose the
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material for manufacturing the arms with a coefficient  of thermal expansion of  10-5 /K ; then, if
temperature gradients along each arm do not exceed 1 K the balancing is not perturbed.

In this low equatorial orbit the GG satellite spends about 1/3 of its time in the shadow of the
Earth and the rest in sunlight, thermal equilibrium temperatures in the two cases differing by
several tens of degree. While azimuth temperature variations are inexistent because of the fast
spin, temperature gradients between the illuminated and the dark side of the satellite when
exposed to radiation can in principle be very large. These gradients can be essentially
eliminated inside a rapidly spinning spacecraft if it is properly insulated. Insulation and vacuum
serve also the purpose of reducing the rate of temperature variation with time. For the
temperature stability in time inside the PGB laboratory at the level of the test bodies we require
that:

dayKT /2.0≤&                                                                                                                    (2.48)

which, from  thermal model simulations, turns out to be feasible by passive control only (see
Sec. 4.4).

The temperature drift affects the stiffness of the suspensions, hence the balancing of the test
bodies because the springs will not respond exactly the same to the same temperature
changes. We require that the relative change in stiffness with temperature be of 1/4000 per
degree of temperature; experience with gravimeter springs for the measurement of Earth tides
has shown that it can be done much better (Melchior et al. 1979). If 1/100 of the stiffness
variation is differential  (which is reasonable because the test bodies springs are manufactured
to high precision, and can be tested in the laboratory), then there is a time interval of 20 days
before exceeding the required common mode rejection level (given by 2.38) whereby the test
bodies need to be rebalanced.

If the test bodies expand uniformly (in azimuth), the relative position of their centers of mass
does not change; hence the signal will not change as long as the capacitance bridge remains
balanced. However, the capacitance sensors will change their relative position in between the
test bodies to such an extent that the bridge may no longer be balanced. If this happens, a
common mode signal may become dominant over the expected differential signal. With the
requirement (2.42) on bridge balancing this will take about 15 days. However, once the
materials for the test bodies have been selected  (Be and Cu in the current baseline) and the
bodies have been manufactured, thermal tests can be done so that the mounting arms of the
capacitance can be manufactured using a material whose coefficient of thermal expansion
partially compensates for the bridge unbalance caused by the thermal expansion of the test
bodies. In this way the allowed time-span before mechanical rebalancing of the bridge would
become longer than 2 weeks. Non uniform thermal expansion of the test bodies is small and
gives a DC effect.

In summary, current temperature requirements (0.2 K/day stability in time at test masses level;
1 K axial gradient over the test bodies and the coupling arms) appear to be doable with passive
thermal insulation techniques (see Secs. 4.3 and 5.4); they allow 20 days of data taking before
rebalancing of the test bodies and at least 15 days  (more if some more care is taken in the
manufacture of the sensor plates arms) before rebalancing the read-out capacitance bridge.
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2.2.4 ELECTROSTATIC AND MAGNETIC EFFECTS

Electrostatic effects are known to be a major challenge in all gravitational experiments due the
≅ 1040 ratio in strength between the two interactions. The GG orbit (low and equatorial) is below
the Van Allen belts and minimizes charged particles impact. However, the major advantage of
the GG experiment is that, with conductive mechanical suspensions there are no free floating
masses and therefore no electrostatic charges will be able to build up inside the spacecraft.
Care will be taken that all currents flow in shielded cables. Potential differences between the
test masses can be avoided by coating them with a thin layer of the same conductive material.
Small residual potential differences  (known as patch effects) may be present with slow time
variations. In GG they would give essentially DC effects. Such potential differences can only
be detected from their mechanical effects. This can be done with the GGG ground prototype; if
a known potential V is applied to a capacitance plate facing the test body the resulting force is
proportional to V2. Therefore, by changing sign to the voltage any deviation from a parabolic
dependence (hence any bias AV) can be measured.

A comparison with STEP makes it apparent how serious charging problems can be. In STEP
as studied by ESA at Phase A level for the M3 competition (with a target in EP testing of 1 part
in 1017 like GG), a 2-cm thick tungsten shield (weighing ≅ 130 kg) was considered as baseline in
order to have a time span of a few days available before discharging  was needed again
(Blaser et al., 1996 Mission Summary and Sec. 3.6.1). In the previous Phase A Study of STEP
carried out by ESA for the M2 competition in collaboration with NASA (same target in EP
testing)  the problem had already been recognized as a serious one, although the baseline
solution was a different one: it was decided to add a radiation sensor on board so as to be able
to discard the contaminated data (Blaset et al., 1993 Sec. 3.4.4). In addition, it must be noted
that in STEP charged particles affect the EP experiment also by asymmetrical momentum
transfer along the sensitive axis of the test bodies, especially because their masses are small
(a few hundred grams)  (Blaser et al., 1993, Sec. 3.4.3). It is therefore a very good feature of
GG to be essentially unaffected by Van Allen belt effects and electrostatic charging.

Magnetic disturbances are of two types: interactions of magnetized or magnetizable materials
between themselves and interactions between these materials and the Earth’s magnetic field.
The effects appear at gs-gË (gËp7.29¹10-5rad/s the rotation angular velocity of the Earth, gË gs),

at 2(gs-gË), hence essentially at the spin frequency and twice it, and as DC. All these effects
have been estimated in worst case assumptions (see Nobili et al., 1998a for details on all
various terms).

The most dangerous perturbation is due to the interaction between the magnetic moment (due
to residual ferromagnetic impurities) of one test body and the magnetization induced on the
other by the magnetic field of the Earth. The resulting perturbing force, at frequency ωs  and
therefore competing  with the signal is:

24
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1 µϑχ
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s
⊕≈                                                                                                       (2.49)

with BË the magnetic field of the Earth, hmp118 the angle between north geographic and north
magnetic pole, x1 and V1 the magnetic susceptibility and volume of test mass 1, m2 the
magnetic moment of test mass 2, r  the mutual distance.  The requirement on the magnetic
moment of the Be test mass is to be smaller than about  7.5⋅10-8 Am2 .  From experimental data
reported in textbooks we find that the magnetic moment of a cube of magnet  of 0.1 mm size
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(which would be a large magnetic impurity) is about  5⋅10-7 Am2 , so with care in avoiding large
magnetic impurities our requirement can be met.

At the spin/signal frequency there is also the perturbation due to the interaction of the magnetic
moment of one test body with the magnetic field of the Earth:

msin
hR

B
F ϑµω )(2 +

≈′
⊕

⊕                                                                                                      (2.50)

but the constraints it poses on residual magnetic moments are much easier to fulfill. Magnetic
effects close to twice the spin frequency, and those DC have been evaluated and found out not
to be a matter of concern.

Taking into account that these are worst case estimates, it can be safely concluded that the
GG experiment does not need  magnetic shielding. In STEP magnetic shielding is needed
because of the use of SQUID sensors and its is provided by superconducting lead shields
(Blaser et al., 1993 Sec.3.4.6).

By comparison, it is worth considering the problem of magnetic perturbations in the EÞt-Wash
EP torsion balance experiment (Su et al., 1994), where  the magnetic field of the Earth near
the balance was reduced by a total factor of 105 (partly with W-metal shielding, partly with
Helmholtz coils). This seems to contradict our previous conclusion, especially if one considers
that they have reached a sensitivity R=10-12 while the GG target is R=10-17. Indeed, it is not so
and we can easily understand why. The first important fact to bear in mind is that, despite its
higher target sensitivity the GG expected force signal is p 2.5 times larger than it is in EÞt-
Wash, because of the bigger EP signal in space and the larger mass of the test bodies. In GG
there are two test bodies of 10 kg each while in the EÞt-Wash torsion balance there are 4
masses of 10 grams each; the force signals are p 8.4.10-16 N and p 3.4.10-16 N respectively. Note
that the force, not the acceleration, is relevant when dealing with non gravitational
perturbations. Secondly, since the EÞt-Wash experiment is a torsion balance experiment it is
sensitive to torques, hence also to the magnetic torque generated by the interaction of the
magnetic field of the Earth with magnetic moments of the test bodies (due to residual
ferromagnetic impurities). Indeed, it turns out that the magnetic moment of the tray on which
the test bodies are positioned gives an even larger perturbation than the test masses
themselves. For this torque to be smaller than that due to an EP violation it must be:

NmBtray 03.0104.3 16 ⋅⋅< −
⊕µ                                                                                             (2.51)

where p 0.03 m is the length of the arm. It must therefore be  Wtray < 2�10-13Am2   (having used
BË= 5�10-5 T). From measurement of the torsion angle in absence of any shielding or coils the
EÞt-Wash group finds that the residual magnetic moment of the tray (made of Al) is about
2.4�10-8 Am2 (Su et al., 1994; Su 1992), thus making a reduction of BË by 105 crucial for the
success of the experiment. This is achieved by means of a 3-layer W-metal shielding for a
factor 3,600 and of Helmholtz coils for a factor 28. As for the EÞt-Wash test masses, the
measured value of the residual magnetic moment is p 4�10-10 Am2 while the requirement
imposed by the magnetic torque is about 7�10-9 Am2; with a factor 105 of reduction of the
magnetic field of the Earth made necessary by the tray, this effect is no problem. The magnetic
dampers, used to kill the swing and wobble modes so that the motor can provide a smooth
rotation, will also benefit of the reduction of the magnetic field. In GG we have symmetric and
concentric masses and the signal is a force, not a torque, thus we have nothing like the
magnetic torque (2.51); we do not have any motor or magnetic dampers either.
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2.2.5 COUPLING TO HIGHER MASS MOMENTS OF THE TEST BODIES

The GG test bodies have non zero quadrupole and higher mass moments. These are different
for the two bodies and will therefore interact differently with the monopole moment of the Earth.
The result is a (classical, i.e. Newtonian) differential acceleration which experimentally is
absolutely undistinguishable from an EP violation signal: the source mass is the same, the
mass moment which produces the effect is the same (the monopole), so the resulting
frequency and phase are also the same.  For this reason, this is the single most dangerous
perturbation whose value has to be absolutely below the expected signal to make EP test
unambiguous. The perturbing acceleration caused by the Earth mass interacting with the
quadrupole moment of a test body orbiting at an altitude h  is:
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with r1, r2 and l the inner radius, outer radius and height of the body, h the altitude of the
satellite, DJ/Jx5(Jz2Jx)/Jx5b the fractional difference in the principal moments of inertia and
qn<18 the angle between the spin axis and the orbit normal (f(qn) p 1 for small hn). In the GG
current design (taking into account that coupling to a given monopole source with the
quadrupole moments of the test bodies is in phase, and therefore the relative effect is the
difference of the two, the resulting effect is given in  the error budget Tables 2.1 and 2.2 and it
is below the signal by two orders of magnitude. Coupling to mass moments higher than the
quadrupole gives much smaller disturbances because the Earth  is far away (large value of
RË+h).

Nearby mass anomalies Am in the mass distribution of the satellite will also produce a similar
coupling. But the big difference is that these effects are DC; an advantage of the entire
laboratory spinning with the test bodies which unfortunately is not there in the GGG ground
test. So values larger than the signal are acceptable, and we can avoid putting tight constraints
on symmetry of the mass distribution (by construction), which might be expensive
requirements to meet. We find that 100 grams unbalance on the outer shell where such
anomalies are more likely to be (at about 40 cm distance), gives a quadrupole effect  at most 30
times larger than the signal, which is not a problem  because it is a constant DC effect . We
have been worried about the expansion and contraction of the outer shell (and compensation
masses) induced by eclipses (Sec. 2.1.2). Even though the signature of an eclipse induced
signal can in principle be recognized (the frequency is the orbital one, but eclipse lasts only
about on third of the orbital period) eclipse induced effects would still be a concern. In fact the
gravitational effect of such an oscillation turns out to be  negligible because the test bodies are
well centered on the symmetry axis of the cylinder where the effect of a pulsating cylindrical
surface would be exactly zero. Hence, the dominant effect remains the one of a mass anomaly
by construction estimated above.
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2.2.6 REQUIREMENTS AND DISTURBANCES FROM WHIRL CONTROL

The stabilization of whirl motions as outlined in Sec. 2.1.5 and numerically simulated in Chap.
6  gives a requirement on the measurement of the spin rate of the spacecraft:
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                                                                                                            (2.53)

to be met by the Earth Elevation Sensors of the spacecraft (see Sec. 5.5). Currently available
sensors, e.g. from Officine Galileo, are usually mounted on higher altitude spinning spacecraft.
They would therefore need to be modified for the lower orbit of GG (the angle between the two
small infrared telescopes needs to be increased) but the requirement is not a challenging one.
Note that, although the spin rate needs to be measured to this level, it does not matter how
much it is precisely. Also the precise direction of the  spin axis in space does not matter
because the active dampers act, by geometrical construction,  in the plane perpendicular to the
spin axis; where precisely this axis is in space is not needed. This comes from the fact that the
EP differential signal would be measured, by construction, in the same plane perpendicular to
the spin axis. However, the analysis of the output data of the Earth sensors will provide also
the direction of the spin axis.

The whirl control needs the small capacitance sensors to be able to detect relative
displacements of 0.01 µm , particularly for the test masses. This is the sensitivity which,  after
applying filters at the spin frequency and at the whirl/natural frequency, allows us reducing the
whirl radii to values of a few Angstrom. The sensitivity required for these small capacitance
sensors has been demonstrated in the laboratory during the development of the GGG
prototype (see Chap. 3).

Disturbances induced by the active control of the test masses themselves need not to be taken
into account because the growth times of their whirl motions are so slow (due to the high
mechanical quality of the suspensions; Q=19000 measured) that a convenient strategy is to
first damp the whirls with forces much larger than the minimum required (so as to damp them
quicker) and then start data taking. The planned integration time of about 1 week  can be
carried without  controlling the whirls of the test bodies. The whirl motion of the PGB needs to
be damped all the time because its suspensions have a lower mechanical quality (smaller Q).
There are perturbations on the relative position due to the controlling forces if they are not
perfectly opposite to the whirl velocity but have also a radial component, because of a phase
error. However,  perturbations on the PGB are common mode for the test bodies, hence only
their residual differential fraction (after common mode rejection) gives a differential effect and
competes with the signal: with χCMR = 1/100000 disturbances from the control forces of the PGB
are totally negligible even with a very large phase error.
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2.2.7 THERMAL NOISE AND ERROR BUDGET

Test masses will have their own mechanical thermal noise, resulting in a perturbing
acceleration on each test mass:

int

14

tmQ

TK
a dmB

th ⋅≅ ω
                                                                                                    (2.54)

where  KB is the Boltzmann constant,  m =10 kg  is the mass of each test body,  ωdm  the natural
oscillation frequency of the test bodies in differential mode, Q the quality factor of the
mechanically suspended bodies and tint the integration time.

It is a well known fact that in supercritical rotation suspensions are deformed (and dissipate
energy) at their spinning frequency, not at their natural frequency. This applies to GG  as well
(Crandall and Nobili, 1997). In this case the relevant Q is that of the suspension springs of the
test masses at 2 Hz, for which our best measured value  is 19000 (see Sec. 2.1.5).  Having the
natural frequency ωdm rather than the one in common mode in (2.54) is correct: the two values
are not close (see 2.39) and Q is high, hence the bandwidth of noise is so small that there is
no significant contribution from thermal noise in common mode to the thermal noise in
differential mode where the effect of an EP violation would appear. It is also worth noticing the
dependence of thermal noise acceleration on (T/m)1/2 , which shows how bigger masses can
compensate for the higher temperature in a room temperature rather than cryogenic
experiment as it is GG at present.

Table 2.1 gives the GG error budget listing the major disturbances with the signature of their
effects (frequency and phase), since this is very important in establishing how they contribute
to the total budget. This Table assumes launch at the beginning of 2002 and mission operation
for 7 months after launch, the first month being devoted to initial set-up and calibration phase.
Being close to the solar maximum air drag is the main disturbance; moreover, the maximum
value of drag along the orbit is used for a conservative evaluation. It is partially compensated
and partially rejected; the common mode rejection factor of 1/100000 assumed here is a very
realistic one, since it has already been tested on the GGG prototype (see Chap. 3). Also the Q
value, which is relevant for  thermal noise,  derives from experimental measurements (see Sec
2.1.5). The signal is about a factor of 2 above the total error.

In Table 2.2 the error budget refers to operating the mission close to solar minimum, in the fall
of 2004; however, the maximum value of drag along the orbit is used. Drag is clearly less
relevant, also because we have assumed an improvement in common mode rejection by a
factor of 5, which experience with the ground prototype shows it can be reached.  Thermal
noise has become the limitation; we have also assumed to be able to improve the Q by a factor
50, to a value 100000. Such a possibility can be tested in the laboratory; the target value
appears to be reachable  but  it is not as easy as  improving the common mode rejection.  The
signal is now about a factor 5 larger than the error.

In conclusion, EP testing with the GG experiment −at room temperature and with an almost
passive satellite− to 1 part in 1017 is feasible. Doing better than this requires to substantially
lower the temperature flying a cryogenic version of GG. In this case the GG rapid axial rotation
gives two important advantages: (i) the very high centrifugal force at the periphery of the
spacecraft dominates the motion of the refrigerating (movable) material and largely reduces,
by symmetry, its well known disturbances on the experiment; (ii) the spin/symmetry axis
provides an ideal symmetrical direction along which evaporation can take place without
disturbing the experiment. None of these advantageous features holds for the current,
cryogenic STEP experiment.
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Table 2.1  GG Error Budget for EP testing to 10-17 (SI Units): close to solar maximum (launch beginning of
2002); maximum drag value along the orbit assumed; Q as measured; χCMR tested in GGG.
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Table 2.2  GG Error Budget for EP Testing to 10-17 (SI Units): close to solar minimum (launch 2004);
maximum drag value along the orbit assumed; improvement in Q and  χCMR required.
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