

GG error budget from the end-to-end simulator developed at TAS-I

BL OOS

12.02.2010 GG workshop, Pisa / S.Piero a Grado

INTERNAL THALES ALENIA SPACE COMMERCIAL IN CONFIDENCE

All rights reserved, 2010, Thales Alenia Space

COMMERCIAL IN CONFIDENCE

All rights reserved, 2010, Thales Alenia Space

The Signal

(2)

- Signal optimization: equatorial orbit
 - Inclination depends on the launch site latitude, Kourou $I \le 5^{\circ}$
 - Eccentricity is not zero: e ≤ 0.01
 - Period of longitude variation of ascending node $T_{asc_node} \approx 48$ days
 - Spin axis initially aligned with the orbit angular velocity within $\delta I_0 \leq 1^\circ$
 - The angle between the spin axis and the orbit angular velocity changes also due to the gravity gradient and magnetic torque acting on the satellite:

 $\delta I = \delta I_0(\text{launch}) + \delta I_{\text{orbit}} + \delta I_{\text{Torques}} \approx 15-20^\circ \text{ after about 1-2 years}$

 But: angle is changing very slowly, each fundamental experiment is carried out with constant driving signal

12.02.2010 GG workshop Pisa / S. Piero a Grado

BL OOS

The Signal

- Performance check vs. simulated results
- Signal to Noise Ratio
 - The science measurement is: $\Delta x_{EP} = a_{EP} \times (T_{diff})^2 / (4 \times \pi^2)$
 - T_{diff} according to the simulator, T_{diff} = 500 s
 - Science measurements are affected by systematic errors d_x(t) and by stochastic errors ñ(t)

$$\Delta x'_{EP}(t) = \Delta x_{EP}(t) + d_x(t) + \tilde{n}_x(t)$$

measurement

∼ EP violation signal, $\Delta x_{EP} \approx 0.5 \times 10^{-12} \text{ m}$

(3)

- Same allocation (50%) for deterministic and stochastic errors
- Error allocation such that $SNR \ge 2$
- The deterministic effects with the EP signature must be reduced as much as possible: spin modulation "takes away" a lot of disturbances due to the spacecraft (DC effects in the Body Fixed reference frame)
- The stochastic effects define T_{int} : thermal noise (worst case) Tint ≈ 1 week
- Mission duration ≈ 2 years Number of Tint ≈ 100 (rich statistics!)

12.02.2010

Non Gravitational Forces Acting on the Spacecraft

- Non-gravitational forces are sensed as inertial acceleration from test masses ideally pure common mode, but:
 - test masses mechanical suspension is not ideal \rightarrow a fraction χ_{CMRRxy} of common mode acceleration is sensed as differential one
 - Orbit altitude h = 630 km in order to have $a_{NG_{xy}}^{ext} \approx 2 \times 10^{-7} \text{ m/s}^2$
 - The Drag Free Control partially compensates the non-gravitational forces (@ orbit frequency in IRF) a_{CMxy} = χ_{DFCxy} × a^{ext}_{NGxy}
 - ✓ reduced mechanical balance requirement for the capacitance bridge
 - ✓ reduced inertial acceleration acting on PGB, i.e. smaller displacement
 - ✓ reduced test masses common mode acceleration, i.e. smaller displacement

12.02.2010 GG workshop Pisa / S. Piero a Grado

Y22000

BL OOS

INTERNAL THALES ALENIA SPACE COMMERCIAL IN CONFIDENCE (1)

Non Gravitational Forces Acting on the Spacecraft (in IRF) (3)

- Non-gravitational acceleration time series (frozen values for m_{s/c} and A_{s/c})
 - Date: 2013 July 12th
 - GG altitude h = 630 km
 - Atmospheric model: MSIS '86 (above 120 km MSIS '86 = MSIS2000)
 - Solar radiation included (F10=180, F10B=160, Geomagnetic Index = 8)

Non Gravitational Forces Acting on the Spacecraft

(6)

Main non-gravitational acceleration after DFC compensation and suspension rejection – CMRR- fulfills the requirement

GG: gravitational forces

Page 11

The Gravitational Forces

- TM higher mass moment coupling with Earth monopole
 - TM guadrupole mass moment couples with Earth monopole

Inner TM $\delta J_i / J_i = -0.0116$ Outer TM $\delta J_0 / J_0 = -0.0065$

- Test masses quadrupole are both small and of the same order Differential acceleration = $9.3 \times 10^{-18} \text{ m/s}^2 \approx 0.1 \times a_{\text{EP}}$
- Tidal effects (displacements on XY plane)
 - Gravity gradient T_{jj} magnitude corresponding to the GG local gravity: $T_{jj}(h_{GG}) = 3 \times 10^{-6} \text{ m/s}^2/\text{m}$ $T_{jk}(h_{GG}) = 3 \times 10^{-7} \text{ m/s}^2/\text{m}$ (worst case)

 - Signature difference with respect to EP signal

During science measurement the TM whirl radius r_w must not affect the EP signal detection (through T_{ii}): $r_w \le 5 \times 10^{-10} \text{ m}$

12.02.2010

GG Error Budget (according to simulator parameters)

(1)

- Amplitude Spectrum of EP signal and disturbing effects (affecting measurements in the XY plane) as observed in the IRF
- Signal and most effective deterministic disturbances (smallest frequency separation
 - Most effecting disturbance at v_{EP}, well below the signal
 - One week duration of the elementary experiment ensures good frequency separation for all the competing lines, also the first one at 2 × v_{EP}

INTERNAL THALES ALENIA SPACE COMMERCIAL IN CONFIDENCE

All rights reserved, 2010, Thales Alenia Space

THALES

Page 14

GG Error Budget

(3)

Acceleration (transverse plane) due to:	Frequency in IRF (Hz)	Frequency in BF (Hz)	Phase	Differential acceleration (m/s ²)	Differential displacement (pm)
EP signal	v_{orb}	v_{S} (wrt Earth)	X _{LVLH}	8.116·10 ⁻¹⁷	0.51
External non gravitational forces	Vorb	vs	Mainly along Y_{LVLH}	1.7·10 ⁻⁷	-
External non gravitational forces after DFC compensation and CMRR	Vorb	VS	Mainly along Y_{LVLH}	3.4·10 ⁻¹⁷	0.22
Earth coupling with TMs quadrupole moments	v_{orb}	ν_{S}	X _{LVLH}	9·10 ⁻¹⁸	0.06
Radiometric effect along Z coupled with Earth tide	$2 \cdot v_{orb}$	$\nu_{\text{S}} \pm \nu_{\text{orb}}$	X _{LVLH}	6.3·10 ⁻¹⁶	4.0
Emitted radiation along Z coupled to Earth tide	$2 \cdot v_{orb}$	$\nu_{\text{S}} \pm \nu_{\text{orb}}$	X _{LVLH}	4·10 ⁻¹⁷	0.11
Tide coupled to non grav. acceleration along Z	$2 \cdot v_{orb}$	$\nu_{\text{S}} \pm \nu_{\text{orb}}$	X _{LVLH}	1.4·10 ⁻¹⁷	0.09
TM1 inner magnetic dipole coupled to B _e magnetized TM2	$2 \cdot v_{orb}$	$\nu_{\text{S}} \pm \nu_{\text{orb}}$	X _{LVLH}	1·10 ⁻¹⁸	8·10 ⁻³
TMs inner magnetic dipoles coupled to $B_{\pmb{\Theta}}$	2·vorb	$\nu_{\text{S}} \pm \nu_{\text{orb}}$	X _{LVLH}	6·10 ⁻²¹	4·10 ⁻⁵
TM1 and TM2 with B _⊕ induced magnetization couple	4·v _{orb}	$\nu_{\text{S}} \pm 3 {\cdot} \nu_{\text{orb}}$	X _{LVLH}	8·10 ⁻²³	5·10 ⁻⁷
TM1 with B_{\oplus} induced magnetization couples with B_{\oplus}	4·vorb	$\nu_{\text{S}} \pm 3 {\cdot} \nu_{\text{orb}}$	X _{LVLH}	8·10 ⁻²⁴	5·10 ⁻⁸
Whirl motion coupled to Earth tide	$v_{w}, v_{w} \pm 2 \cdot v_{orb}$	≈vs±v _w (v _{orb} << v _w)	X _{LVLH}	6.9·10 ⁻¹⁴	440
	Higher frequencies	Frequencies far from Vs	X _{LVLH}		

BL OOS

12.02.2010

GG workshop Pisa / S. Piero a Grado

INTERNAL THALES ALENIA SPACE COMMERCIAL IN CONFIDENCE

THALES All rights reserved, 2010, Thales Alenia Space

Page 15

GG Error Budget

- Variation of line @ 2v_{EP} due to the change of the angle in between spin axis and orbit angular rate
 - Variation very slow in time (signal and line are almost constant during one week)
 - 11 pm can be distinguished very well with one week of continuous data

BL OOS

GG Error Budget

Thermal noise due to TMs "spring" dissipation (Q_{TM} = 20000) directly affects the science measurement (it is the main stochastic disturbance):

(5)

GG: Simulated Performance

Page 17

Simulator for GG spinning @1 Hz

(1)

- Spacecraft shell, PGB, TMi, TMo, dummy body for not solving the orbit motion in a rapidly spinning reference frame: 27 DoFs
- Gravity and gravity gradient are "on"
- Current mass/inertia properties for all bodies (included proof masses quadrupole moment)
- Orbit altitude h = 630 km to match the reference non gravitational acceleration 2 × 10⁻⁷ m/s²
- Stiffness are reproducing PGB modes and common and differential proof masses modes in the XY plane and along Z according to the mission requirements
- Mechanical quality factor is lowered for TMs in order to amplify whirl motion
- Environment fully modeled
- $\eta = 10^{-17}$ for all the science simulations (science target)
- Quadruple precision simulations are carried out in order to predict science performance of the mission

GG: Simulated Performance

Page 18

(2)

- DFC, AOCS and PGB-s/c control in open loop
- PGB and TMs whirl control in closed loop

s/c to LVLH hinge attitude angle y time series

s/c to LVLH hinge attitude angle z time series is ωt

BL OOS

12.02.2010 GG workshop Pisa / S. Piero a Grado

GG: Simulated Performance

