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Transfer Function in the Inertial Reference Frame

Consider a spacecraft of cylindrical symmetry whose symmetry axis is also the axis of max-
imum moment of inertia. Inside the spacecraft is the PGB (Pico Gravity Box) laboratory,
also of cylindrical symmetry and with the axis of maximum moment of inertia coinciding
(within manufacture/mounting errors) with the symmetry axis of the spacecrfat. The PGB
is mechanically coupled to the spacecraft (along the sysmmetry axis) by means of mechanical
springs with low stiffness k in all directions. Let the spacecraft and PGB be rigidly locked to
one another during launch and until they have reached the nominal spin angular velocity Ω
around the principal axis of inertia of the system. Let the cruise phase, under the effect of a
non–gravitational force Fd (e.g. due to the atmospheric drag), begin at time t = 0, once the
rigid lockers have been unlocked and the initial transient phase has been completed. Since we
refer here to the GG space experiment we consider only the motion of the spacecraft/PGB
system in the x, y plane perpendicular to the spin axis, which is the plane of the expected
signal; we know that tilting torques are negligible, that differential rotations in azimuth can
be dealt with and that motions along the z-spin axis are sufficiently small (see “GG Pre
Phase A Report”, ASI, September 1996)

In an inertial reference frame whose centre of mass coincides, at t = 0, with the centre of
mass of the spacecraft/PGB system the equations of motion read:





ms~̈rs = −k(~rs − ~rp)− cr(~̇rs − ~̇rp) + cr
~Ω× (~rs − ~rp)− cnr(~̇rs − ~̇rp) + ~Fd

mp~̈rp = −k(~rp − ~rs)− cr(~̇rp − ~̇rs) + cr
~Ω× (~rp − ~rs)− cnr(~̇rp − ~̇rs)

where ms is the mass of the spacecraft, mp the mass of the PGB, cr and cnr are the rotating
and non rotating damping coefficients respectively, the position vectors and velocities lie in
the x, y plane and subscripts s and p refer to the spacecraft and the PGB respectively. cr

is known as rotating damping coefficient because it is due to friction inside rotating parts of
the system.
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cnr is known as non-rotating damping coefficient because it is due to friction inside non-
rotating parts of the system. Note that cr and cnr refer to two physically different types
of energy dissipation in the rotor and do not depend on the reference frame (e.g., fixed or
rotating) used to describe the problem (see Paper I, §6). In GG there is no damping due
to friction between rotating and non rotating parts (referred to as friction in the bearings)
because there is no motor, there are no bearings and there are no non–rotating parts. Friction
in the bearings is present in ground based rotating machines and the corresponding torque
tends to slow down the machine (were not for the presence of the motor). Note that in the
equations of motion of ground based rotors the effect of friction in the bearings does not enter
either, because the motor supplies the energy required in order to maintain the spin rate of
the system at its nominal value. Friction in the bearings is therefore not relevant for these
calculations, neither in GG nor in ground machines and should not be confused with friction
between non–rotating parts (expressed by the non–rotating damping coefficient cnr) which
has a stabilizing effect. As for the cnr coefficient used in the following, it should be read as
automatically multiplied by a safety factor ξs slightly larger than 1 (ξs = 1.2).
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By applying the Fourier transform to the equations of the previous system we obtain the
following linear system of equations:





−ω2x̂s = −ω2
0s(x̂s − x̂p) + iω cr+cnr

ms
(x̂s − x̂p)− cr

ms
Ω(ŷs − ŷp) + Fdx

ms

−ω2ŷs = −ω2
0s(ŷs − ŷp) + iω cr+cnr

ms
(ŷs − ŷp) + cr

ms
Ω(x̂s − x̂p) + Fdy

ms

−ω2x̂p = −ω2
0p(x̂p − x̂s) + iω cr+cnr

mp
(x̂p − x̂s)− cr

mp
Ω(ŷp − ŷs)

−ω2ŷp = −ω2
0p(ŷp − ŷs) + iω cr+cnr

mp
(ŷp − ŷs) + cr

mp
Ω(x̂p − x̂s)

The solutions of this system are:





x̂s = Fdx[k−mpω2−iω(cr+cnr)][mpmsω2−(k−iω(cr+cnr))(ms+mp)]−FdycrΩm2
pω2−Fdx(crΩ)2(ms+mp)

[(k−iω(cr+cnr))(ms+mp)−mpmsω2]2ω2+(crΩ)2(ms+mp)2ω2

ŷs = Fdy[k−mpω2−iω(cr+cnr)][mpmsω2−(k−iω(cr+cnr))(ms+mp)]+FdxcrΩm2
pω2−Fdy(crΩ)2(ms+mp)

[(k−iω(cr+cnr))(ms+mp)−mpmsω2]2ω2+(crΩ)2(ms+mp)2ω2

x̂p = Fdx[k−iω(cr+cnr)][mpmsω2−(k−iω(cr+cnr))(ms+mp)]+FdycrΩmpmsω2−Fdx(crΩ)2(ms+mp)
[(k−iω(cr+cnr))(ms+mp)−mpmsω2]2ω2+(crΩ)2(ms+mp)2ω2

ŷp = Fdy [k−iω(cr+cnr)][mpmsω2−(k−iω(cr+cnr))(ms+mp)]−FdxcrΩmpmsω2−Fdy(crΩ)2(ms+mp)
[(k−iω(cr+cnr))(ms+mp)−mpmsω2]2ω2+(crΩ)2(ms+mp)2ω2

The transfer function for the GG spacecraft-PGB system is defined as:

tf =

√| x̂p |2 + | ŷp |2√
| x̂s |2 + | ŷs |2

The mechanical coupling between the GG spacecraft and the PGB is k = 20 dyn/cm, with a
natural frequency of oscillation ω◦ ' 2π·0.004 rad/s. The mass of the spring is neglected. The
total energy dissipation due to rotating friction is expressed by the quality factor Q. When
in supercritical rotation, we use for the coefficient of rotating damping: cr ' (1/Q) · k/Ω
(supercritical rotating damping), which would be incorrect if the system were dominated by
a large amount of rotating viscous damping. We have shown in Paper I (Appendix) that in
such a case the corresponding coefficient of rotating damping in the equations of motion is
given by (cr)v = (1/Qv) · k/ω◦ with Qv ¿ Ω/ω◦. Since this is certainly not the GG case, a
coefficient cr of the previous form (i.e. ∝ 1/ω◦) can never be used in combination with a value
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for the viscous quality factor Qv ¿ Ω/ω◦ (Qv ¿ Ω/ω◦ ' 1.25·103 in the GG spacecraft–PGB
case), but only with values Qv ≥ Ω/ω◦ (in point of fact it is Qv À Ω/ω◦ for very small viscous
rotating damping and Qv ' Ω/ω◦ for an intermediate amount; see Paper I, Appendix). To
the contrary, the ESTEC Technical Reoport on GG (see its Appendix provided on October 7
1996 at ESA HQ during the GG presentation) uses (cr)v = (1/Qv) · k/ω◦ with Q = 10, thus
implicitly making the assumption that the GG system be dominated by a very large amount
of rotating viscous friction. There is no physical grounds for such an assumption because
rotating damping in the GG system comes essentially from energy dissipated inside the tiny
springs when deformed at the spin frequency of 5 Hz and any contribution due to dissipation
in the rotating active dampers is very small because of the very small damping forces that
they are required to provide (see Paper I, Appendix and §3). Among the transfer functions
shown below we have computed also the case with Q = 100; Q ' 100 is the value measured
experimentally for a PGB prototype spring that we have manufactured carrying 3 wires for
signal transmission (see “GG Pre Phase A Report”, ASI, September 1996).

4



Non rotating system, Q=10

5 Hz rotation, Q=10, ESTEC rotating damping

5 Hz rotation, Q=10, supercritical rotating damping
5 Hz rotation, Q=20, supercritical rotating damping
5 Hz rotation, Q=100, supercritical rotating damping
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Transfer function of the GG s/c − PGB systemFig. 1

5 Hz

Fig. 1. Transfer function of the GG spacecraft-PGB system in the inertial reference frame
for the cases of zero spin rate and supercritical rotation at 5 Hz. At zero spin rate (black
curve) the well known behaviour of passive noise attenuators on the ground is recovered,
where the height of the peak at the natural frequency is about Q. In supercritical rotation
we obtain the green, red and blue curves (for Q = 10, 20 and 100 respectively) showing that
the system is effective in attenuating vibrations at the GG spin/signal frequency of 5 Hz (the
higher the Q the better the attenuation, which is peculiar of supercritical rotation). This
means attenuation of disturbances which act at 5 Hz w.r.t. the fixed frame, i.e. which are
DC or 10 Hz w.r.t. the rotating frame. The system is obviously transparent to disturbances at
frequencies below the natural one; in particular it is transparent to effects which are DC w.r.t.
the fixed frame (i.e. at 5 Hz w.r.t. the rotating one). The “ESTEC” curve corresponds to a
system in supercritical rotation dominated by a very large amount of rotating viscous friction
(see Paper I, Appendix); such a system would be almost ineffective in attenuating vibrational
noise.
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Non rotating system, Q=10
0.001 Hz rotation, Q=50, subcritical rotating damping
5 Hz rotation, Q=10, supercritical rotating damping
5 Hz rotation, Q=50, supercritical rotating damping
5 Hz rotation, Q=100, supercritical rotating damping
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Transfer function of the GG s/c − PGB systemFig. 2

5 Hz

Fig. 2. Transfer function of the GG spacecraft-PGB system in the inertial reference frame at
zero spin rate, in supercritical and in subcritical rotation at 5 Hz and 0.001 Hz respectively.
The coefficient of rotating damping is cr ' (1/Q)(k/Ω) for the supercritical case and cr '
(1/Q)(k/ω◦) for the subcritical one, which is correct for the GG system. The black curve
shows the transfer function at zero spin rate and Q = 10. The violet curve shows the transfer
function of the system in slow subcritical rotation with Q = 50; the peak at natural frequency
has height about Q. The green, red and blue curves refer to the cases of fast supercritical
rotation with Q = 10, 50 and 100 respectively; noise reduction of disturbances acting at 5 Hz

(w.r.t. the fixed frame) is apparent, a higher Q giving a better attenuation.
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Transfer Function in the Rotating Reference Frame

Let us calculate the transfer function of the GG spacecraft–PGB system which would be
measured by an observer rotating with the system at its angular speed Ω = 2π5 rad/s.
Instead of re-casting the equations of motion in the body fixed reference system, we can
obtain the spectral coordinates in the rotating system from the inertial coordinates in the
following way:





xR
p (t) = xp(t) cos(Ωt) + yp(t) sin(Ωt)

yR
p (t) = −xp(t) sin(Ωt) + yp(t) cos(Ωt)

xR
s (t) = xs(t) cos(Ωt) + ys(t) sin(Ωt)

yR
s (t) = −xs(t) sin(Ωt) + ys(t) cos(Ωt)

with xi(t), yi(t) the inertial coordinates (i = p, s) and xR
i (t), yR

i (t) the body fixed coordinates.
The spectral coordinates are obtained operating the Fourier transform of the xR

i (t), yR
i (t).

Using cos(Ωt) = (exp(iΩt)+exp(−iΩt))/2 and sin(Ωt) = i(exp(−iΩt)−exp(iΩt))/2 it is easy
to find:





x̂R
p = [x̂p(ω + Ω) + x̂p(ω − Ω) + iŷp(ω − Ω)− iŷp(ω + Ω)]/2

ŷR
p = [ŷp(ω + Ω) + ŷp(ω − Ω) + ix̂p(ω − Ω)− ix̂p(ω + Ω)]/2

x̂R
s = [x̂s(ω + Ω) + x̂s(ω − Ω) + iŷs(ω − Ω)− iŷs(ω + Ω)]/2

ŷR
s = [ŷs(ω + Ω) + ŷs(ω − Ω) + ix̂s(ω − Ω)− ix̂s(ω + Ω)]/2

The transfer function is defined as:

tfR =

√
| x̂R

p |2 + | ŷR
p |2

√
| x̂R

s |2 + | ŷR
s |2
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Non rotating system, Q=10

5 Hz rotation, Q=10, ESTEC rotating damping

5 Hz rotation, Q=10, supercritical rotating damping
5 Hz rotation, Q=20, supercritical rotating damping
5 Hz rotation, Q=100, supercritical rotating damping
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Transfer function of the GG s/c − PGB system in the rotating frameFig. 3

5 Hz

Fig. 3 Transfer function of the GG spacecraft-PGB system in the reference frame corotating
with the system at zero spin rate and in supercritical rotation. At zero spin rate (black curve)
the transfer function is obviously the same as in Fig. 1. In supercritical rotation (with the
same coefficient cr as used in the inertial reference frame) we obtain the green, red and blue
curves, respectively for Q = 10, 20 and 100. The peak at the spinning frequency shows that the
passive noise attenuator cannot change its properties just because we look at it in the rotating
frame. It cannot reduce vibrations at very low frequency w.r.t. the inertial frame, particularly
the DC ones; the observer corotating with the system sees these DC perturbations as 5 Hz,
and finds that the attenuator cannot reduce them, or better that it is transparent to 5 Hz

effects, where tfR = 1. Perturbations which are seen at 5 Hz by an inertial observer (and
attenuated), have frequencies 0 Hz and 10 Hz for the body fixed observer, and in fact he too
finds that they are attenuated. Like in Fig. 1, if we make the ESTEC assumption that the
system be dominated by a very large amount of rotating viscous damping, we find that it is
almost ineffective as noise attenuator.
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