
Un accelerometro differenziale in 
rotazione veloce per la verifica del 

principio di equivalenza

Anna Nobili e Raffaello Pegna

INFN Sezione di Pisa, 22 Giugno 2011

GGG



Why testing the Weak Equivalence Principle? Why in space?

• EP tests are the only ones which test GR for composition dependence

• The Weak Equivalence Principle is the founding pillar of General Relativity 

• Evidence of EP violation  would prove the existence of a new composition dependent force 
of Nature and make for a scientific revolution  (by comparison,  a geodetic or Lense Thirring
precession or light rays deflection different from Einstein’s prediction would simply call for 
another metric theory of gravity slightly different from GR…) 

.. aim at higher sensitivity whenever the possibility for an improvement arises

In low orbit around the Earth: 

• 3 orders of magnitude stronger signal 

• weightlessness

• experiment isolated in space



State of the art

Authors Apparatus Source mass Materials

Eötvös et al. ≈1900
collected in Ann. 
Phys. 1922

Torsion balance. Not 
rotating. No signal 
modulation

Earth Many 
combinations

10-8 ÷10-9

Roll, Krotkov & Dicke 
Ann. Phys. 1964

Torsion balance. Not 
rotating. 24hr 
modulation by Earth 
rotation

Sun Al − Au (1.3±1)x10-11

Braginsky & Panov 
JETP 1972

Torsion balance. 
8TMs. Not rotating. 
24hr modulation by 
Earth rotation

Sun Al − Pt (-0.3 ± 0.9)x10-12

E. Fischbach et al.: “Reanalysis of the Eötvös Experiment” PRL 1986

Eöt-Wash, PRD 1994 Rotating torsion 
balance. ≈ 1hr 
modulation Earth

Be − Cu (-1.9 ± 2.5)x10-12

Be − Al (-0.2 ± 2.8)x10-12

Eöt-Wash, PRL 1999 Rotating torsion 
balance. 1hr to 36’ 
modulation

Sun Earthlike/ 
Moonlike

≈10-12

(SEP 1.3x10-3)

Eöt-Wash, PRL 2008 Rotating torsion 
balance.                
20’ modulation

Earth Be − Ti (0.3 ± 1.8)x10-13

a a≡ ∆η

36 yr

14 yr



GG:  aiming at an improvement  from 10-13 to 10-17

• Slowly rotating torsion balances  have achieved: 

• In order to improve the EP test by 4 orders of magnitude GG must be able to sense 
differential accelerations between the test masses only one order of magnitude smaller than 
torsion balances, simply because in space the signal is 3 orders of magnitude stronger:

Collaboration ongoing with JPL to submit GG to the next EXPLORER call of NASA as a NASA 
led small mission with ASI partnership (GG not submitted previous EXPLORER call last 
February because  a key technology −FEEP thrusters− would not be tested on time by 
LISA/PF −more than 2 yrs launch delay of LISA/PF announced in January; NASA has 
withdrawn from LISA shortly afterwards)

GG mission duration can be ensured by cold gas thrusters  (baseline thrusters for GAIA).
For next NASA call:
– adjust mission design and error budget with new thrusters
– improve GGG prototype sensitivity at 1.7x10-4 Hz (frequency of  EP violation signal in 
space)



The GG experiment in space (I) 

Put the concentric 
cylinders in LEO and 
spin around the 
symmetry axis so that 
the sensitive plane can 
detect differential 
accelerations acting in 
the orbit plane, e.g. an 
EP violation…



The GG experiment in space (II) 

Laser read-out (withJPL
laser gauge tested for SIM)



Thermal noise & integration time

Rotating torsion balances are operated at 
thermal noise level and demonstrate that 
it is reduced by rotation (Adelberget at al. 

2009), but they are limited to rotation  
rates below the natural frequency, in order 

not to attenuate the expected signal  

• Low thermal noise is crucial for a space experiment to ensure short integration time

• Modulation of the signal by rotation allows also reduction of thermal noise

The GG experiment is unique in that it allows rotation rates well above the natural frequency 
(without signal attenuation…),  hence a much stronger reduction of thermal noise, yielding a 
much shorter integration time  



Abatement of thermal noise and integration time in GG

In the non rotating frame the force of the signal has low frequency:

In GG (10-17 target in EP test, 10-17g to be measured, 1Hz spin rate):

[Pegna et al., in collaboration with JPL, 
submitted to PRL, 2011]

Integration time for 10-17 EP sensitivity  and SNR=2:  ∼ 38 minutes!!!!

Damping noise from residual pressure is of the same order, noise force doubles, integration time 
grows by factor 4:  ∼ 2.5 hr total!!!

Macroscopic test masses weakly coupled and rapidly rotating drastically abate thermal noise!!!



GG: Why laser metrology from JPL to replace main capacitance sensors?

Laser metrology is the answer:

• It is far more sensitive than cap sensors
• Laser metrology is liner, hence large common mode motions do not give rise to false 

signals when two measurements are subtracted.
• Only light is deposited on the test masses (for the rest, they are totally “undisturbed” by 

the experimentalist during measurements …)

GG has very low thermal noise and can detect an EP violation to 
10-17 in 1 and half our. To exploit that  that it needs a read out 
which:

• has extremely low noise
• is very sensitive to displacements in 

differential mode and almost insensitive to 
those in common mode

• disturbs the test masses (and affects their 
assembly) as little as possible

…+ allows larger gaps between the test masses (cap sensors would loose sensitivity), hence effects of electric 
charge patches are highly reduced and it is easier to get rid of them – larger gaps reduce other disturbances 

too (GG TMs still have capacitors & springs to manage experiment initialization after unlock)



Basic concept of GG laser gauge

Outer test massInner test mass

Positive lens focus
Light on inner mass

Negative lens with hole 
Removes focus term
Smaller lenslets focus 
light on outer testmass

The sensitivity of the laser 
gauge is independent of the 
gap between
the two test masses.

Polished/coated surfaces

1 pico-m/rthz



GG laser gauge configuration concept (I)

• Total six (6X) gauges, symmetrically distributed at two ends of the proof masses
• Provide 4 DOF measurement between inner and outer cylinders
• Partial redundancy 



GG laser gauge configuration concept (II)

• Spatial split, between inner and outer cylinders. 
• Outer cylinder has slot/holes
• Reflective patches on both inner and outer cylinders
• Heritage: SIM, PDAS, etc.



GG: Performing signal null checks with no additional accelerometer on board

With very small thermal noise + laser metrology, the answer is yes:

• With 2.5 hr integration time for SNR=2, GG can make a full measurement to 10-17 in 1d (15 
orbits)

• GG has extremely high spin energy and its axis (normal to the sensitive plane) is fixed in 
inertial space during the mission

• Instead, being in sun-synchronous orbit the normal to the orbit precesses around the Earth 
axis by 1o per day, so the angle  ϑ between the spin axis and the orbit normal changes daily. 
With no attitude control GG can have -40o<ϑ<+40o in 80 days, with an EP measurement each 
day….

EP violation signal and the most dangerous disturbances which need to be distinguished from it 
have their own specific signature as function of ϑ, which allows them to be very clearly 
distinguished……

If GG meets its target sensitivity and measures a non zero signal, is it possible to prove that it is 
EP violation (new force of Nature) and not a disturbance accountable with known Physics?

[Nobili et al., in press]



What is around the test masses: top view

•Laser gauge box

•Beam launchers               (6X)

•Fiber cables



The GG satellite

GG satellite 
inside Taurus 

fairing
GG satellite GG satellite without 

solar panel



GGG not rotating: 2 force signals of same amplitude applied in the lab frame  at 
frequencies 0.001 Hz and 0.01 Hz), below the natural frequency 0.06 Hz

GGG: Evidence that signals above resonance are not attenuated (I)



GGG spinning at 0.19 Hz with natural frequency  0.1 Hz : same signals applied at 0.01 Hz 
and 0.001 Hz in the lab frame. 

Because of the lower natural frequency they should both produce smaller effects by the 
ratio of the natural frequencies squared: (0.1/0.06)2=2.78

Because of rotation they are upconverted above the natural frequency, and in typical 1D 
forced oscillators they would be attenuate another factor. 

So, we should see a total attenuation by a factor 8, which we do not see in GGG

(we see only the expected factor 2.78)

NOTE: in space the advantage is much bigger because it is possible to spin much faster 
than the natural frequency with no attenuation of the target EP violation signal!!

GGG: Evidence that signals above resonance are not attenuated (II)

[Pegna, Nobili et al., to 
be submitted to PRD] 



We see only the factor almost 3 reduction expected by the slightly higher natural frequency, 
certainly not a factor of 8!!!

GGG: Evidence that signals above resonance are not attenuated (III)

GG/GGG has the unique property that a low frequency signal can be modulated above the 
natural frequency (with great advantages) without being attenuated!



sGGG (ASI funding)  (I)



sGGG (II)



sGGG (III)

2D laminar 
suspension (not 
rotating)



First run of sGGG (end 2010)

Factor 10  improvement from non-suspended system + spectrum much more flat at low 
frequencies (passive tilt attenuation much better than active tilt control)

@ GG orbital frequency: 3e-7 m/√Hz  (sensitivity to differential acceleration of about 10-11g)



Tilt attenuation by 2D laminar suspension (I) 

Attenuation factor 300 measured by applying strong tilt to the frame rigid with the chamber , 
zero spin (.. limited by cables connecting fixed to suspended frame)



Tilt attenuation by 2D laminar suspension (II) 

Attenuation factor 5000 measured after using thin cables



Tilt attenuation by 2D laminar suspension (III) 

After attenuation by factor 5000 the effect of the applied tilt is visible as a relative displacement 
of the test masses just above noise



sGGG simulator under training

A simulator of sGGG has been set-up, based on the engineering construction drawings of the 
system. It is written in SimMechanics

The non rigid components of the system are implemented by forcing the simulator to match the 
measurements.  

• it does reproduce all the natural frequencies

• It does reproduce the observed tilt attenuation factor

It can be used to infer effects which are hard to measure (e.g. effects of horizontal 
accelerations) or to check the effects of hardware changes in order to establish if they are 
worth implementing



Reducing energy coming from the pendulum motion of the suspended frame (I)

Plan, in collaboration with JPL ,  is to reach 10-15 g by the next EXPLORER call f NASA 



Reducing energy coming from the pendulum motion of the suspended frame (II)



Read-out electronic noise and advantage of spin 

At 0.2 Hz electronic noise is about 3e-8 m/sqrt(Hz), so when spinning at 0.2 Hz it is about 1 
order of magnitude smaller than current noise at the low frequency of interest (1.7e-4 Hz). So, it 
is not yet the limiting noise  – it will be soon, so new electronics is under construction  



Hunting low frequency (1.7e-4 Hz) noise sources

• Horizontal seismic accelerations: under study with simulator:  most probably not yet a 
limitation but common mode effects may be larger

• Uniformity of rotation: demultiplied stepper motor under testing 

• Rigidity of connection from rotor to laminar suspension (can have low frequency changes if 
not rigid enough; current frame questioned)

• Ball bearings: dust or small defects of balls may produce low frequency motion of shaft 
(may be the main culprit) .. Move to magnetic bearings…

• Small leakage from vacuum chamber (gives rise to low frequency disturbance): simple test 
proposed by Erseo Polacco will be done soon

Another factor 10 improvement not too far away

But to reach 10-15 g  sensitivity we are heading towards a smaller rotor (test cylinder 1 kg 
each: weaker coupling, higher acceleration sensitivity) with optical read out (from JPL, 
though not the laser gauge to be used for GG in space; low noise and differential) and low 
noise motor and bearings .  
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Abatement of thermal noise in mechanical oscillators with rapidly rotating test masses
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Mechanical oscillators are sensitive to very small forces, the sensitivity improving with the inverse
of the natural oscillation frequency squared. For low frequency effects it is crucial to up-convert
the signal to higher frequency. This is achieved by rotating the oscillator. We show that for a
2-dimensional oscillator rotating at a frequency much higher than the natural one, thermal noise
competing with the signal is abated so that the integration time required for the signal to emerge
from thermal noise is reduced by as much as the ratio of the two frequencies. Traditionally, the
rotation frequency has been kept below the natural one because otherwise the signal would be
attenuated as the rotation frequency squared. This has limited the advantage of rotation. We show
that, provided the oscillator is allowed to move in a plane, it can rotate much faster than its natural
frequency without the signal being attenuated. These findings indicate that test masses weakly
coupled in 2-D and rapidly rotating can play a major role in very small force physics experiments.

Physics experiments for the measurement of small
forces are ultimately limited by thermal noise. Once all
systematics are reduced below the signal –and if read out
noise is not a limitation– it sets the length of the integra-
tion time required for the signal to emerge above ther-
mal noise. A factor 10 better sensitivity –i.e. a 10 times
smaller force to be detected– requires an integration time
100 times longer, which makes reduction of thermal noise
a must if extremely small forces are to be detected.
Consider a 2-D harmonic oscillator made of two point-

like test bodies of reduced mass µ coupled by a spring of
stiffness k in both directions of the plane. The general
solution is an elliptic orbit with the center in the common
center of mass of the bodies, which can be decomposed
into the sum of two simple harmonic motions with ωn =√
k/µ the frequency of natural (or proper) oscillations of

the test masses relative to each other in each direction.
The oscillator is designed to be sensitive to very small

forces acting between the masses in their plane of mo-
tion. Therefore, it has a very low natural frequency ωn

(because the sensitivity improves as ω−2
n ) and employs

springs of very high mechanical quality (i.e. losses are
very small). It is also operated in vacuum at low resid-
ual pressure in order to reduce damping resulting from
Brownian motion.
Such a system is dominated by internal damping. Ac-

cording to Nyquist fluctuation-dissipation theorem, in
the frequency domain the Power Spectral Density (PSD)
of the thermal noise force is given by:

< |F̂th(ω)|2 >= 4KBTγ(ω) (1)

with KB the Boltzmann constant, T the thermal equi-
librium temperature and γ(ω) the damping coefficient
which, for systems dominated by internal damping has
been found to be frequency dependent and given by [1]:

γ(ω) =
kϕ(ω)

ω
(2)

where ϕ is known as loss angle (its modulus is the inverse
of the mechanical quality factor Q) which also depends
on the frequency ω, albeit mildly. The name loss angle is
because in the presence of losses the displacement always
lags the applied force by the angle ϕ (ϕ(ω) is an odd func-
tion). (2) is verified experimentally and the divergence at
zero frequency is a known issue of no practical relevance
([1], Sec. VII).

Let ωsignal be the frequency of the very small force
to be sensed by the oscillator, typically smaller than its
natural frequency (ωsignal < ωn) because in the oppo-
site case the effect of the force would be attenuated by
the oscillator as 1/ω2

signal (we do not consider here the
particular case in which the signal is resonant with the
oscillator). If all systematics and other noise sources have
been made smaller than the signal, the experiment is ul-
timately limited by thermal noise at the frequency of the
signal. Because of the frequency dependence (2), from
(1) the relevant thermal noise random force (i.e. its com-
ponent acting on the test masses at the same frequency
as the signal) after an integration time tint is:

Fth(ωsignal)|tint
≃

√
4KBTµω2

nϕ(ωsignal)

ωsignal

1√
tint

=

=
√
4KBTµωnϕ(ωsignal)

1√
(ωsignal/ωn)

1√
tint

(3)

in which the factor ωsignal/ωn < 1 has been singled out
to stress the fact that the lower is the frequency of the sig-
nal compared to the natural frequency of the system, the
longer is the integration time required to bring thermal
noise below the signal. Since the need for high sensitiv-
ity requires oscillators with very low natural frequency,
and this must be higher than the signal frequency, high
thermal noise –and consequent long integration time– ap-
pear to be serious limitations to the measurement of very
small forces.
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The difficulties of detecting low frequency effects can
be mitigated by up-converting the signal to higher fre-
quency. This is typically achieved by rotating the me-
chanical oscillator at a frequency faster than that of the
signal. Let us therefore consider a 2-D harmonic oscil-
lator, with test bodies of equal mass m for simplicity,
rotating around an axis perpendicular to its a, b sensitive
plane with angular velocity ωs with respect to the iner-
tial frame whose x, y plane coincides with the sensitive
plane of the oscillator (Fig. 1). The signal is at frequency
ωsignal in the inertial frame and it is ωsignal ≪ ωs.

F thF th

ω

γ

γ

m m

b

a
k

k

y

x

s

FIG. 1: Sketch of the 2-D rotating oscillator for which thermal
noise is evaluated. The proof masses are concentric and rotate
–together with the springs– at angular velocity ωs. They are
assumed for the moment as perfectly centered on the rota-
tion axis. The springs are modeled as ideal springs of elastic
constant k and zero length at rest; to each spring is associ-
ated a co-rotating thermal noise force generator Fth and an
ideal noiseless damper γ. x, y is the inertial frame; a, b is the
rotating one.

For the oscillator of Fig. 1 we study the effect on the
relative motion of the test masses of the force due to
thermal noise when the system is in thermal equilibrium
at temperature T , with the purpose of assessing its rele-
vance at the frequency of the signal.
We express the motion of the system, subject to the

mechanical thermal noise force of the rotating springs, in
the inertial x, y reference frame in the frequency domain
and in matrix form as follows:

D(ω)ˆ⃗r = F(R(ωst)F⃗th(t))(ω) (4)

where D(ω) is the dynamical matrix of the equations of
motion of the system, F is the Fourier transform opera-

tor, F⃗th(t) is the thermal noise force due to losses in the
rotating springs, and R(ωst) is the 2 by 2 rotation matrix
of angle ωst:

R(ωst) =

(
cosωst − sinωst
sinωst cosωst

)
=

=
1

2
eiωst

(
1 i
−i 1

)
+

1

2
e−iωst

(
1 −i
i 1

) (5)

By defining:

A =
1

2

(
1 i
−i 1

)
(6)

we can write:

D(ω)ˆ⃗r = F(R(ωst)F⃗th(t)) =

= A
ˆ⃗
Fth(ω + ωs) +A∗ ˆ⃗Fth(ω − ωs)

(7)

where superscript ∗ denotes the complex conjugate. We
can see that the effect produced on the dynamical sys-
tem D (in the inertial x, y frame) by the rotating thermal

noise force F⃗th is a linear combination of
ˆ⃗
Fth(ω+ωs) and

ˆ⃗
Fth(ω − ωs). The most straightforward way to evaluate
the components of the thermal noise force in the inertial
frame is to write the time average of the Cross Spec-
tral Density (CSD) matrix. Then —in the reasonable
assumption of statistical independence of the different
vectorial and frequency components of the thermal noise
force— we get:

<
ˆ⃗
Fth(ω)

ˆ⃗
Fth(ω)

† >=
1

2

4KBTkϕ(ω + ωs)

(ω + ωs)
A+

+
1

2

4KBTkϕ(ω − ωs)

(ω − ωs)
A∗

(8)

where
ˆ⃗
Fth(ω)

† denotes the transpose conjugate of
ˆ⃗
Fth(ω).

Let us now consider the signal force of interest

F⃗signal(t) acting on the test masses relative to each other
at a very low frequency ωsignal ≪ ωs in the inertial frame:

F⃗signal(t) = Fsignal(cos(ωsignalt), sin(ωsignalt)) (9)

which in the frequency domain reads:

ˆ⃗
Fsignal(ω) =

1

2
Fsignal

·
(

δ(ω − ωsignal) + δ(ω + ωsignal)
−iδ(ω − ωsignal) + iδ(ω + ωsignal)

) (10)

The CSD matrix of the signal is then:

<
ˆ⃗
Fsignal(ω)

ˆ⃗
Fsignal(ω)

† >=
1

2
F 2
signal

·
[
δ(ω − ωsignal)A+ δ(ω + ωsignal)A

∗] (11)

By comparing (11) with (8) we can see that only the
components of noise at the frequency of the signal, i.e.
those with ω = ωsignal and ω = −ωsignal do compete
with it. By evaluating the diagonal matrix elements of
(8) at the signal frequencies we obtain the PSD of the
x, y components of the noise competing with the corre-
sponding components of the signal (11). That is, we must
compare:

1

2

[4KBTkϕ(±ωsignal + ωs)

(±ωsignal + ωs)
+

4KBTkϕ(±ωsignal − ωs)

(±ωsignal − ωs)

]
with

1

2
F 2
signal

(12)
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Since we are in the condition ωsignal ≪ ωs, it is appar-
ent that in (12) the dependence on ωsignal disappears
and only that on ωs remains; moreover, the off diagonal
elements of the CSD (8) are very small. In these condi-
tions the x, y components of the thermal noise force are
almost uncorrelated and by averaging the x with the y
component of the signal we gain a factor

√
2 in the signal-

to-noise ratio. Thus, the thermal noise force competing
with the signal is:

< |F̂th| >≃

√
4KBTkϕ(ωs)

ωs
(13)

from which we can write the relevant thermal noise force
after an integration tint:

F′
th(ωsignal ≪ ωs)|tint

≃

√
4KBTµω2

nϕ(ωs)

ωs

1√
tint

=

=
√
4KBTµωnϕ(ωs)

1√
(ωs/ωn)

1√
tint
(14)

to be compared with (3) in order to appreciate the dif-
ference with respect to the non rotating case.
We see that the frequency of the signal is now replaced

in (14) by the rotation frequency of the oscillator ωs. One
advantage is that losses at higher frequency are found
to be smaller than losses at lower frequency, hence it
will be ϕ(ωs) < ϕ(ωsignal). The other major advantage
is that the ratio ωs/ωn is considerably higher than the
corresponding ωsignal/ωn ratio in (3), since the whole
purpose of rotation is to up-convert the signal to higher
frequency. For a given force signal, the integration time
needed to reduce the thermal force noise below it is in-
versely proportional to this ratio, so the higher the ratio,
the shorter the integration time —i.e. the less the ex-
periment is affected by thermal noise. There is nothing
mysterious about this result: the energy of thermal noise
is the same as at zero spin –simply, its component at the
frequency of the signal is much smaller than at zero spin.
Traditional attempts at reducing thermal noise have

involved cooling down the apparatus in order to reduce
the thermal equilibrium temperature T ; even if success-
ful, cryogenics can reduce the integration time by a factor
10 at most, while rotation can do much better than that,
especially if coupling is very weak.
An example are the rotating torsion balances used to

test the Equivalence Principle by detecting the twist an-
gle produced by tiny differential forces acting in the hor-
izontal plane. They have been able to reach the level
of thermal noise ([2], Fig. 20) and in this remarkable
achievement they have found that thermal noise obeys
the law ([2], eq. (57)) as predicted by [1], where the fre-
quency involved is the modulation frequency of the sig-
nal, that is the frequency at which the balance rotates.
Eq. (57) in [2] is the same as our (13). By rotating the
balance with a period of about 20 minutes they have im-
proved by a factor 70 as compared to relying on the 24-hr

rotation of the Earth, reducing the integration time by
the same factor.

However, torsion balances reported in [2] rotate at a
frequency smaller than their natural torsion frequency
(at about 2/3 of it), thus the ratio ωs/ωn in (14) is still
smaller than unity. This is because, with the force sig-
nal to be detected acting at very low frequency in the
inertial frame (either from the Earth, the Sun or the cen-
ter of our galaxy), the balance is forced to oscillate at
ωs ± ωsignal ≃ ωs: in each turn, when the balance arm
is aligned with the force the signal is zero, when it is
perpendicular to it the signal is either maximum or min-
imum. The balance is an oscillator with loss angle ϕ(ωs),
natural frequency ωn, forced at the rotation frequency
ωs, hence –if the forcing frequency is much higher than
the natural one– the effect is attenuated as the inverse
of the forcing frequency squared. This is why torsion
balances are rotated at a frequency close to –but smaller
than– their torsion frequency, which means ωs/ωn

<∼1. As
a matter of fact, in ([2], Sec. 6.2.1) while analyzing ways
to reduce thermal noise, it is stated that thermal noise
is minimized by modulating the signal at high frequency,
but a further increase of the rotation/modulation rate is
not considered as an option.

Below we show how it is possible to realize a 2-D oscil-
lator rotating at a frequency much higher than its natural
one (i.e. with ωs/ωn ≫ 1 and consequent high frequency
modulation and abatement of thermal noise) without the
signal being attenuated.

So far we have referred to a rotating oscillator in which
the proof masses are perfectly centered on the rotation
axis. In reality perfect centering is impossible; we repre-
sent such manufacturing imperfections by an offset vector
ϵ⃗ of the reduced mass µ from the rotation axis (⃗ϵ is fixed
in the rotating frame). The equilibrium position vector
is:

r⃗eq =
1

1− (ωs/ωn)2
ϵ⃗ (15)

which in the case that the rotation frequency is much
larger than the natural one becomes:

r⃗eq ≃ −ϵ⃗

(
ωn

ωs

)2

(16)

showing that the center of mass of the rotating body
reaches equilibrium much closer to the rotation axis than
it was by construction, by the factor (ωn/ωs)

2 ≪ 1. This
auto-centering phenomenon is what makes fast rotation
more advantageous than the slow one. The minus sign
means that for the equilibrium position to be reached
the center of mass of the body must be allowed to move
in the rotating plane so as to set itself antiparallel to ϵ⃗
as required for equilibrium by (16): if constrained in 1
direction only, it would not auto-center [3].

Let us now write and solve the equations of motion
around the equilibrium position in the presence of a force,
like the signal, of very low frequency. In the inertial frame
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they read:

µ¨⃗r + γωs(
˙⃗r − ω⃗s × r⃗) + kr⃗ = F⃗ (17)

where γωs is the damping coefficient of the oscillator ro-
tating at ωs, which is very small because the oscillator has
very small losses and of the type (2) because it is dom-

inated by internal damping; F⃗ is the signal force whose
frequency is so small compared to both ωs and ωn that we
consider it as constant. In the 2-body oscillator of Fig. 1,
if the bodies have equal mass m the reduced mass is m/2,

the natural frequency is ωn =
√
k/(m/2) with the exter-

nal force acting between them. In the assumptions made
(ωs ≫ ωn and very small internal losses), the solution
of the homogeneous part of (17) is (with amplitudes and
phases determined by initial conditions):

r⃗w(t) ≃ A0e
ϕωsωnt/2

(
cos(ωnt+ φA)
sin(ωnt+ φA)

)
+

+B0e
−ϕωsωnt/2

(
cos(−ωnt+ φB)
sin(−ωnt+ φB)

) (18)

showing that in the inertial reference frame the oscillator
performs a combination of a forward and a backward
orbital motion –known as whirl motion– at the (slow)
natural frequency ωn, and the radii of such orbits are
exponentially decaying in the case of the backward whirl
and exponentially growing in the case of the forward one.
We have written the exponential behavior in terms of the
loss angle:

ϕωs ≃ γωsωs

µω2
n

=
γωsωs

k
(19)

which is very small because the system has very small
losses; hence the forward whirl is a very weak instabil-
ity. Every natural/whirl period the radius of the forward
whirl grows by the fraction πϕωs , hence the tangential
force which produces the growth is –in modulus– ϕωskr,
which is a very small fraction of the elastic force, re-
quiring a correspondingly small force to stabilize it. Its
frequency is the natural one and does not interfere with
the force signal (see [4], [5]).

In the presence of an external constant force F⃗ , the
equations of motion (17) show that (in the inertial frame)
the body is displaced to the position:

r⃗F (t) =
1

1 +
γ2
ωs

ωs

k2

·

(
F⃗e

k
− γωs

k2
ω⃗s × F⃗

)
≃ F⃗

k
− ϕωs

ω⃗s

ωs
× F⃗

k

(20)

That is, the applied force F⃗ gives rise to a displacement

F⃗ /k (i.e. inversely proportional to the natural frequency
squared) with a negligible additional effect (because of
the very small loss angle ϕωs) in the orthogonal direc-
tion. In the rotating frame of the oscillator the constant
displacement observed in the inertial one appears at the
rotation frequency ωs ≫ ωn, yet it is apparent that no
attenuation occurs.

The general solution in the inertial frame –including
the auto-centered position (16) fixed on the rotating
oscillator– is:

r⃗(t) ≃ −ϵ⃗(ωst)

(
ωn

ωs

)2

+
F⃗

k
− ϕωs

ω⃗s

ωs
× F⃗

k
+

+A0e
ϕωsωnt/2

(
cos(ωnt+ φA)
sin(ωnt+ φA)

)
+

+B0e
−ϕωsωnt/2

(
cos(−ωnt+ φB)
sin(−ωnt+ φB)

) (21)

Assume zero losses and no external force: only the first
term is not zero and the solution is the auto-centered po-

sition rotating at frequency ωs; if the force signal F⃗ is

added –still with zero losses– the term F⃗ /k is not zero
and the oscillator is displaced by this vector with auto-
centering holding as before; finally, if small losses occur
–after the backward whirl has died out, and neglecting
the small effect ∝ ϕωs– the forward whirl slowly grows
around the displaced position at frequency ωn. By con-
trolling this weak instability, rotation (and signal mod-
ulation) at a frequency much higher than the natural
one are achieved with no signal attenuation, and thermal
noise is drastically reduced according to (14)

By overcoming a long standing limitation, rapidly ro-
tating weakly coupled 2-D mechanical oscillators can
play a major role in physics experiments for the mea-
surement of extremely small forces.
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